ON FINITE GROUPS WITH QUASI-DIHEDRAL SYLOW 2-GROUPS BY T. KWON, K. LEE, I. CHO, S. PARK ### 1. Introduction A finite group S_{m+2} of order 2^{m+2} , $m \ge 2$, defined by $$S_{m+2} = \langle x, y | x^{2^{m+1}} = y^2 = 1, x^y = x^{-1+2^m} \rangle$$ is called a *quasi-dihedral* group. The only finite simple groups known with quasi-dihedral Sylow 2-groups are $$L_3(q) = PSL(3, q), q \equiv -1 \pmod{4},$$ $U_3(q) = PSU(3, q), q \equiv 1 \pmod{4},$ $$M_{11}$$, where M_{11} denotes the Mathieu group on 11 letters. It is also well known that Sylow 2-groups of $$GL(2,q)$$, $q \equiv -1 \pmod{4}$, $GU(2,q)$, $q \equiv 1 \pmod{4}$ are quasi-dihedral. In this paper, we will analyze the fusion of 2-elements for arbitrary finite groups with quasi-dihedral Sylow 2-groups, and give a *detailed* proof of the following Theorem (cf. [1]). THEOREM Let G be a finite group with a quasi-dihedral Sylow 2-group S and let T, Q be representatives of the conjugacy classes of four subgoups and quaternion subgroups respectively of S. Then one of the following holds: - (1) G has no normal subgroups of index 2, G has one conjugacy class of involutions and one of elements of order 4, $|N_G(T):G_G(T)|=6$ and $|N_G(Q):QC_G(Q)|=6$. - (2) G has a normal subgroup K of index 2 with dihedral Sylow 2-groups, K has no normal subgroups of index 2, G has one conjugacy class of involutions and two of elements of order 4, $|N_G(T):C_G(T)|=6$ and $|N_G(Q):QC_G(Q)|=2$. Received April 15, 1980 ^{*)}This research is supported by KOSEF Research Grant. - (3) G has a normal subgroup K of index 2 with generalized quaternion Sylow 2-groups, K has no normal subgroups of index 2, Z(S) is weakly closed in S with respect to G, G has two conjugacy classes of involutions and one of elements of order 4, $|N_G(T):C_G(T)|=2$ and $|N_G(Q):QC_G(Q)|=6$. - (4) G has a normal 2-complement, G has two conjugacy classes of involutions and two of elements of order 4, $|N_G(T):C_G(T)|=2$ and $|N_G(Q):QC_G(Q)|=2$. The focal subgroup theorem [4] and Grün's theorem [3] will be used in the proof of our Theorem. In section 2, we will prove a large number of basic properties of quasi-dihedral groups. Some parts of these are needed for the proof of our Theorem. The terminology and the notation in this paper are standard, and they are taken from [2]. All groups in this paper are assumed to be finite. ## 2. The quasi-dihedral group The quasi-dihedral group S_{m+2} has the following properties. LEMMA Let $S=S_{m+2}=\langle x,y|x^{2^{m+1}}=y^2=1, x^y=x^{-1+2^m}\rangle$ be a quasi-dihedral group of order $2^{m+2}, m\geq 2$, Then the following hold: (i) S has exactly three maximal subgroups. They are $$H=\langle x\rangle, \langle x^2, y\rangle \text{ and } \langle x^2, xy\rangle$$ which are cyclic, dihedral and generalized quaternion, respectively. - (ii) The involutions in S are $z=x^{2m}$ and x^iy , i even. The elements of order 4 in S are x^{2m-1} , zx^{2m-1} and x^iy , i odd. - (iii) $S' = \Phi(S) = \langle x^2 \rangle$ and S/S' is elementary abelian. - (iv) $Z(S) = \langle z \rangle$ and S/Z(S) is dihedral. - $(v) \ \Omega_1(S) = \langle x^2, y \rangle, \ \Omega_1(S') = Z(S) \ \text{and} \ \Omega_2(S') = \langle x^{2m-1} \rangle.$ - (vi) S has class m+1, and is of maximal class. - (vii) S has two conjugacy classes of involutions, represented by z and y, respectively. S has two conjugacy classes of elements of order 4, represented by x^{2m-1} and xy, respectively. - (viii) S has one conjugacy class of four subgroups, represented by $T = \langle z, y \rangle$. S has one conjugacy class of quaternionsubgroups, represented by $Q = \langle x^{2^{m-1}}, xy \rangle$. Moreover, we have $$C_S(T) = T$$, $|N_S(T):C_S(T)| = 2$, $C_S(Q) = Z(Q)$, $|N_S(Q):Q| = 2$. (ix) S has two conjugacy classes of cyclic subgroups of order 4, represented by $T_1 = \langle x^{2^{m-1}} \rangle$ and $T_2 = \langle xy \rangle$. We have $Q = \langle T_1, T_2 \rangle$, and $$C_S(T_1) = H$$, $N_S(T_1) = S$, $N_S(T_2) = Q$, $C_S(T_2) = T_2$. In particular, $|N_S(T_i)| : C_S(T_i) = 2$, $1 \le i \le 2$. - (x) Any abelian subgroup of S of order at least 8 is contained in H and is cyclic. - (xi) Any proper normal subgroup of S is either maximal or is cyclic and contained in S'. - (xii) If D is a dihedral subgroup of S of order at least 8, then the maximal cyclic subgroup of D is contained in the maximal cyclic subgroup H. - (xiii) Aut(S) is a nonabelian 2-group of order 2^{2m} . **Proof.** Since S is generated by two elements, it follows from Burnside's basis theorem that $S/\Phi(S)$ is an elementary abelian group of order 4. Hence there are exactly three maximal subgroups, and they are $H=\langle x\rangle$, $\langle x^2, y\rangle$ and $\langle x^2, xy\rangle$. And it is easy to show that $\langle x\rangle$, $\langle x^2, y\rangle$ and $\langle x^2, xy\rangle$ are cyclic, dihedral and generalized quaternion of order 2^{m+1} , respectively. Thus (i) holds. The only involution in H is $z=x^{2m}$, and the only elements of order 4 in H are x^{2m-1} and $x^{-2m-1}=zx^{2m-1}$. On the other hand, each element in S-H is of the form x^iy . Since we have $(x^iy)^2=z^i$ and $(x^iy)^4=1$, the order of x^iy is either 2 or 4, and x^iy is an involution if and only if i is even. Thus (ii) holds. Next, (iii) \sim (vi) have been proved in Thorem 5.4.3 of [2]. The involution z is conjugate only to itself in S. Since $C_S(y) = \langle z, y \rangle = T$, the size of the conjugacy class containing y is $|S:T| = 2^m$. Hence y is conjugate in S to x^iy for all even integer i. Thus S has two conjugacy classes of involutions. Similarly, the element $x^{2^{m-1}}$ is conjugate to itself and $x^{-2^{m-1}}$ in S. Since $C_S(xy) = \langle xy \rangle = T_2$, the size of the conjugacy class in S containing xy is $|S:T_2| = 2^m$. Hence xy is conjugate in S to x^iy for all odd integer i. In particular, S has two conjugacy classes of elements of order S. This proves (vii). Let A be an arbitrary four subgroup of S, and let B be an arbitrary quaternion subgroup of S. Since |S:H|=2, we have $|H\cap A|=2$ and $|H\cap B|=4$, whence $H\cap A=\langle z\rangle=Z(S)$ and $H\cap B=\langle x^{2^{m-1}}\rangle=T_1$. Hence it follows from (ii) that $A=\langle z,x^iy\rangle$ for some even integer i and $B=\langle x^{2^{m-1}},x^jy\rangle$ for some odd integer j. On the other hand, there exist elements u and v in S such that $y^u=x^iy$ and $(xy)^v=x^jy$ by (vii). Since u centralizes z and v normalizes T_1 . It follows that $A=\langle z,y\rangle^u=T^u$ and $B=\langle x^{2^{m-1}},xy\rangle^v=Q^v$. Thus every four subgroup of S is conjugate to T, and every quaternion subgroup of S is conjugate to Q. There are exactly 2^m involutions which are not z, so the preceding result implies that there are exactly 2^{m-1} four subgroups of S. Hence it follows that $|S:N_S(T)|=2^{m-1}$. Moreover, $C_S(T)=C_S(y)=T$. Therefore, we have $|N_S(T):C_S(T)|=2$. On the other hand, there are exactly 2^{m-1} subgroups of S of order 4 which are not T_1 . Hence the preceding result implies that there are exactly 2^{m-2} quaternion subgroups of S, so we have $|S:N_S(Q)|=2^{m-2}$. This yields that $|N_S(Q)|=2^4$ and $|N_S(Q):Q|=2$. It is clear that $C_S(Q)=C_H(xy)=\langle z\rangle=Z(Q)$. Thus (viii) holds. The first part of (ix) follows from (vii). There are exactly 2^{m-1} subgroups which are conjugate to T_2 in S. Hence $|S:N_S(T_2)|=2^{m-1}$. Since $Q\subseteq N_S(T_2)$, this yields that $N_S(T_2)=Q$. Now it is easy to prove the remaining part of (ix). Let C be an abelian subgroup of S of order at least S. Since |S:H|=2, we have $|H\cap C|=4$, whence H contains $x^{2^{m-1}}$. Therefore, it follows that $C\subseteq C_S(x^{2^{m-1}})=H$. Thus (x) holds. Now let N be a proper normal subgroup of S. If $N \subseteq H$, then either N = H or $N \subseteq \langle x^2 \rangle = S'$. Suppose that N is not contained in H. Then N must contains an element x^iy which is of order 2 or 4. If x^iy is an involution, then N contains all involutions in S - H and so $\langle y, x^2y \rangle \subseteq N$, which implies that $N = \langle y, x^2y \rangle = \langle x^2, y \rangle$. If x^iy is of order 4, then N contains all elements of order 4 lying in S - H, and so $N = \langle xy, x^{-1}y \rangle = \langle x^2, xy \rangle$. Thus (xi) follows from (i). Let D be a dihedral subgroup of S of order at least 8. Since |S:H|=2, it follows that $H\cap D$ is the unique maximal subgroup of D of index 2. Thus (xii) holds. Since H is the unique maximal cyclic subgroup of S, it is characteristic in S. Hence if σ is an automorphism of S then the images of x and y under σ is of the form $$x^{\sigma} = x^{k}$$, k odd, $y^{\sigma} = x^{i}y$, i even. Conversely, a mapping $\sigma: S \to S$ defined as above is indeed an automorphism of S. Hence $|\operatorname{Aut}(S)| = 2^m \cdot 2^m$. Thus (xiii) holds. ### 3. Proof of Theorem In this section we prove our Theorem. Throughout this section G is a finite group with a quasi-dihedral Sylow 2-group S and the notation for S and the elements and subgroups of S are as in Lemma. First of all, we will determine the focal subgroup $S \cap G'$. By Zassenhaus' theorem, $N_G(S)$ has a complement L to S. Since $N_G(S)/C_G(S)$ is a 2-group by Lemma (xiii), we have $L \subseteq C_G(S)$. Hence $N_G(S) = S \times L$, and we have $S \cap N_G(S)' = S'$. Thus it follows from Grün's theorem [3] that $$S \cap G' = \langle S', S \cap P' | P \text{ ranging over all Sylow 2-groups of } G \rangle$$. If $P=S^g$ for some g in G, then $P'=S'^g=\langle x^2\rangle^g$, so $S\cap P'$ is cyclic of order at most 2^m . Moreover, if $|S\cap P'|\geq 8$ then $S\cap P'$ must be contained in H by Lemma (x), whence $S\cap P'\subseteq \langle x^2\rangle=S'$. And if $|S\cap P'|=4$ then we have either $S\cap P'=T_1\subseteq S'$ or $S\cap P'=\langle x^iy\rangle$ for some odd i by Lemma (ii). Finally, if $|S\cap P'|=2$ then we have either $S\cap P'=\langle z\rangle\subset S'$ or $S\cap P'=\langle x^iy\rangle$ for some even i. Hence we conclude that either $S\cap G'=S'$ or that (*) $$S \cap G' = \langle x^2, x^{i_1}y, ..., x^{i_r}y \rangle$$ for suitable integers i_k and Sylow 2-groups P_k such that $S \cap P_k' = \langle x^i k y \rangle$, $1 \le k \le r$. Furthermore, if (*) holds, then $S \cap G' = \langle x^2, xy \rangle$ if all i_k are odd, $S \cap G' = \langle x^2, y \rangle$ if all i_k are even, and $S \cap G' = \langle x^2, y, xy \rangle = S$ in the remaining case. Hence one of the following four cases occur: $$S \cap G' = S'$$, $S \cap G' = \langle x^2, xy \rangle$, $S \cap G' = \langle x^2, y \rangle$, $S \cap G' = S$. Consider the case $S \cap G' = S$. Then G has no normal subgroups of index 2. In this case (*) holds and i_j is even and i_k is odd for suitable j, k, say j=1 and k=2. Since x^{i_1} and x^{i_2} are conjugate in S to y and xy, respectively, we may assume that there exist two Sylow 2-groups P_1 and P_2 of G such that $$S \cap P_1' = \langle y \rangle$$ and $S \cap P_2' = \langle xy \rangle = T_2$. Thus $\langle y \rangle = \mathcal{Q}_1(P_1') = Z(P_1)$ and $T_2 = \mathcal{Q}_2(P_2')$. Since $Z(P_1)$ is conjugate to $Z(S) = \langle z \rangle$ in G, the involution y is conjugate to z in G. Moreover, since $\mathcal{Q}_2(P_2')$ is conjugate to $\mathcal{Q}_2(S') = T_1$ in G, it follows that T_2 is conjugate to T_1 in T_2 in T_2 is conjugate T_2 in Moreover, by Lemma (viii) we have $|N_S(T):C_S(T)|=2$, so there exists $u \in N_S(T)$ such that $$z^u=z$$, $y^u=zy$, $(zy)^u=y$. On the other hand, $\langle y \rangle = Z(P_1)$, so the centralizer $C_G(y)$ contains both P_1 and $C_S(y) = T$. Let S_1 be a Sylow 2-group of $C_G(y)$ containing T. Then S_1 is a Sylow 2-group of G and $Z(S_1) = \langle y \rangle$. Moreover, as with S, we have $|N_{S_1}(T):C_{S_1}(T)|=2$, so there exists $v \in N_{S_1}(T)$ such that $$y^v=y$$, $z^v=zy$, $(zy)^v=z$. Thus if we set w=uv then $w \in N_G(T)$ and w cyclically permutes the three involutions of T, whence w^3 is the least power of w contained in $C_G(T)$. Since $N_G(T)/C_G(T)$ is isomorphic to a subgroup of the symmetric group Σ_3 , it follows that $N_G(T)/C_G(T) \cong \Sigma_3$ and $|N_G(T):C_G(T)|=6$. On the other hand, the quaternion subgroup $Q = \langle T_1, T_2 \rangle$ has exactly three subgroups of order 4. They are T_1 , T_2 and $T_3 = \langle x^{1+2m-1}y \rangle$. Moreover, by Lemma (viii) and (ix), we have $|N_S(Q):Q|=2$, $N_S(T_1)=S$ and $N_S(T_2)=Q$, so there exists $s \in N_S(Q)$ such that $$T_1^s = T_1, T_2^s = T_3, T_3^s = T_2.$$ Since T_2 is the unique subgroup of P_2' of order 4, T_2 is normal in P_2 . Hence $N_G(T_2)$ contains both P_2 and $N_S(T_2) = Q$. Let S_2 be a Sylow 2-group of $N_G(T_2)$ containing Q. Then S_2 is a Sylow 2-group of G and, as with S, we have $|N_{S_2}(Q):Q|=2$, $N_{S_2}(T_2)=S_2$ and $N_{S_2}(T_1)=Q$. Thus there exists $t \in N_{S_2}(Q)$ such that $$T_2^t = T_2, \quad T_3^t = T_1, \quad T_1^t = T_3,$$ Setting r=st, it follows that $$T_1^r = T_3$$, $T_3^r = T_2$, $T_2^r = T_1$. Hence $r \in N_G(Q)$ and r cyclically permutes T_1 , T_2 and T_3 , and so r^3 is the least power of r contained in $N_G(T_1) \cap N_G(T_2)$. Here we can show that $N_G(T_1) \cap N_G(T_2) = QC_G(Q)$. Note that, by the property of the quaternion group, if g is any element of $N_G(T_1) \cap N_G(T_2)$ then there exists an element h in Q such that $gh \in C_G(T_1) \cap C_G(T_2) = C_G(Q)$, which implies $g \in QC_G(Q)$. Therefore, we can conclude that $N_G(Q)/QC_G(Q)$ is isomorphic to Σ_3 and $|N_G(Q):QC_G(Q)|=6$. Thus all parts of the assertion (1) in Theorem hold when $S \cap G' = S$. Consider next the case $|S:S\cap G'|=2$. Then G has a normal subgroup K of index 2 such that $S\cap K=S\cap G'$ and $G/K\cong S/S\cap G'$, but G has no normal subgroups of index 4. Moreover, K has no normal subgroups of index 2. In fact, if K has a normal subgroup N of index 2, then there exists $g\in G$ such that $N^g \neq N$ and $N\cap N^g$ is normal in G. Since $G/N\cap N^g$ is of order 8, this group has a normal subgroup of index 4. Hence G has a normal subgroup of index 4, which is a contradiction. Note that if $|S:S\cap G'|=2$ then we have either $S\cap G'=\langle x^2,y\rangle$ or $S\cap G'=\langle x^2,xy\rangle$. Consider first the case $S\cap G'=\langle x^2,y\rangle$. Then K has a dihedral Sylow 2-group $S\cap G'=\langle x^2,y\rangle$. Moreover, the preceding argument for (1) shows that y is conjugate to z in G, G has one conjugacy class of involutions and $|N_G(T):C_G(T)|=6$. But the element xy is not conjugate x^{2m-1} in G, for if $xy=(x^{2m-1})^g$ with g in G, then $xy\in S\cap (S^g)'$, whence $S\cap G'=S$, contrary to our assumption. Hence G has two conjugacy classes of elements of order 4, and T_1 and T_2 are not conjugate in G. Therefore, we have $|N_G(Q):QC_G(Q)|=2$, otherwise this index would be 6 and $N_G(Q)$ would contain an element which cyclically permutes T_1 , T_2 and T_3 . But then T_1 and T_2 would be conjugate in G, which is not the case. Thus the assertion (2) in Theorem holds when $S \cap G' = \langle x^2, y \rangle$. Now consider the case $S \cap G' = \langle x^2, xy \rangle$. Then K has a generalized quaternion Sylow 2-group $S \cap G' = \langle x^2, xy \rangle$. Moreover, the preceding argument for (1) shows that xy is conjugate to $x^{2^{m-1}}$ in G, G has one conjugacy class of elements of order A, and $|N_G(Q):QC_G(Q)|=6$. On the other hand, the involution y is not conjugate to z in G, for if $y=z^g$ with g in G, then $y \in S \cap (S^g)'$, whence $S \cap G' = S$, contrary to our assumption. Thus G has two conjugacy class of involutions. And the only involution of S which is conjugate to z in G is z itself, so $Z(S) = \langle z \rangle$ is weakly closed in S with respect to G. In addition, we must have $|N_G(T):C_G(T)|=2$, otherwise this index would be 6 and $N_G(T)$ would contain an element which cyclically permutes the three involutions of T. But then y and z would be conjugate in G, which is not the case. Thus the assertion (3) in Theorem holds when $S \cap G' = \langle x^2, xy \rangle$. Finally assume that $S \cap G' = S'$. Then there exists a normal subgroup K of G such that $S \cap K = S \cap G' = S'$ and $G/K \cong S/S'$. Hence S' is a Sylow 2-group of K and, being cyclic, K has a normal 2-complement L. Since L is characteristic in K, it follows that L is normal in G and G/L is a 2-group. Since |L| is odd, we conclude that L is a normal 2-complement in G. The remaining parts of the assertion (4) in Theorem follow from this. Thus we have completed the proof of Theorem. #### References - 1. Alperin, J.L., Brauer, R. and Gorenstein, D., Finite groups with quasi-dihedral and wreathed Sylow 2-subgroups, Trans. of A.M.S. 151(1970), 1-261. - 2. Gorenstein, D., Finite groups, Harper & Row, New York, 1968. - 3. Grün, O., Beiträge zur Gruppentheories, I, II, Crelle Jour., 174(1948), 165-169. - 4. Higman, D.G., Focal series in finite groups, Can. Jour. Math., 5(1953), 477-497. - 5. Wong, W. J., On finite groups whose Sylow 2-subgroups have cyclic subgroups of index 2, Jour. Austral. Math. Soc., 4(1964), 90-112. Korea University Jeonbug National University Sogang University