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ON FINITE GROUPS WITH QUASI-DIHEDRAL SYLOW 2-GROUPS

By T. KWON, K. LEE, 1. eRO, S. PARK

1. Introduction

A finite group Sm+2 of order 2m+2, m:?:: 2, defined by

Sm+2=<X, Y Ix2m+1=y2=1, XY=x-1+2m>
is called a quasi-dihedral group. The only finite simple groups known with
quasi-dihedral Sylow 2-groups are

L 3 (q) =PSL(3, q), q=-l (mod 4),

U3 (q) =PSU(3, q), q= 1 (mod 4),

Mu,

where M ll denotes the Mathieu group on 11 letters. It is also well known
that Sylow 2-groups of

GL(2, q), q=-l (mod 4),

GU(2, q), q== 1 (mod 4)

are quasi-dihedral.
In this paper, we will analyze the fusion of 2-elements for arbitrary finite

groups with quasi-dihedral Sylow 2-groups, and give a detailed proof of
the following Theorem (cf. [lJ).

THEOREM Let G be a finite group with a quasi-dihedral Sylow 2-group S
and let T, Q be representatives of the conjugacy classes of four subgoups and
quaternion subgroups respectively of S. Then one of the following holds:

(1) G has no normal subgroups of index 2, G has one conjugacy class of
involutions and one of elements of order 4, !NG(T): GG(T) I=6 and
ING(Q) : QCG(Q) 1=6.

(2) G has a normal subgroup K of index 2 with dihedral Sylow 2-groups,
K has no normal subgroups of index 2, G has one conjugacy class of
involutions and two of elements of order 4, IN G (T) : CG (T) I= 6 and
ING(Q) : QCG(Q) 1=2.
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(3) G has a normal subgroup K of index 2 with generalized quaternion
Sylow 2-groups, K has no normal subgroups of index 2, Z(S) is weakly closed
in S with respect to G, G has two conjugacy classes of involutions and one of
elements of order 4, ING(T): CG(T) 1=2 and \NG(Q) : QCG(Q) 1=6.

(4) G has a normal 2-complement, G has two conjugacy classes of
involutions and two of elements of order 4, I N G(T) : CG (T) 1= 2 and
ING(Q) : QCG(Q) 1=2.

The focal subgroup theorem [4J and Griin's theorem [3J will be used in
the proof of our Theorem. In section 2, we will prove a large number of
basic properties of quasi-dihedral groups. Some parts of these are needed
for the proof of our Theorem.

The terminology and the notation in this paper are standard, and they
are taken from [2J. All groups in this paper are assumed to be finite.

2. The quasi-dihedral group

The quasi-dihedral group 8m+z has the following properties.

LEMMA Let S=Sm+Z=<x, Ylxzm+
1=y2=1, xJl=x-l+z,,> be a quasi-dihedral

group of order 2m+Z, m:::::: 2, Then the following hold:
(i) S has exactly three maximal subgroups. They are

H=<x), <xz, y) and (x2, xy)

which are cyclic, dihedral and generalized quaternion, respectively.
(ii) The involutions in S are z=x2m and x{y, i even. The elements of

order 4 in S are xzm-t, zxzm- 1 and x·y, i odd.
(iii) S' = rp (S) = (xZ) and S / s' is elementary abelian.
Civ) Z(S) =(z) and SIZ(S) is dihedral.
(v) Ql(S)=(XZ,y), Ql(S')=Z(8) and QZ(S') = (XZ,.-l).
(vi) S has class m+ 1, and is of maximal class.
(vii) 8 has two conjugacy classes of involutions, represented by z and y,

respectively. 8 has two conjugacy classes of elements of order 4, represented
by Xzm- 1 and xy, respectively.

(viii) 8 has one conjugacy class of four subgroups, represented by
T=(z, y). 8 has one conjugacy class of quaternionsubgroups, represented by
Q=(Xzm-t, xy). Moreover, we have

Cs(T)=T, INs(T):Cs(T) 1=2, Cs(Q)=Z(Q), INs (Q):QI=2.

(ix) S has two conjugacy classes of cyclic subgroups of order 4, represented
by T 1=(x2m- 1

) and T 2=(xy). We have Q=(Tb T z)' and

CS(T1) =H, Ns(T1) =8, Ns(Tz) =Q, Cs (Tz) =Tz.
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In particular, INs(Ti): CS(Ti) I=2, 1~i~2.

(x) Any ahelian subgroup of S of order at least 8 is contained in Hand
is cyclic.

(xi) Any proper normal subgroup of S is either maximal or is cyclic and
contained in Sf.

(xii) If D is a dihedral subgroup of S of order at least 8, then the maxi­
mal cyclic subgroup of D is contained in the maximal cyclic subgroup H.

(xiii) Aut(S) is a nonahelian 2-group of order 2Zm•

Proof. Since S is generated by two elements, it follows from Burnside's
basis theorem that S/if>(S) is an elementary abelian group of order 4. Hence
there are exactly three maximal subgroups, and they are H= (x), (xZ, y)
and (XZ, xy). And it is easy to show that (x), (XZ, y) and (XZ, xy) are
cyclic, dihedral and generalized quaternion of order 2m+1, respectively.
Thus (i) holds.

The only involution in H is z=xzm, and the only elements of order 4 in
Hare x zm- 1 and x-zm-l=zxzm-l. On the other hand, each element in S-H
is of the form xiy. Since we have (xiy)Z=zi and (xiy)4=1, the order of
xiy is either 2 or 4, and xiy is an involution if and only if i IS even.
Thus (ii) holds.

Next, (iii) "-' (vi) have been proved in Thorem 5. 4. 3 of [2].
The involution z is conjugate only to itself in S. Since Cs(y) =(z, y)=

T, the size of the conjugacy class containing y is IS: TI =2m• Hence y is
conjugate in S to xiy for all even integer i. Thus S has two conjugacy
classes of involutions. Similarly, the element X zm- 1 is conjugate to itself and
X-Z"'-l in S. Since Cs (xy) = (xy) = T z, the size of the conjugacy class in S
containing xy is IS: T z\ =2m• Hence xy is conjugate in S to xiy for all
odd integer i. In particular, S has two conjugacy classes of elements of
order 4. This proves (vii).

Let A be an arbitrary four subgroup of S, and let B be an arbitrary qua­
ternion subgroup of S. Since IS: HI =2, we have IHnAI=2 and IHnB!
=4, whence HnA=(z)=Z(S) and HnB=(xzm- 1)=T1• Hence it follows
from (ii) that A=(z, xiy) for some even integer i and B=<XZ"'-l, xiy) for
some odd integer j. On the other hand, there exist elements u and v in S
such that :;u=xiy and (xy)v=xiy by (vii). Since u centralizes z and v
normalizes T 1• it follows that A=<z, y)u=Tu and B=<xzm- 1, xy)v=Qv.
Thus every four subgroup of S is conjugate to T, and every quaternion
subgroup of S is conjugate to Q.

There are exactly 2m involutions which are not z, so the preceding result
implies that there are exactly 2m- 1 four subgroups of S. Hence it follows
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that IS: Ns(T) I=2m - 1• Moreover, Cs(T) =Cs(y) =T. Therefore, we have
INs(T) : Cs(T) I=2. On the other hand, there are exactly 2m - 1 subgroups
of S of order 4 which are not T 1• Hence the preceding result implies that
there are exactly 2m- Z quaternion subgroups of S, so we have IS: Ns(Q) I
=2m- Z. This yields that INs(Q) I=24 and INs(Q) : QI =2. It is clear that
Cs(Q) =CH(xy) =(z)=Z(Q). Thus (viii) holds.

The first part of (ix) follows from (vii). There are exactly 2m- 1 sub­
groups which are conjugate to T z in S. Hence IS: N s ( T z) I=2m- 1•

Since Q~Ns(Tz), this yields that Ns(Tz) =Q. Now it is easy to prove the
remaining part of (ix).

Let C be an abelian subgroup of S of order at least 8. Since IS: HI =2,
we have IHn Cl =4, whence H contains x zm- 1

• Therefore, it follows that
C~Cs(rm-l)=H. Thus (x) holds.

Now let N be a proper normal subgroup of S. If N~H, then either N=
H or N ~ (XZ) = S'. Suppose that N is not containedin H. Then N must
contains an element xiy which is of order 2 or 4. If xiy is an involution,
then N contains all involutions in S- H and so (y, xZy) ~N, which implies
that N = (y, ry) = (r, y). If xiy is of order 4, then N contains all elements
of order 4 lying in S-H, and so N=(xy, x-1y) = (xZ, xy). Thus (xi) foll­
ows from (i).

Let D be a dihedral subgroup of S of order at least 8. Since IS: HI =2,
it follows that Hn D is the unique maximal subgroup of D of index 2.
Thus (xii) holds.

Since H is the unique maximal cyclic subgroup of S, it is characteristic
in S. Hence if a is an automorphism of S then the images of x and y

under a is of the form

x"=x'k, k odd,

Y'=xiy, i even.

Conversely, a mapping a : S - S defined as above is indeed an automorphism
of S. Hence IAut(S) I=2m ·2m• Thus (xiii) holds.

3. Proof of Theorem

In this section we prove our Theorem. Throughout this section G is a
finite group with a quasi-dihedral Sylow 2-group S and the notation for S
and the elements and subgroups of S are as in Lemma.

First of all, we will determine the focal subgroup sn G'. By Zassenhaus'
theorem, NG(S) has a complement L to S. Since NG(S) ICG(S) is a 2-group
by Lemma (xiii), we have L~CG(S). Hence NG(S) =SXL, and we have
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SnNG(S)'=S'. Thus it follows from Griin's theorem [3J that

S nG' = (S', snp' IP ranging over all Sylow 2-groups of G).

If p=sg for some g in G, then P'=S,g=(x2)g, so snp' is cyclic of order
at most 2tn. Moreover, if IS nP' I~8 then snp' must be contained in H by
Lemma (x), whence snp'r;;;.(x2)=S'. And if ISnp'/=4 then we have
either Snp'=TIr;;;.S' or snp'=(xiy) for some odd i by Lemma (ii).
Finally, if Isnp'I=2 then we have either snp'=(z)cS' or snp'=(xiy)
for some even i. Hence we conclude that either S nG'=S' or that

for suitable integers ik and Sylow 2-groups Pk such that snp/=<Xi1Y),
l~k~r. Furthermore, if (*) holds, then SnG'=(x2,xy) if all ik are odd,
sn G'=(x2, y) if all ik are even, and sn G'=(x2, y, xy)=S in the remain­
ing case. Hence one of the following four cases occur:

SnG'=s', SnG'=(x2,xy),

SnG'=(x2,y), SnG'=s.

Consider the case S nG'=s. Then G has no normal subgroups of index
2. In this case (*) holds and ij is even and ik is odd for suitable j, k, say
j=l and k=2. Since xiI and xi2 are conjugate in S to y and xy, respecti­
vely, we may assume that there exist two Sylow 2-groups PI and P2 of G
such that

snp/=&) and snp/=<xy)=T2•

Thus &)=!JI(P/)=Z(PI) and T 2=Q2 (Pl). Since Z(P1) IS conjugate to
Z(S) = <z) in G, the involution y is conjugate to z in G. Moreover, since
Q2 (Pl) is conjugate to Q2 (S') = T 1 in G, it follows that T 2 is conjugate
to T 1 in G and that xy is conjugate X

2m
-

1 in G. In particular, G has one
conjugacy class of involutions and one of elements of order 4.

Moreover, by Lemma (viii) we have INs(T) : Cs(T) I=2, so there
exists u ENs (T) such that

zU=z, yU=zy, (zy)u=y.

On the other hand, &)=Z(P1), so the centralizer CG(y) contains both PI
and Cs(y) =T. Let SI be a Sylow 2-group of CG(y) containing T. Then
SI is a Sylow 2-group of G and Z(SI) = (y). Moreover, as with S, we have
IN SI (T) : CSI (T) I=2, so there exists vENs1 (T) such that

y'rJ=y, z'rJ = zy, (zY)"=z.
Thus if we set w=uv then wENG(T) and w cyclically permutes the three
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involutions of T, whence w3 is the least power of w contained in CG(T).
Since NG(T) /CG(T) is isomorphic to a subgroup of the symmetric group
2:3, it follows that NG(T)/CG(T) ~2:3 and \NG(T) :CG(T) 1=6.

On the other hand, the quaternion subgroup Q=(Th T 2> has exactly
three subgroups of order 4. They are Th T 2 and T 3= (x1+2m-

1y). More­
over, by Lemma (viii) and (ix), we have INs(Q) : Q 1=2, Ns(T1) =S and
N s (T2) =Q, so there exists sENs(Q) such that

T1S=Th T 2s=T3, T 3s=T2•

Since T 2 is the unique subgroup of pl of order 4, T 2 is normal inP2' He­
nce N G (T2) contains both P2 and N s (T2) =Q. Let S2 be a Sylow 2-group
of NG(Tz) containing Q. Then 82 is a Sylow 2-group of G and, as withS,
we have INs2 (Q) : QI=2, N S2 (Tz)=Sz and N S2 (T1)=Q. Thus there exists
tENs2 (Q) such that

Tzt=Tz, T 3t=Th T1t=Ts,

Setting r=st, it follows that

T{=T3, T{=Tz, Tzr=T1.

Hence rENG(Q) and r cyclically permutes Th T z and T 3, and so r3 is the
least power of r contained in NG(T1) n NG(Tz). Here we can show that
NG(T1) n NG(Tz) = QCG(Q) . Note that, by the property of the quaternion
group, if g is any element of NG(T1) n NG(Tz) then there exists an element
h in Q such that ghECG(T1) n CG(Tz) =CG(Q), which implies gEQCG(Q).
Therefore, we can conclude that NG(Q) /QCG(Q) is isomorphic to 2:3 and
ING(Q) : QCG(Q) I=6. Thus all parts of the assertion (1) in Theorem

hold when SnG'=s.
Consider next the case IS: S n G' I= 2. Then G has a normal subgroup K

of index 2 such thatSnK=SnG' andG/K~S/SnG', but G has no normal
subgroups of index 4. Moreover, K has no normal subgroups of index 2.
In fact, if K has a normal subgroup N of index 2, then there exists gEG
such that NE~N and Nn N g is normal in G. Since G/Nn N g is of order
8, this group has a normal subgroup of index 4. Hence G has a normal
subgroup of index 4, which is a contradiction.

Note that if IS: SnG'I=2 then we have either SnG'=(xZ,y) or SnG'
=<xz,xy). Consider first the case SnG'=<xZ,y). Then K has a dihedral
Sylow 2-group S n G' = <x2, y). Moreover, the preceding argument for (1)
shows that y is conjugate to z in G, G has one conjugacy class of involutions
and ING(T) :CG(T) I=6. But the element xy is not conjugate X zm- 1 in G,
for if xy=(x2m- 1)g with g in G, then xyESn (SK)', whence SnG'=s,
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contrary to our assumption. Hence G has two conjugacy classes of elements
of order 4, and T 1 and T 2 are not conjugate in G. Therefore, we have
ING(Q) : QCG(Q) I=2, otherwise this index would be 6 and NG(Q) would
contain an element which cyclically permutes Tb T 2 and T 3• But then T 1

and T 2 would be conjugate in G, which is not the case. Thus the assertion
(2) in Theorem holds when S nG' = (x2, y).

Now consider the case SnG'=(x2,xy). ThenK has a generalized quater­
nion Sylow 2-group SnG'=<x2,xy). Moreover, the preceding argument
for (1) shows that xy is conjugate to X

2m
-

1 in G, G has one conjugacy
class of elements of order 4, and ING(Q) : QCG(Q) I=6. On the other
hand, the involution y is not conjugate to z in G, for if y=zg with g In

G, then yESn (88)', whence 8nG'=S, contrary to our assumption. Thus
G has two conjugacy class of involutions. And the only involution of 8
which is conjugate to z in G is z itself, so Z(8) =<z) is weakly closed
in 8 with respect to G. In addition, we must have ING(T) : CG(T) 1=2,
otherwise this index would be 6 and NG (T) would contain an element
which cyclically permutes the three involutions of T. But then y and z
would be conjugate in G, which is not the case. Thus the assertion (3) in
Theorem holds when 8 nG' =<x2, xy).

Finally assume that S nG' =S'. Then there exists a normal subgroup K
of G such that SnK=8nG'=8' and G/K~S/8'. Hence S' is a Sylow 2­
group of K and, being cyclic, K has a normal 2-complement L. Since L is
characteristic in K, it follows that L is normal in G and G/ L is a 2-group.
Since IL I is odd, we conclude that L is a normal 2-complement in G. The
remaining parts of the assertion (4) in Theorem follow from this.

Thus we have completed the proof of Theorem.
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