A CONTINUOUS OPERATOR VALUED REPRESENTATION ON A CERTAIN B*-ALGEBRA

By JAE CHUL RHO*

1. Introduction

Throughout this note S will denote a fixed nonempty compact set in the complexplane C, Σ will be the Borel field of subsets of S, X and H are complex Banach space and complex Hilbert space respectively. Let $B(S, \Sigma)$ be the set of all uniform limit of finite linear combinations of characteristic functions of sets in Σ , then $B(S, \Sigma)$ forms a commutative B^* -algebra with the unit with respect to the supremum norm and the natural involution.

A fixed algebraic homomorphism $\psi: B(S, \Sigma) \to \mathcal{E}(X)$ will be called a continuous representation if $f_n \to f$ with respect to the supremum norm, then $\psi(f_n) \to \psi(f)$ with respect to the operator norm in $\mathcal{E}(X)$.

For a continuous representation ψ , if we put $A = \{\psi(f) : f \in B(S, \Sigma)\}$ then A forms a closed commutative subalgebra of $\mathcal{E}(X)$. If X = H, A is the commutative C^* -subalgebra with the unit $\psi(1) = I$, where the involution is determined by $\psi(f)^* = \psi(\bar{f})$.

If we put $\phi(\chi_{\delta}) = E(\delta)$ ($\delta \in \Sigma$), then $E : \Sigma \to B(X)$ defines a spectral measure and any $\phi(f)$ can be represented by the integral form

$$\phi(f) = \int_{S} f(s) E(ds).$$

In addition if $E(\delta) = E(\delta)$ (self adjoint), then

$$\psi(f)^* = \int_S \bar{f}(s) E(ds), \ \psi(f) \in A \subset B(H).$$

In this paper, we will determine the spectrum σ $(\phi(f))$, a relation between a scalar operator and an operator of multiplication by an independent variable. In the next, we introduce a complex measure by means of a certain continuous linear functional on $A \subset \mathcal{B}(H)$ and will be formulated an in tegral representation of elements of the dual space $B^*(S, \Sigma)$. Finally we consider conditions under which two continuous representations are unitarily equivalent.

Received Feb. 25, 1980

^{*)}This research was supported by the Korean Ministry of Education Scholorship Foundation.

2. A relation betweenthe scalar operator and the operator of multiplication

2.1 LEMMA. Let $\psi: B(S, \Sigma) \to \mathcal{B}(X)$ be a continuous representation. Then $\psi(f) = 0$ if and only if f = 0.

Proof. We note that $B(S, \Sigma)$ is the set of all bounded Borel measurable functions (see 5, II, p. 891). Suppose that $f \neq 0$ (not identically 0 on S), the set $N(f) = \{s \in S : f(s) \neq 0\}$ is not empty and $N(f) \in \Sigma$. We put $N(f) = \delta$ and consider the integral $\int_S f(s) E(ds)$.

This is not a zero operator; For, if we define

$$\chi_{\delta} \frac{1}{f} = \begin{cases} \frac{1}{f}, & s \in \delta, \\ 0, & s \notin \delta, \end{cases}$$

then $\chi_{\delta} \frac{1}{f} \in B(S, \Sigma)$. Thus $\int_{S} \chi_{\delta} \frac{1}{f} E(ds)$ is defined. Hence

$$\int_{\delta} f E(ds) \int_{S} \chi_{\delta} \frac{1}{f} E(ds) = E(\delta),$$

and $E(\delta) \neq 0$ since $\sigma(E(\delta)) = \{0, 1\}$, Moreover,

$$\int_{\delta} f(s) E(ds) = \int_{S} (\chi_{\delta} f)(s) E(ds) = E(\delta) \psi(f), \quad \psi(f) \neq 0.$$

Therefore if an $f \in B(S, \Sigma)$ which is not identically 0 on S, then $\psi(f)$ can not be a zero operator, or equivalently $\psi(f) = 0$ implies f = 0 on S. The converse is obvious.

2. 2 COROLLARY. A continuous representation $\psi: B(S, \Sigma) \rightarrow A$ is a bijection.

In order to determine the spectrum $\sigma(\phi(f))$, we observe the following facts.

Any Σ -simple functions on S can be represented by

$$f = \sum_{i=1}^{n} \alpha_i \chi_{\delta_i}, \quad \bigcup_{i=1}^{n} \delta_i = S \text{ and } \delta_i \cap \delta_j = [(i \neq j), \ \delta_i \in \Sigma (j=1, 2, ...).$$

Since $\psi(f)E(\delta_i)=E(\delta_i)\psi(f)$ for i=1,2,...n, each $\mathcal{M}_i=E(\delta_i)X$ reduce the operator $\psi(f)$ and $\sum_{i=1}^{n} \oplus \mathcal{M}_i=X$. Moreover, since $\psi(f)E(\delta_i)=\alpha_i E(\delta_i)$, $\psi(f)$ acts on \mathcal{M}_i as the multiplication by α_i , that is,

$$\phi(f)x = \alpha_i x \text{ for any } x \in \mathcal{M}_i.$$

Hence we have

$$\sigma(\psi(f) | \mathcal{M}_i) = \{\alpha_i\}$$
 for each i.

It follows from the fact $\sigma(\phi(f)) = \int_{i=1}^{n} \sigma(\phi(f) | \mathcal{M}_{i})$ that

$$\sigma(\phi(f)) = {\alpha_1, \alpha_2, ..., \alpha_n} = \text{range of } f.$$

In general, we have a following proposition.

2.3 PROPOSITION. $\sigma(\phi(f)) = \text{closure of } f(S) \text{ for each } f \in B(S, \Sigma).$

Proof. It is easily be shown that if the closure of f does not vanish on S, then $\frac{1}{f} \in B(S, \Sigma)$ and so $\psi(f)^{-1} = \psi\left(\frac{1}{f}\right) \in A$. Thus A is a full subalgebra of B(X), whence

(1) $\sigma_A(\psi(f)) = \sigma(\psi(f))$, where $\sigma_A(\psi(f))$ is the spectrum of $\psi(f)$ relative to A.

Furthermore, for any $f \in B(S, \Sigma)$, $\lambda - f$ is invertible if and only if λ does not contained in the closure of the range of f, in this case $(\lambda - f)^{-1} \in B(S, \Sigma)$. Thus $(\lambda I - \psi(f))^{-1} = \psi[(\lambda - f)^{-1}]$ exists if and only if λ does not contained in the closure of the range of f. Therefore, we have

(2) $\sigma_A(\phi(f)) = \text{Closure of the range of } f$.

From (1) and (2), we have

$$\sigma(\phi(f)) = \text{Closure of } f(S).$$

If f is a continuous function on S, then $\sigma(\phi(f)) = f(S)$.

For a $T \in B(X)$, the spectrum $\sigma(T)$ is the nonempty compact subset in \mathbb{C} . Conversely, if S is any nonempty compact subset in \mathbb{C} , is there any operator $T \in B(X)$ such that $\sigma(T) = S$?. The answere to this question is following:

2.4 COROLLARY. For any compact subset $S \neq \square$ in C

$$\sigma(\phi e) = S$$
,

where $e: S \rightarrow S$ is the function defined by e(s) = s, $s \in S$.

For, since the function e is continuous on S, $e \in B(S, \Sigma)$. Thus $\sigma(\phi e) =$ range of e = S by the proposition 2.3.

From proposition 2.3 and Corollary 2.4, we have the following immediate consequence.

2.5 COROLLARY. For any continuous function $f \in B(S, \Sigma)$. $\sigma(\phi(f)) = f(\sigma(\phi e))$

2. 6 THEOREM. Let $\psi: B(S, \Sigma) \to A$ be a continuous representation and $Q: B(S, \Sigma) \to B(S, \Sigma)$ be the operator of multiplication by an independent variable in S. Then an operator J with the following diagram is commutative, i.e.,

$$B(S, \Sigma) \xrightarrow{\psi} A$$

$$Q \downarrow \qquad \qquad \downarrow J, \qquad J\psi = \psi Q$$

$$B(S, \Sigma) \xrightarrow{\psi} A$$

if and only if J is the scalar operar $\psi(e) = \int_{a} sE(ds)$.

If J is a scalar operator $\int_{S} sE(ds)$, then $J = \psi Q \psi^{-1}$.

Proof. Since

$$(\phi Q)(f) = \phi(Qf) = \int_{S} sf(s)E(ds) = \int_{S} (ef)(s)E(ds) = (\phi(e))(\phi(f))$$

for each $f \in B(S, \Sigma)$, $J\psi = \psi Q$ implies that $(J\psi)f = [(\psi e)\psi]f$ for any $f \in B(S, \Sigma)$, i. e., $J\psi = \psi(e)\psi$.

It follows from Corollary 2.2 that $J=\phi(e)=\int_{S} sE(ds)$.

Conversely, if $J=\psi(e)$, from the above calculation the diagram is commutative and $J\psi=\psi Q$. Thus $J=\psi Q\psi^{-1}$ holds.

In general, Let $Q: B(S, \Sigma) \to B(S, \Sigma)$ be the operator of the multiplication by $g \in B(S, \Sigma)$. Then the operator J_g with $J_g \psi = \psi Q_g$ if and only if $J_g = \psi(g) = \int_g g(s) E(ds)$. In this case $J_g = \psi Q_g \psi^{-1}$.

3. A complex measure induced by a linear functional

It is well known that a complex measure on the sigma algebra of subsets of a set is defined by means of the spectral measure as

$$\mu_{x,y}(\delta) = (E(\delta)x, y)$$
 for $\delta \in \Sigma$ and $x, y \in H$.

Here we consider a complex measure induced by a continuous linear functional on $A = {\{\psi(f) : f \in B(S, \Sigma)\}} \subset \mathcal{E}(H)$, and will be formulated an integral representation of elements in the dual space $B^*(S, \Sigma)$ of $B(S, \Sigma)$.

3.1 THEOREM. Let $\psi: B(S, \Sigma) \to A \subset \mathcal{B}(H)$ be the continuous representation, and let ϕ be a continuous linear functional on $A = \{ \phi(f) : f \in B(S, \Sigma) \}$ equipped with the strong operator topology. Then the formula

$$\phi(E(\delta)) = \mu_{\phi}(\delta), \ \delta \in \Sigma$$

defines a complex measure on Σ . And each element $\psi'\phi$ in $B^*(S,\Sigma)$ can be represented by the form

$$(\phi'\phi)f = \int_{S} f(s) \mu_{\phi}(ds),$$

where ϕ' is the dual of ϕ .

Proof. It is obvious that $\mu_{\phi}(\square) = 0$.

We have to show $\mu_{\phi}: \Sigma \to \mathbb{C}$ is countably additive. For any disjoint family $\{\delta_i\}_{i=1}^{\infty} \subset \Sigma$, the sequence $\{E(\delta_i)\}_i$ is orthogonal projections and so $\{E(\delta_i)x\}_i$ is an orthogonal sequence of vectors in H for any $x \in H$. Therefore,

$$\|\sum_{i=1}^{\infty} E(\delta_i)x\|^2 = \sum_{i=1}^{\infty} \|E(\delta_i)x\|^2 = \|E(\bigcup_{i=1}^{\infty} \delta_i)x\|^2 \leq \|x\|^2,$$

thus $\sum_{i=1}^{\infty} E(\delta_i) x$ is summable. It follows that $\sum_{i=1}^{n} E(\delta_i) x = E(\bigcup_{i=1}^{n} \delta_i) x$ converges to $\sum_{i=1}^{\infty} E(\delta_i) x = E(\bigcup_{i=1}^{\infty} \delta_i) x$. This means that $\sum_{i=1}^{n} E(\delta_i)$ converges to the operator $\sum_{i=1}^{\infty} E(\delta_i)$ with respect to the strong operator topology. Therefore, by the assumption on ϕ , $\phi\left(\sum_{i=1}^{n} E(\delta_i)\right)$ converges to $\phi\left(\sum_{i=1}^{n} E(\delta_i)\right) = \phi\left(E\left(\bigcup_{i=1}^{n} \delta_i\right)\right)$. Since $\phi\left(\sum_{i=1}^{n} E(\delta_i)\right) = \sum_{i=1}^{n} \mu_{\phi}(\delta_i)$, we have $\sum_{i=1}^{n} \mu_{\phi}(\delta_i) = \mu_{\phi}\left(\bigcup_{i=1}^{n} \delta_i\right)$.

Now, since any $f \in B(S, \Sigma)$ is the uniform limit of some Σ -simple functions $\left\{\sum_{i=1}^n \alpha_i \mathcal{X}_{\delta_i}\right\}_n$ and $\sum_{i=1}^n \alpha_i E(\delta_i)$ converges to $\psi(f)$ with respect to the uniform operator topology, whence $\left\{\sum_{i=1}^n \alpha_i E(\delta_i)\right\}_n$ converges strongly to $\psi(f)$. Therefore, $\psi\left(\sum_{i=1}^n \alpha_i E(\delta_i)\right) = \sum_{i=1}^n \alpha_i \mu_{\phi}(\delta_i)$ converges to $\psi(f) = \int_S f(s) \mu_{\phi}(ds)$. Furthermore, we may consider $\psi \in \mathcal{L}(B(S, \Sigma), A)$ (The set of all bounded linear operators), there corresponds a unique dual operator $\psi' \in \mathcal{L}(A^*, B^*(S, \Sigma))$ such that $\|\psi\| = \|\psi'\|$ and $\psi \circ \psi = \psi' \phi$. Hence we have

$$(\psi'\phi)f = \int_{S} f(s) \mu_{\phi}(ds), f \in B(S, \Sigma).$$

It is evident that $\|\psi'\phi\| \le \|\phi\|$ since $\|\phi(f)\| \le \|f\|$. This completes the proof.

In the Theorem 3.1 we assumed ϕ is continuous on A equipped with the strong operator topology so that μ_{ϕ} is countably additive. If ϕ is continuous on A equipped with the uniform operator topology, then the same result holds as in the Theorem 3.1 through simpler calculations. In this case we observe the followings:

Let A^* be the dual space of $A \subset B(H)$, then obviously A^* is closed with respect to the topology induced by the norm of a linear functional. We consider the strong topology on A^* , namely that a sequence $\{\phi_n\}_n$ in A^* converges to ϕ if and only if

$$\phi_n(\psi(f)) \longrightarrow \phi(\psi(f))$$
 for any $\psi(f) \in A$.

And we denote the strong closure of A^* by A_s^* . Here we carefully distinguish the strong operator topology from the strong topology.

3. 2. Proposition. Let $Y = \{\mu_{\phi} : \phi \in A_s^*\}$, then Y is a Banach space with respect to the norm

$$\|\mu_{\phi}\| = \sup\{|\mu_{\phi}(\delta)| : \delta \in \Sigma\}, \|\mu_{\phi}\| \leq \|\phi\|.$$

Proof. It is easy to check that Y is a normed linear space. For the completeness, let $\{\mu_{\psi_n}\}_n$ be a cauchy sequence in Y, then

$$\|\mu_{\phi_n} - \mu_{\phi_m}\| \ge |\mu_{\phi_n}(\delta) - \mu_{\phi_m}(\delta)| \to 0 \text{ as } m, n \to \infty \text{ for any } \delta \in \Sigma.$$

Since each ϕ_n continuous on A equipped with the uniform operator topology, and any $\phi(f) \in A$ can be approximated by a sequence $\{\sum_{i=1}^n \alpha_i E(\delta_i)\}$,

$$|\phi_n(\psi(f)) - \phi_m(\psi(f))| \to 0$$
 as $m, n \to \infty$ for any $\psi(f) \in A$.

Thus $\lim \phi_n(\phi(f))$ exists for each $\phi(f)$ in A. If we put

$$\lim_{n \to \infty} \phi_n(\psi(f)) = \phi(\psi(f)),$$

then $\phi \in A_s^*$ and ϕ is a linear functional on A. Moreover, for any $\varepsilon > 0$ there exists an N > 0 such that

$$|\phi_n(\phi(f))-\phi(\phi(f))|<\varepsilon$$
 for any $n\geq N$.

Thus

$$|\phi(\phi(f))| < |\phi_N(\phi(f))| + \varepsilon \le ||\phi_N|| ||\phi(f)|| + \varepsilon$$

so we have

$$|\phi(\phi(f))| \le ||\phi_N|| ||\phi(f)||$$
 for any $\phi(f) \in A$.

It follows that ϕ is continuous on A equipped with the uniform operator topology, thus

$$\mu_{\phi}(\delta) = \phi(E(\delta)), \ \delta \in \Sigma$$

defines a complex measure and $\mu_{\phi} \in Y$.

Since
$$\sup_{\|\phi(f)\|=1} |\phi(\phi(f))| = \|\phi\|$$
, obviously $\|\mu_{\phi}\| \le \|\phi\|$.

We consider a set $\{\mu_{\phi}: \phi \in A^*\}$. This is a normed linear space with the same norm as stated above, and the map $\mu: A^* \to \{\mu_{\phi}: \phi \in A^*\}$ defined by $\mu(\phi) = \mu_{\phi}$ is continuous since $\|\mu_{\phi}\| \leq \|\phi\|$.

It is not difficult to show the following

3.3 Proposition. A map $\mu: A_s^* \to Y$ defined by $\mu(\phi) = \mu_{\phi}$ may not be continuous, but it is linear, bijection and open (the inverse is continuous).

EXAMPLE. Let H be a sepable Hilbert space. We shall obtain an explicit form of a linear functional on $\mathcal{E}(H)$ such that $\sum_{i=1}^{\infty} \phi(E(\delta_i))$ is summable.

Let $v = \left(\frac{\beta_1}{2^i}, \frac{\beta_2}{(2^i)^2}, \ldots\right)$, $|\beta_k| \le 1$ $(k=1, 2, 3, \ldots)$ for $i \in \mathbb{N}$. And let P_1 be a projection operator to the first coordinate of the vector vT, $T \in B(H)$. If we put

$$\phi = P_1 \circ v \text{ and } \phi(E(\delta)) = \mu_{\phi}(\delta) \ (\delta \in \Sigma)$$

then μ_{ϕ} is a complex measure such that $\sum_{i=1}^{\infty} \mu_{\phi}(\delta_i)$ is summable for any disjoint family $\{\delta_i\}_i$ in Σ .

For, since each operator on H can be represented by a matrix (a_{ik}) with $\sum_{i=1}^{\infty} |a_{ik}|^2 < \infty$ (k=1,2,...). (We note that if the operator is the form $\psi(f)$, then each a_{ik} is a function of f.)

Therefore

$$\phi(T) = \sum_{j=1}^{\infty} \frac{\beta_j}{(2^i)^j} a_{j1}, |\phi(T)| \leq \sum_{j=1}^{\infty} \frac{1}{(2^i)^j} |a_{j1}| < \infty$$

by the Schwartz inequality. Moreover since each $E(\delta_i)$ is a projection operator on H, some part of the diagonal elements are equal to 1 and remaining elements are zero. Therefore,

$$|\phi(E(\delta_i))| \leq \frac{1}{2^i}$$
 and $\sum_{i=1}^{\infty} |\phi(E(\delta_i))| \leq 1$

Thus $\sum_{i=1}^{\infty} \mu_{\phi}(\delta_i)$ is summable.

In this example,

$$\phi(\phi(f)) = \int_{\mathcal{E}} f(s) \mu_{\phi}(ds) = \sum_{j=1}^{\infty} \frac{\beta_j}{(2^i)^j} a_{j1}(f).$$

We leave, however, the following questions:

- (1) If H is a separable Hilbert space, is there another kind of an explicit form of a linear functional on $\mathcal{E}(H)$ other than the stated above such that $\sum_{i=1}^{\infty} \phi(E(\delta_i))$ is summable?
- (2) Let H be a separable Hilbert space. For any linear functional on B(H), is there any explicit form such that $\sum_{i=1}^{\infty} \phi(E(\delta_i))$ is summable?

4. A unitary equivalence of two continuous representations

Let $\psi, \varphi : B(S, \Sigma) \to \mathcal{E}(H)$ be two continuous representations. We put $\psi(\chi_{\delta}) = E(\delta)$ and $\varphi(\chi_{\delta}) = F(\delta)$ for $\delta \in \Sigma$. Then it is easy to show that $E(\delta)$ and $F(\delta)$ are unitarily equivalent for any $\delta \in \Sigma$ if and only if $\psi(f)$ and $\varphi(f)$ are unitarily equivalent for any $f \in B(S, \Sigma)$.

Now, we will find conditions under which two representations are unitarily equivalent.

- 4.1 DEFINITION. Two continuous representations are said to be unitarily equivalent with respect to $B(S, \Sigma)$ if there exists a unitary operator U such that $U^*\phi(f)U=\varphi(f)$ for all $f\in B(S,\Sigma)$. We denote it by $U^*\phi U=\varphi$ w.r.t. $B(S,\Sigma)$.
- 4.2 DEFINITION. A representation (not necessarily continuous) $\psi: B(S, \Sigma) \to \mathcal{B}(X)$ is called cyclic if there exists a vector $x \in X$ such that the set $\{\psi(f)x: f \in B(S, \Sigma)\}$ is dense in X. In this case x is said to be a cyclic vector.

If $\{\phi(f)x:f\in B(S,\Sigma)\}=X$, ϕ is called a strictly cyclic representation and x is said to be a strictly cyclic vector.

4.3 Proposition. Let $\psi: B(S, \Sigma) \to A \subset \mathcal{B}(X)$ be a (not necessarily continuous) strictly cyclic representation. Then $A = \{\psi(f) : f \in B(S, \Sigma)\}$ is the maximal abelian subset of $\mathcal{B}(X)$.

Proof. Let x be a strictly cyclic vector, then $Tx \in X$ for any $T \in B(X)$. Hence there exists an $f \in B(S, \Sigma)$ such that $Tx = \psi(f)x$. If $T\psi(g) = \psi(g)T$ for any $g \in B(S, \Sigma)$, then

$$T\psi(g)x=\psi(g)Tx=\psi(g)\psi(f)x=\psi(f)\psi(g)x.$$

Thus we have $T=\psi(f)$, therefore A is the maximal Abelian.

Now, we shall show that a condition for which two continuous representations are unitarily equivalent.

We consider a subset $B_0(S, \Sigma) = \{ f \in B(S, \Sigma) : \text{closure } f(S) \ni 0 \}$ of $B(S, \Sigma)$ and put $A_0 = \{ \psi(f) \in \mathcal{B}(H) : f \in B_0(S, \Sigma) \}$.

4.4. THEOREM. Let $\psi: B(S, \Sigma) \to \mathcal{B}(H)$ be a (continuous) representation such that there exists a vector x with A_0x is dense in H. And let φ be another cyclic representation with a cyclic vector y. If $(E(\delta)x, x) = (F(\delta)y, y)$ for any $\delta \in \Sigma$ then φ and φ are unitarily equivalent with respect to $B_0(S, \Sigma)$, where $F(\delta) = \varphi(\chi_{\delta})$, $\delta \in \Sigma$.

Proof. Since $A_0 \subseteq A$, obviously ϕ is cyclic and x is a cyclic vector. Moreover $(E(\delta)x, x) = (F(\delta)y, y)$ for each $\delta \in \Sigma$ implies $(\phi(f)x, x) = (\phi(f)y, y)$ for any $f \in B(S, \Sigma)$.

We define an operator U such a way that if

$$U\phi(f)x=\phi(f)y, f\in B(S,\Sigma)$$

then Ux=y and U is densely defined linear operator with the range is also dense in H. Moreover, since $\psi(|f|^2) = \psi(\bar{f})\psi(f) = \psi(f)^*\psi(f)$, we have

(1) $(U\psi(f)x, U\psi(f)x) = (\varphi(f)y, \varphi(f)y) = (\psi(f)x, \psi(f)x)$. Thus U is bounded linear on a dense subset of H, whence U is defined on H. Here we denote the extension \overline{U} of U, defined by $\overline{U}(\lim_n x_n)$, $Ux_n = \overline{U}x_n$ for each n, by the same symbol U.

From the assumption, for any $z \in H$ there exists a sequence $\{f_n\}_n$ in $B_0(S, \Sigma)$ such that $\psi(f_n)x \to z$. It follows from (1) that

(2) (Uz, Uz) = (z, z) for any $z \in H$.

And for any $u \in H$ there exists a sequence $\{g_n\}_n$ in $B(S, \Sigma)$ such that $\varphi(g_n)y \to v$. Thus $U\psi(g_n)x = \psi(g_n)y \to v$. That is, Uu = v, where $u = \lim_{n \to \infty} \psi(g_n) \ x \in H$.

Hence U is a surjection. This fact together with (2) implies that U is a unitary operator, namely (Ux, Uy) = (x, y) for any x and y in H. Thus $U^*U = UU^* = I$.

Since $U\psi(f)x=\psi(f)y$ for any $f\in B(S,\Sigma)$, we have

$$[\phi(f)-U^*\phi(f)U]x=0, f\in B(S,\Sigma).$$

And since $I=\psi(1)=\psi(\frac{1}{f})\psi(f)$ for any $f\in B_0(B,\Sigma)$, it follows that $\psi(f)=U^*\varphi(f)U$ on the dense subset of H.

From this and the fact that $\psi(f) - U^*\varphi(f)U$ is continuous on H, we have

 $\psi(f) = U^*\varphi(f)U$ on H for any $f \in B_0(S, \Sigma)$, that is,

$$\phi = U^* \varphi U$$
 w. r. t. $B_0(S, \Sigma)$.

We have proved the proposition.

In the above discussions, we may consider the cyclic vector y belongs to another Hilbert space K, H
ightharpoonup K, and we define $V: H \rightarrow K$ by

$$V\psi(f)x=\varphi(f)y$$
 for each $f\in B(S,\Sigma)$.

Then similar arguments as above, we have $(Vu, Vv)_K = (u, v)_H$ for any u and v in H. Thus we have the following result:

4.4 PROPOSITION. Let $\psi: B(S, \Sigma) \to \mathcal{B}(H)$ be a (continuous) representation such that there exists a vector x with A_0x dense in H. And let $\varphi: B(S, \Sigma) \to \mathcal{B}(K)$ be a continuous cyclic representation with a cyclic vector y. If $(E(\delta)x, x) = (F(\delta)y, y)$ for any $\delta \in \Sigma$, then there exists an isometric operator $V: H \to K$ such that $\psi = V * \varphi V$ w.r.t. $B_0(S, \Sigma)$.

References

- 1. Domingo A. Herrero, On the spectra of the restrictions of an operator, Transactions of the A. M. S. Vol. 233, 1977.
- G. D. Faulkner and J. E. Huneycutt, Jr., Proceedingsof the A. M. S. Vol. 71, Numberl, August, 1978.
- 3. R. K. Singh and B. S. Komal, Composition operator on l^p and its adjoint., proceedings of the A. M. S. Vol. 70, number 1, June 1978.
- 4. Arlen Brown, Topics in operator theory, p. 131-p. 151, Mathematical survey, number 13, A. M. S. Providence, Rhode Island, 1974.
- N. Dunford and J. T. Schwartz, Linear operators I, II, III, Wiley-Interscience, N. Y., 1958, 1964, 1971.
- 6. P. R. Halmos, Introductionto Hilbert space, Chelsea Pub. Co., N. Y., 1957.
- 7. Akhiezer and Glazman, Theory of linear operators in Hilbert space, Vol. 1, Predrick Ungar Pub. Co., N.Y., 1961.
- William Averson, An introduction to C*-algebra, Springer-Verlag, N.Y., Heiderberg, Berlin, 1976.
- 9. W. Rudin, Functional Analysis, McGraw-Hill book Co. N. Y., 1974.

Sogang University