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1. Introduction

Throughout this note 8 will denote a fixed nonempty compact set in the
complexplane C, 2 will be the Borel field of subsets of S, X and H are
complex Banach space and complex Hilbert space respectively. Let B (S, 2)
be the set of all uniform limit of finite linear combinations of characteristic
functions of sets in 2, then B(S,2) forms a commutative B*-algebra with
the unit with respect to the supremum norm and the natural involution.

A fixed algebraic homomorphism <p : B (8, 2) -t16 (X) will be called a con­
tinuous representation if f,,-f with respect to the supremum norm, then
<p (f,,) -,p(f) with respect to the operator norm in tI6 (X).

For a continuous representation <p, if we put A= {,p(f) :fEB(S,2)}
then A forms a closed commutative subalgebra of tI6(X). If X=H, A is
the commutative C*-subalgebra with the unit ,p(l) =1, where the involution
is determined by ,p(f)*=,p(J).

If we put ,p(X6) =E(o) (oE2), then E : Z-B(X) defines a spectral me­
asure and any ,p(f) can be represented by the integral form

,p(f) =Lf(s)E(ds).

In addition if:E (0) = E (0) * (self adjoint), then

,p(f)*=S/(s)E(ds), ,p(f) EAcB(H).

In this paper, we will determine the spectrum (J (,p(f), a relation bet­
ween a scalar operator and an operator of multiplication by an independent
variable. In the next, we introduce a complex measure by means of a cer­
tain continuous linear functional on Actl6(H) and will be formulated an
in tegral representation of elements of the dual space B* (S, 2). Finally we
consider conditions under which two continuous representations are unitarily
equivalent:
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2. A relation betweenthe scalar operator and the operator of mul­
tiplication

2. 1 LEMMA. Let c/J : B (S, 1:) -rE, (X) be a continuous representation.
Then </;(f) =0 if and only if f=O.

Proof. We note that B(S,1:) is the set of all bounded Borel measurable
functions (see 5, IT, p.891). Suppose that f=l=-O (not identically 0 on S),

the set N(f) = {sES : f(s) ~O} is not empty and NU) E1:. We put NU)

=0 and consider the integral S!(s)E(ds).

This is not a zero operator; For, if we define

Xa} =I-}, sEa,
0, sfto,

then Xa} EB(S,1:). Thus Sla}E(ds) is defined. Hence

SfE(ds)Lxa} E(ds) =E(o),

and E(o) =1=-0 since u(E(o» = to, l}, Moreover,

S!(s)E(ds) = Ss (Xef) (s)E(ds) =E(o)ef;(f), c/J(f) ~O.

Therefore if an fEB(S, 1:) which is not identically 0 on S, then cjJ(f) can
not be a zero operator, or equivalently cjJ(f) =0 implies f=O on S.
The converse is obvious.

2.2 CoROLLARY. A continuous representation c/J : B(S, 1:)-A is a bijection.

In order to determine the spectrum u (cjJ (f) ), we observe the following
facts.

Any 1:-simple functions on S can be represented by

n n

f= ~aiXai' UOi=S and Oi noj=D (i~j), oiE1:(j=l, 2, ...).
£=1 ;=1

Since cjJ(f)E(Oi) =E (Oi) </; (f) for i=l, 2, ...n, each 'illi=E(Oi)X reduce the

operator </;(f) and ±EB'illi=X. Moreover, since </;(/)E(Oi) =aiE(Oi) , </; (f)
i=l

acts on 'illi as the multiplication by ai' that is,

</;(f)x=aix for any xE'illi'
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Hence we have

a (</; (f) J?1l;) = {a;} for each i.

It follows from the fact a(</;(f» = Ua(</;(f) IlJ1l j ) that
i=l

a(</;(f» = {ab a2, ... , an} =range of f·

In general, we have a following proposition.

2.3 PROPOSITION. a (</; (f) ) = closure of f(S) for each fEB(S, 2).

Proof. It is easily be shown that if the closure of f does not vanish on

S, then } E B (S, 2) and so </; (f) -1 =</; (}) E A. Thus A is a full subalge­

bra of B(X), whence
(l) aA(</;(f»=a(</;(f», where aA(</;(f» is the spectrum of </;(f)

relative to A.

Furthermore, for any fEB(S, Z), A-f is invertible if and only if A
does not contained in the closure of the range of [, in this case CA-f) -1 E

B(S,Z). Thus (AI-</;(f»-1=</;[O-f)-1] exists if and only if A does
not contained in the closure of the range of f.
Therefore, we have

(2) aA(</;(f» = Closure of the range of f.

From (1) and (2), we have

a(</;(f» = Closure of f(S).

If f is a continuous function on S, then a(</;(f»=f(S).

For a TEB(X), the spectrum aCT) is the nonempty compact subset in
C. Conversely, if S is any nonempty compact subset in C, is there any
operator TEB(X) such that aCT) =S? The answere to this question is
following:

2.4 CoROLLARY. For any compact subset S:'-\= 0 in C

d(</;e) =S,

where e : S~S is the function defined by e(s) =s, sES.

For, since the function e is continuous on S, eEB(S, Z). Thus d(</;e) =
range of e=S by the proposition 2.3.

From proposition 2. 3 and Corollary 2. 4, we have the following immediate
consequence.
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2.5 COROLLARY. For any continuous function fEB(S, 2).
(J(if;(f» =f«(J(if;e»

2. 6 THEOREM. Let if;: B (S, 2)~A be a continuous representation and
Q : B(S, l:)~B(S,2) be the operator of multiplication by an independent variab­
le in S. Then an operator J with the following diagram is commutative. i e.,

if;
B(S,2)~A

Q 1 if; 1J, Jif; = if;Q
B(S,2)~A

if and only if J is the scalar operar if; (e) =fssE (ds).

If J is a scalar operator fssE(ds) , then J=if;Qif;-l.

Proof. Since

(if;Q) (f) =if;(Q f) = Sssf(s)E(ds) = Ss (ef) (s) E(ds) = (ep(e» (</;(f»

for each fEB(S, 2), Jif;=if;Q implies that (Jif;)f=[(if;e)if;Jf for any

fEB(S,2), i.e., Jep=if; (e) </;.

It follows from Corollary 2.2 that J=if;(e) = fssE(ds).

Conversely, if J=if;(e), from the above calculation the diagram is commu­
tative and J<jJ = if;Q. Thus J =if;Qif;-l holds.

In general, Let Q : B(S, 2)~B(S,1:) be the operator of the multiplication
by gEB(S, 1:). Then the operator Jg with Jgif;=if;Qg if and only if

Jg= if; (g) = tg(s)E(ds). In this case Jg=</JQgif;-l.

3. A complex measure induced by a linear functional

It is well known that a complex measure on the sigma algebra of subsets
of a set is defined by means of the spectral measure as

J.tx,y(o)=(E(o)x,y) for oE1: and x,yEH.

Here we consider a complex measure induced by a continuous linear func­
tional on A= {if;(f) : fEB(S, 1:)} ctf6(H), and will be formulated an inte­
gral representation of elements in the dual space B* (S, 1:) of B (S, 1:).
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3.1 THEOREM. Let 1;: B(S,I)-)AcJ6(H) be the continuous representat­
ion, and let ifJ be a continuous linear functional on A= {1;(f) :fEB(S, Z)}
equipped with the strong operator topology. Then the formula

ifJ(E(o» =J1.q,(o), oEZ

defines a complex measure on Z. And each element <p'<jJ in B* (S, Z) can be
represented by the form

(1;' ifJ)f= f/(s) J1.~ (ds),

where 1;' is the dual of <p.

Proof. It is obvious that ,u9(O) =0.
We have to show J1.,p : I-)C is countably additive. For any disjoint family
{oil ~l c I, the sequence {E(o;)}; is orthogonal projections and so {E(o;)x};

is an orthogonal sequence of vectors in H for any xEI-l. Therefore,
~ ~ ~

IlL: E(Oi)xI12 = L: IIE(oi)xI12= IIE( Uoi)xI12~ Ilxll2,
i=1 i=1 i=1

thus 'f:.E(Oi)X is summable. It follows that tE(Oi)X=E( Uai)x
;;;;:1 ;=1 1=1

converges

to f: E(ai)x=E(Uo;)x. This means that t.E(a;) converges to the opera-
;=1 i=1 i=l

DO

tor L:E(Oi) with respect to the strong operator topology. Therefore, by the
;=1

assumption on ifJ, ifJ(iiE(Oi») converges to ifJC~E(Oi»)=ifJ(ECglOi) ).

Since ifJ(tlE(Oi») = ~tt9(Oi)' we havetl,p(oi) =J1.1>Cg/i)'

Now, since any fEB(S, I) is the uniform limit of some I-simple func­

itons{~aixoi} nand i?;:;'aiE(ai) converges to <p(!) with respect to the uniform

operator topology, whence ttaiE (a;)} n converges strongly to <p (f). There­

fore, <jJ(%i aiE(ai) ) =~ai,u,p(ai) converges to <jJ(<p(f» = J/(s),u,p(ds). Fur­

thermore, we may consider <jJ E'£ (B (S, I), A) (The set of all bounded linear
operators), there corresponds a unique dual operator 1;' E'£ (A*, B* (S, I) )
such that 111>11 = 111>' 11 and 1>orf> = <p' rf>. Hence we have

(<jJ'<jJ)f=f/(s) ,u,p(ds), fEB(S,2').

It is evident that 1I1>'<jJII~IIrf>1l since 111>(f)II:::;;lIfll.
This completes the proof.
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In the Theorem 3. 1 we assumed ifJ is continuous on A equipped with the
strong operator topology so that fl.'" is countably additive. If ifJ is continuous
on A equipped with the uniform operator topology, then the same result
holds as in the Theorem 3. 1 through simpler calculations. In this case we
observe the followings:

Let A* be the dual space of AcB(H), then obviously A'" is closed with
respect to the topology induced by the norm of a linear functional. We
consider thestrong topology on A *, namely that a sequence {ifJll}" in A *
converges to ifJ if and only if

ifJ,,(</J(f»~ifJ(<jJ(f» for any <jJ(f) EA.

And we denote the strong closure of A * by A;. Here we carefully disting­
uish the strong operator topology from the strong topology.

3.2. PROPOSITION. Let Y= {fl.", : ifJEA;} , thenY is a Banach space with
respect to the norm

IIp,,,1l =sup {I fl.'" (0) I : 0 E 2}, Ilfl.",ll ~ \lifJll·
Proof. It is easy to check that Y is a normed linear space. For the com­

pleteness, let {fl.",J n be a cauchy sequence in Y, then

1Ifl."'n-.u,pmll;:::: Ifl.,pn(o)-P,pm(o) I~O as m,n~OO for any oE2.

Since each ifJ" continuous on A equipped with the uniform operator topology,
n

and any <jJ(f) EA can be approximated by a sequence {I; aiE(oi)} '
i=l

lifJ,,(<jJ(f» -ifJm(<jJ(f» I~O as m, n~OO for any cjJ(f) EA.

Thus lim ifJ,,(cjJ(f» exists for each <jJ(f) in A. If we put
n

lim ifJ" (<jJ (f» =ifJ (cjJ (f) ),
n

then ifJEA/ and ifJ is a linear functional on A. Moreover, for any e>O there
exists an N>O such that

lifJ,,(<jJ(f» -ifJ(<jJ(f» I<e for any n;::::N.

Thus

so we have

lifJ(<jJ(f» I ~ lIifJNIIII</J(f) 11 for any <jJ(f) EA.
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It follows that if> is continuous on A equipped with the uniform operator
topology, thus

defines a complex measure and J1.r/JE Y.

Since sup Iif> (cj; (j)) 1= 11if>11, obviously 11J1.r/JII::;; IIpll.
1I~(f)1I=1

We consider a set {,ur/J: ifJ E A *}. This is a normed linear space with the
same norm as stated above, and the map J..l: A*----+ lur/J : ifJEA*) defined by
p(if» =Pr/J is continuous since 11J1.r/JII:::;;; IIpll. .

It is not difficult to show the following

3.3 PROPOSITION. A map p: A s*----+ Y defined by J1.(ifJ) =J1.r/J may not be
continuous, but it is linear, bijection and open (the inverse is continuous).

EXAMPLE. Let H be a sepable Hilbert space. We shall obtain an explicit
=

form of a linear functional on J3 (H) such that I: ifJ (E (OJ)) is summable.
i=l

Let v=(~~, (gi)2"'.), l.skl~l (k=1,2,3, ••. ) for iEN. And let PI

be a projection operator to the first coordinate of the vector vT, TEB(H).
If we put

=
then ftt/J is a complex measure such that ~ J1.r/J(Oj) is summable for any dis-

,==1

joint family {Oil i in I.
For, since each operator on H can be represented by a matrix (ajk) with

=
I: \aikI 2<00 (k=l, 2, ...). (We note that if the operator is the form cj;(/),
i=l

then each aik is a function of f. )
Therefore

oaf)" 001_
ifJ(T) = lJl-Cz0 j ajI> Ip(T) I~j~ (2 j)i Iail I<-00

by the Schwartz inequality. Moreover since each E (Oi) is a projection ope­
rator on H, some part of the diagonal elements are equal to 1 and remai­
ning elements are zero. Therefore,

00

Thus I: J1..p (Dj) is summable.
i=1
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We leave, however, the following questions:
(1) If H is a separable Hilbert space, is there another kind of an explicit

form of a linear functional on £, (H) other than the stated above such that
co

l:.if.>(E(o;» is summable?
i==l

(2) Let H be a separable Hilbert space. For any linear functional on

B(H), is there any explicit form such that "£if.>(E(Oi» is summable?
i=l

4. A unitary equivalence of two continuous representations

Let </J, <p: B (S, :2) ---+ £, (H) be two continuous representations. We put
</J(Xii ) =E(o) and <p(Xii) =F(o) for oE:2. Then it is easy to show that E(o)
and F(o) are unitarily equivalent for any oE'Z if and only if </J(f) and
<p(f) are unitarily equivalent for any fEB(S,l:).

Now, we will find conditions under which two representations are unita­
rily equivalent.

4. 1 DEFINITION. Two continuous representations are said to be unitarily
equivalent with respect to B (S, 'Z) if there exists a unitary operator U such
that U*</J(f) U=<p(f) for all fEB(S,'Z). We denote it by U*</JU=<p
w. r. t. B(S, 'Z).

4.2 DEFINITION. A representation (not necessarily continuous) </J : B(S, 'Z)
---+ £'(X) is called cyclic if there exists a vector xEX such that the set
{</J(f)x : fEB(S, :2)} is dense in X. In this case x is said to be a cyclic

vector.
If {</J(f)x :fEB(S,l:)} =X, </J is called a strictly cyclic representation

and x is said to be a strictly cyclic vector.

4.3 PROPOSITION. Let </J : B(S, 'Z)---+Ac£'(X) be a (not necessarily conti­
nuous) strictly cyclic representation. Then A= {</J(f) : fEB(S, 'Z)} is the
maximal abelian subset of £, (X).

Proof. Let x be a strictly cyclic vector, then TxEX for any TEB(X).
Hence there exists an fEB(S, 'Z) such that Tx = if; ( f)x. If TrjJ(g) = if; (g) T
for any g E B (S, 'Z), then

T</J (g) x=</J (g) Tx=</J (g) </J (f )x=</J(f) </J (g)x.
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Thus we have T=cj;(f), therefore A is the maximal Abelian.

Now, we shall show that a condition for which two continuous represe­
ntations are unitarily equivalent.

We consider a subset Bo(S, I) = {fEB(S, I) : closure f(S) $O} of B(S, I)
and put A o= {cj;(f) EJ!,(H) : fEBo(S, I)}.

4.4. THEOREM. Let cj; : B(S, I)~J!,(H) he a(continuous) representation such
that there exists a vector x with AoX is dense in H. And let (j) he another
cyclic representation with a cyclic vector y. If (E(o)x, x) = (F (0) y, y) for
any 0 E I then cj; and rp are unitarily equivalent with respect to Bo(S, I),
where F(o) =<p(Xo), oEI.

Proof. Since AocA, obviously cj; is cyclic and x is a cyclic vector. More­
over (E(o)x, x) = (F(o)y, y) for each oEI implies (cj;(f)x, x) = (rp(f )y, y)
for any fEB(S, I).

We define an operator U such a way that if

Ucj;(f)x=cj;(f)y, fEB(S, Z)

then Ux= y and U is densely defined linear operator with the range is also
dense in H. Moreover, since cj; (lfI 2) =cj;(J) 1'(f) =cj;(f) *cj;(f), we have

(1) (Ucj;(f)x, Ucj;(f)x) = ((j)(f)y, rp(f)y) = (cj;(f)x, cj;(f)x).
Thus U is bounded lnear on a dense subset of H, whence U is defined on
H. Here we denote the extension D of U, defined by D(limnxn), Uxn=
DXn for each n, by the same symbol U.

From the assumption, for any zEH there exists a sequence {fn} n in
Bo(S, I) such that cj;(f n)x~z. It follows from (1) that

(2) (Uz, Uz) = (z, z) for any zEH.
And for any uEH there exists a sequence {gn} n in B(S, I) such that

rp(gn)y ~ v. Thus Ucj; (gn) x=cj; (gn)y ~ ·v. That IS, Uu=v, where
u=limcj;(gn) xEH.

Hence U is a surjection. This fact together with (2) implies that U is a
unitary operator, namely (Ux, Uy) = (x, y) for any x and y in H. Thus
U*U=UU*=1.

Since Ucj;(f)x=cj;(f)y for any fEB(S, Z), we have

[cj;(j) - U*cj;(f) U]x=O, fEB(S, I).

And since I=cj;(l) =cj;(} )cj;(f) for any fEBo(B, Z), it follows that cj;(f)

= U*<p(f) U on the dense subset of H.
From this and the fact that cjJ(f) - U*rp(f) U is continuous on H, we have
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<p(f) = U*q;(f) U on H for any fEBo(S, Z), that IS,

<p= U*q;U w. r. t. Bo(S, Z).

We have proved the proposition.

In the above discussions, we may consider the cyclic vector y belongs to
another Hilbert space K, H"" K, and we define V: H - K by

V<jJ (f)x=q; (J)y for each fEB(S, Z).
Then similar arguments as above, we have (Vu, Vv) K= (u, v) H for any u

and v in H. Thus we have the following result:

4.4 PROPOSITION. Let <f; : B(S, Z)---"J?,(H) be a (continuous) representation
such that there exists a vector x with Aox dense in H. And let q; : B (S, Z)
---"J?, (K) be a continuous cyclic representation with a cyclic vector y. If
(E (0) x, x) = (F(o)y, y)for any oEZ, then there exists an isometric operator
V: H-K such that <f;=V*q;V w.r.t. Bo(S,Z).
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