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CENTRAL PERFECT RINGS

By JosepH NEGGERS AND PAUL J. ALLEN

1. Introduction

Steinitz rings are like division rings in that every linearly independent
subset of a free module can be extended to a basis by adjoining elements of
a given basis [4]. The Wedderburn structure theorem classifies semisimple
Artinian rings as the finite direct sums of complete matrix rings over divi-
sion rings.

In this paper we study those rings which are finite direct sums of com-
plete matrix rings over Steinitz rings. For reasons explained below we call
these rings central perfect rings. A central perfect ring is to a Steinitz ring
what a semisimple Artinian ring is to a division ring. In the (generalized)
Maschke theorem [5] conditions are given for a group ring R[G] to be a
semisimple Artinian ring. In this paper we are among other things concer-
ned with giving conditions for a group ring R[G] to be central perfect. In
dealing with this problem we have to say quite a few things about central
perfect rings in general. Furthermore, the solutions we have given require
the introduction of several tools we have found interesting in their own
right. Accordingly, we have discussed these tools in more detail than abso-
lutely necessary to consider only the problem of classification of central per-
fect group rings.

Since being ‘perfect’ is a one-sided notion, we shall mean ‘right perfect’
whenever the word ‘perfect’ is used. For left perfect rings all arguments
have obvious adaptations.

2. Central perfect rings and decompositions

R will always denote a ring with an identity and JR denotes the Jacob-
son radical of R.

An additive idempotent mapping f : R—R such that f{zf(y)) =f(f(2)y)
=f(x)f(y) for all z, y=R will be called a decomposition of R. A decompo-
sition f : R—R will be called 2 normal decomposition of R provided:

(1) ker FSJR; (2) f(R) is a central perfect ring.
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Normal decompositions will be an important tool in our investigation of
central perfect rings. A decomposition satisfying condition (1) above will
be called a radical decomposition.

PROPOSITION 1. Central perfect rings are perfect.

Proof: Suppose A is a T-nilpotent ring. Koénig’s lemma [3] implies that
if {F} is a sequence of finite subsets of A, then there is an integer » such
that F,...F;=0. It follows that A, is also T-nilpotent. Furthermore it is
clear that finite direct sums of 7T-nilpotent rings and subrings of 7T-nilpo-
tent rings are T-nilpotent.

Since J(R;®D---PR,) =JR,D---®JR, and J(R,)=(JR),, (here R, is the
complete ring of mXm matrices over R), it follows that if S, ..., S, is a
collection of Steinitz rings, then (S1)u,@---@(S,) ., is a perfect ring,

Many examples of perfect rings and perfect group rings which are not
central perfect will be given. Consequently proposition 1 implies that the
problem of characterizing central perfect rings reduces to determining those
perfect rings that are central perfect.

Let R denote a perfect ring. Then R/JR is a semisimple Artinian and
thus R/JR= (Dy) p, D@D (Ds) m,» where D; is a division ring. In particu-
lar, R/JR contains a complete set of primitive orthogonal idempotents &,
ey & (¢=my+...+m,) and a complete orthogonal set of centrally primitive
idempotents fi, ..., f, where

fimEit ot o fo=lmt e,
without loss of generality.

Using standard techniques (e. g. [6]), we can lift these idempotents since
JR is a nil ideal. We take ey, ..., e; to be a complete set of primitive ortho
gonal idempotents in R, where 1=e;++---¢,, and e;+JR=¢;. Letting f,=
erhoteny ooy fr=€pm1+"+e, We observe that 1=fi+---+f, fi+JR
=f; and fi, ..., f» is a complete orthogonal set of idempotents. Later exam-
ples will show that the f/s need not be central even though the s were
central.

Define f : R—>R by f(r) =r*=X1%,frf. We will refer to f as a standard

normal decomposition.

THEOREM 1: If R is a perfect ring, then any standard normal decomposit-
ion is a normal decomposition of R.

Proof: Clearly, (z+y)*=2fi(z+p)fi=2*+y* (*)* =2 f:(Z fiaf)fi=
Dfafi=0 =2 fuafi=z* Also, (z*y)*=1 fi(z%y)fi= 2 fi (X' fizf;y)
fi=2 sz—fijfj"—"ijxszyfj:Z (fj-ftfj) (ijfj) = (ijxfj) (Zfafd) =z*y*.

Similarly (zy*)*=z*y*. Thus the mapping is a decomposition.
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Let R*=f(R) and M=ker f. We must show that M < JR and that R* is
central perfect.

Since 1*=1, M is a unitary R*-bimodule. Furthermore, since r+JR=
F=Y fif; and since r*=JR=7, fuf;, r—r*<JR and thus MCJR, i.e.,
f is a radical decomposition. Now, f;*=2 f;fif;=f: whence f;€R* and
fir*=f (D firf;) =firf, r™fi=Ffafs i e, f;is in the center of R*

We have e;*=2] fje;f;, and by the orthogonality of the e, e;* =f1e1 f1i=e1,
so that the primitive idempotents are also in R*.

Since R perfect it is semi-perfect and thus if ¢ is a primitive idempotent,
eRe is a local ring. Thus the rings ¢;Re; are local. In fact it is easily seen
that ¢;JRe;=e;Re; N JR, e¢;JRe;=J(e;Re;), and thus J(e;Re;) is T-nilpotent,
i.e., ¢;Re; is a Steinitz ring, since Steinitz rings are perfect local rings [4].
Now, f;Rf; hasradical J(f;Rf;) =f:JRfi=Ff;Rf; N JR by essentially the same
argument as that for ¢;Re;, and since f;Rf;/J(fiRf;)= Fi(R/JR)f; is prime,
it follows that f;Rf; is the complete ring of m;Xm; matrices over one of the
Steinitz rings S;=e,(;y Reqjy» where e, is one of the local idempotents
which occur in the expression for f;.

Thus, since R*=73] f;Rf; is a ring direct sum of these rings, it follows
that R* is a central perfect ring and that f is a normal decomposition as
asserted.

COROLLARY 1; A perfect ring R is central perfect if and only if the idem-
potents €1, .., € f1, ..y fn can be chosen in such a way that the idempotents
f1y ooy fu are themselves in the center of R.

Proof: If the f; are in the center of R, then r(fi+-+f,) =r=23 fufi=
r* and M=0, ie., f(r)=r=r* is the identity map, whence f(R) =R*=R
is central perfect. On the other hand, if R is central perfect, then R=
(8D m, @D (Sp) m, and if we select the e; to be the appropriate matrices
with one 1 on the diagonal and 0’s elsewhere, then fy,...,f, will be the
identities for (S8p) m, ..., (S,)m, respectively, whence they themselves are in
the center of R.

The terminology “central perfect was arrived at from the observations
that central perfect rings rings are perfect and that the complete orthogonal
set of centrally primitive idempotents f3, ..., f, of R/JR can be lifted to a
complete orthogonal set of centrally primitive idempotents f3, ..., fo.

Given decompositions f and g of R, we define an equivalence relation f
==g provided there is an automorphism « of R such that f=a-g-a™l. In
this case the decompositions f and g are conjugate. Notice that a-g-a™! is
a decomposition of R whenever g is a decomposition of R and « is an
automorphism.
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Since automorphisms leave the Jacobson radical invariant, it follows that
a-g-a’! is a radical decomposition whenever g is a radical decomposition.
If R is perfect and if g is a normal decomposition, then a-g-a’! is also a
normal decomposition.

Now suppose that g is a standard normal decomposition with associated
primitive (local) idempotents ey, ..., ¢; and associated central idempotents f, ...,
fo Thus, a-g-a'(r)=a (X fia(@)fd=La (f)ra (), al(e)+-+
a t(f)+tal(fy) =aeom,+ 1)+ -+a(e), thatis., a-galis a
standard normal decomposition, with associated primitive(local) idempotents
at(ey), ..., a (e, and associated central idempotents a 1(f1), ..., a 1(f,).

THEOREM 2: Let f and g be standard normal decompositions of the perfect
ring R. Then f and g are conjugate decompositions.

Proof: Suppose f has associated primitive (local) idempotents ey, ..., e, and
g has associated primitive idempotents ay, ..., a.

By Azumaya’s theorem z=I and there exists a unit v or R and a permut-
ation P of the numbers 1, ...,z such that ve;=a,v.

Let a : R—R be the inner automorphism a(r) =vrv™l

Then a™(a,y) =e;, ale;) =a,u and since g(a,i) =a,; (as in theorem 1),
(al-g-a) (e;) =e¢;. Thus a-g-a™! and f are normal decompositions which
map the elements ¢; to the elements e;. Since the central idempotents asso-
ciated with standard normal decompositions are minimal among the central
idempotents which can be constructed as sums of the local idempotents asso-
ciated with these standard normal decompositions, if follows that if two
standard normal decompositions have the same associated local idempotents,
then they have the same associated central idempotents. But then it follows
that the mappings are themselves identical. Thus, in our case f=a-g-a’},
lLe, f=g

Now suppose that g : R—R is a normal decomposition. Then g(R)=A is
a central perfect ring, say A= (S)n,@-D(S,)m, I f; is the idempotent
which acts as the identity on (S;),, and which annihilates (S;),; if j#i,
then 1=f,+--+f, and since (S,),; contains no central idempotents other
than 0 or 1, fy,....f, is a complete orthogonal set of centrally primitive
idempotents. Also, fi=e1+ ten, ooy [r=Crmpr1t o ten t=myt-tm,
where the ;s correspond to the appropriate matrices with a single 1 on the
main diagonal. Then, since Steinitz rings contain no idempotents other than
O0orl, e,..,e is a complete orthogonal set of primitive idempotents.

Since R=A®kerg, and since kergCJR, it follows that the set ¢;+JR,
...,es+JR is a complete orthogonal set of primitive idempotents in the semi-
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simple Artinian ring R/JR. Thus the idempotents fj, ...,f, can be used in
constructing a standard normal decomposition f : R—R as above. If we let
R*=f(R), then since the f; are central idempotents of A, it follows that
g(R) SR*=f(R). Using this observation along with theorem 2 we have the
following result.

COROLLARY 1: Suppose R is a perfect ring and suppose f : R—R is a stan-
dard normal decompositon of R. If g R—R is any normal decomposition of
R, then there is an automorphism « of R such that (a-g-a™1) (R) Sf(R).

Standard normal decompositions of perfect rings therefore give essentially
unique best possible decompositions of perfect rings as direct sums of central
perfect rings and remainders, the kernels of the standard normal decomposi-
tions.

We close this section with a proposition which is a counterexample, makes
use of the ideas developed in theorems 1 and 2 and which uses a construct-
ion variants of which will be used below. Furthermore we show that not

all normal decompositions are standard normal decomposition.

PROPOSITION 2: Not every perfect ring is central perfect.

Proof: Suppose R is any Steinitz ring. Let m>>1 and let 7,(R) be the
ring of lower triangular matrices with coefficients in R. Thus, if X T,(R),
then X;;=0 if j>i. It follows that JT,(R) consists of all matrices X with
X;;€JR for all ;. Now, T,(R)/JT,(R)=R/JR®D---®R/JR, which is the
direct sum of division rings.

Also, since the matrices with 0’s on the diagonal form a nilpotent ideal
and since JR is T-nilpotent, then by Kbonig's lemma JT,(R) is T-nilpo-
tent, i.e., T,(R) is perfect.

The set Eyy, «.., Epm, where E; denotes a matrix with a 1 in the (7, 1)
position and 0’s elsewhere yields a complete orthogonal set of primitive and
centrally primitive idempotents in T,(R)/JT,(R), and hence we may use
these to construct a standard normal decomposition f: T,(R)—T,(R) with
FX)=XE;XE;, ie., f(X) is the diagonal part of X. Since ker f con-
sists of all matrices with 0 on the diagonal, kerf+#0, whence T,(R) is not
central perfect.

Notice that X=£(X) + (X—f(X)) writes X as the sum of its diagonal
part and its off-diagonal part in this standard normal decomposition.

ExampLE 1. Let F be a field and let R be the ring of 3X3 lower trian-
gular matrices with constant diagonals and coefficients in F. Then R is a
Steinitz ring and JR consists of the matrices with 0’s on the diagonal
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Thus, (JR)2+#0, (JR)3=0. Let S=R®JR, with (r,s) (', ) = (', sr’ +rs).
Then S is a Steinitz ring with JS=JR®JR. Define f:S—S by f(r,s)=
(r,0) and g :S—S by g(r,j)=(G—34,0). Then f and g are normal decom-
positions with f(S)=g(S)=R. Now (ker f)?=0 and (ker g)2#0. Thus f
and g are not conjugate and since S is a Steinitz ring, they are not the
standard normal decomposition since only the identity map is a standard
normal decomposition. We note that f-g=f and g-f=g.

2. Semi-direct sums

In the previous section the notion of decomposition was used to obtain a
structure theorem for perfect rings involving central perfect rings. In this
section and the following section we study decompositions in a more gene-
ral setting both to obtain a better idea of the nature of a decomposition and
to derive a stock of results which will be useful later on. In the following
section we will also give a variety of examples, counterexamples and con-
structions involving decompositions and perfect rings.

In this section we demonstrate the (usual) equivalence between the (in-
terior) notion of a decomposition and the (exterior) notion of a direct sum.
The direct sums we deal with are not ring direct sums although the end
result is a ring. These are the semi-direct sums discussed in this section.

Let R be a ring and let M be an R-bimodule, i.e., M is a left and right
R-module such that for all r;,»€R and meM, Gum)ri=r;(mry). If S=
RPM is the direct sum of the R-bimodules R and M, then S is itself an
R-bimodule. A multiplication ¢ on M is quite simply a mapping ¢ : M?—S
such that if we define the product on S by (ri+my) (rotms) =rira-Fmyrs-+
rimy+¢ (my, my), then S becomes a ring. We denote this ring by R®, M,
and we shall refer to R®;M as a semi-direct sum of R and the bimodule
M.

LEMMA 1: Let M be an R-bimodule and let S=ROM. Then ¢ : M2 — S
is a multiplication if and only if ¢ is a bi-additive mapping which satisfies
the following additional properties:

(1) ¢ (rmy, my) =ré(my, my);

(2) & (my, mor) =¢ (my, my)r;

(3) ¢ (my, rmg) = (myr, my);

@) if ¢(my, my) =r~+m, §(my, ms)=r'+m’, then

rmy+¢ (m, m3) =myr’ -+ (my, m').

Proof: Suppose that ¢ is a multiplication, ie., S=R®,M is a ring.
Then (1), (2), (3) and (4) are consequences of the associative law. Thus
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these properties are necessary.

On the other hand, if ¢ : M2—S is a bi~additive map satisfying properties
1), (@, (3) and (4), then it is a straight forward matter to show that
R® M is indeed a ring.

LEMMA 2: Suppose that S=ROsM is a semi~direct sum of R and M.
Define f:S— S by f(r+m)=r. Then f is a decomposition of S.

Proof: Since S=R-+M, it follows that f is an additive idempotent funct-
ion on S. Also if z=r;+m;, y=rz+ms then

F(f @) y) =f(riretrimg) =rira=F(2)f(y) and f(zf () = (x)f(y).

LEMMA 3: Suppose that f . S—S is a decomposition. Let R=f(S), M=rker
f and let ¢ : M?—S be given by ¢(my, mg) =mymy. Then S=RDsM, and the
decomposition given in lemma 2 is f itself.

Proof: Since f is additive and idempotent we may write S=R®M, where
the direct sum is of groups. Since f(f(z)y)=f(x)f(y), it follows that
f(8)=R is a subring of §. Furthermore since f(f(z)m)=s(z)f(m)=0,
Flnf(»))=Ff(m)f(y) =0, and since (m;f(z))me=m;(f(x)m,), it follows that
M is an R-bimodule. Since S is a ring, ¢ is a multiplication and S=R®;M
is a semi~direct sum. Since f(z)=f(f(z)+ (x—f(x))), and flz—Ff(z)) =0,
it follows that f(++m)=r, i.e., f is the decomposition associated with the
semi-direct sum S=R®;M as in lemma 2.

LEMMA 4: If S=R®4M is a semi~direct sum, and if [ is the associated
decomposition, then R=f(S), M=kerf, and RD;M is the semi-direct sum
associated with f as in lemma 2,

Proof: Entirely straightforward.

Now, let C; be the category whose objects are pairs (S,f) where f: S—
S is a decomposition. Given pairs (S, f) and (S’,f’) a morphism a : (S, f)
—(S’,f’) is a ring homomorphism « : §—S8’ such that a-f’=f’a. Quite
clearly, the composition of morphisms is a morphism and since identity
maps are morphisms, it follows readily that C; is indeed a category.

If R=f(S), M=kerf, Ri=7"(8"), M’=kerf’, then

a(R)=a(f(8))=f"(a(§)) SR/, and f'(a(r))=a(f(M))=0,
whence a(M)YC M/, ie, a: M—M’.

Similarly, let C, be the category whose objects are triples (R, M, @),
where R is a ring, M is an R-bimodule and ¢ : M2 — ROM is a multipli-
cation. Given triples (R, M,¢) and (R’,M’,¢’), a morphism (R, M, $)—
(R, M’,¢’) is a pair (B, 8*) where 8: R— R’ is a ring homomorphism
and B* (rm) =8(r) 8* (m), B*(mr) =8*(m)B(r) and if ¢(my, my) =r+m, then
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& (8" (my), B* (m)) =B () +B* (m).

Then again it can be easily seen that the composition of morphisms
B8, 8% - (1, v*)=(B-7, 8*-7*) is a morphism and that (1, 1) is the identity
morphism. It is then a simple matter to show that C, is indeed a category.

LEMMA 5: If T: C; — C; is defined by T(S,f)=(f(S), Kerf, ¢), where
¢ : Ker f2— 8§ is the restriction of ordinary multitlication, and if T{(a)=
(al £(8), a\Kerf) for morphisms a: (S,f)—(S",f), then T is a covariant

Sunctor.
Proof: Straightforward.

LEMMA 6: If U: Cy—C; is defined by U(R, M, ¢) = (R®;M, f),
where f is the standard projection of R®y M onto R, and U(B, §*)=a,
where a(r-+m) =8(r) +B* (m) for morphisms (8, %) : (R, M, ¢)—(R',M’, &),

then U is a covariant functor.

Proof: We have
alritm) (rotme) =6(r) B(ra) + B(ry) * (ma) + B* (my) + B (o) + 8 (r) -+ §* (m)
where ¢ (my, my) =r+m. Hence from the properties of §* and B, it follows
directly that « is in fact a ring homomorphism. Also,
af(r+m)=a(r), and f'a(r+m) =f' () +*(m)) =F"(B(r)) =p(r) =alr),
ie., f'-a=a-f’, whence a is a morphism in C,. It is now easy to show
that U is in fact a covariant functor.

THEOREM 3: with the categories C; and Cy as defined above, and with tke
functors T: C;—>Cy and U: Cy;—C; as given, we have T-U=I(C,) and
U-T=I(C,), where I(C;) is the identity functor on C,.

Proof: We have UT(S,f)=(f(S)DKer f, f)=(S,f) by lemmas 3 and
4. Also, TUR,M, §) =T(R®s;M, f)= (R, M,¢$) by lemmas 2 and 4. Fur-
thermore, if a: (S,f)—(S’,f’) is a morphism of C,, then U T(a)=U(a]
F(8), alKer f)=a*, where a*(f(2) -+ (z—f(2)))=a(z), il.e., UT(a)=a.

Finally, if (3,8%): (R, M,¢)—(R’,M’,¢) is a morphism of C,, then
TU(B, B*) =T(a), where a(r+m) =) +*(m) and T(a)={(a|R,a|M)=
B, 8%), i.e., TU(B B*)=(B, B*) and the conclusion follows.

Thus according to theorem 3, the notions of a semi-direct sum and of a
decomposition are equivalent in the functorial sense indicated.

If C is the category of rings and homomorphisms, then the functor
F:C— C, given by F(S)=(S,1,), where 1, : S—S is the identity map, and
fla) =a for a homomorphism a : § — $’ embeds C in C; as a full subcate-
gory. Indeed, if a:S—S’ is any homomorphism, then a: (S, 1,)— (5, 1)
is a morphism in C,, since a-1/=1,-a. The functor TF : C—C; associates
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with § the triple (S,0,¢), where ¢: {0} 2->SP0 is the multiplication.

Another way to embed C in C; is to use the functor G : C—C; given by
G(S)=(S,0,), where 0, : S—S is the zero map, and G(a)=a for a homo-
morphism «: S—S’. Again, since a-0/=0,-a for any a,G is a functor
and G(C) is a full subcategory of C. TG : C—C, associates with S the
triple (0, S, ¢) where ¢ : $2—>0DS is the multiplication.

The nature of the category C; or C; can of course be investigated in much
greater detail, but for our purposes theorem 3 is quite sufficient.

4. Properties of decompositions

In this section we prove several propositions about decompositions needed
in the rest of the paper. In addition we discuss some of the standard exam-
ples of decompositions. A

The principle of idealization is an instance of a special type of decom-
position. Here we have a ring R, an R-bimodule M and a multiplication
¢ : M>>R®M given by ¢(my, my) =0. Thus RO;M becomes a ring with
the multiplication defined by (r+m) (' +m') =rr"+rm’-+ms’. Therefore in
particular the associated decomposition f: A—A, A=R@O;M, is a ring
homomorphism.

PROPOSITION 3: Suppose that f: A— A is a decomposition such that
zy+f (@) f(v) =f (@) y+zf(y) for all z,yEA.

Then A=RDsM, where ¢(my, my) =0 for all my, my&EM. Conversely, if
A=RO;M, where ¢(my, my)=0 for all my,mycM, then the associated
decompasition f satisfies the condition

zy+f (@D f @) =f (@) y+zy(y) for all z,ycA.

Proof: Since M=Kerf, mumy+f(my)f(ms)=mymo=Ff (m;) mo+myf(my) =0,
i.e., A=R®s;M, where ¢(m, m;)=mym,=0. For the converse, since
z—f@)eM, (z—f(z)) (y—F(y))=0 and the proposition follows.

Thus, by an idealization we shall mean a decomposition f: A—A such

that zy+f(2)f(») =f(2)y+zf(y) for all z,ycA. To prove that an ideali-
zation is a ring homomorphism we note that

f @)+ (@D f @) =Ff(@f ) +f(2)f () and Flzy) =f(2)f (vg)-

PROPOSITION 4: If A=R®M with associated decomposition f, then M is
an ideal if and only if ¢(M?2 S M and this is so if and only if f is an endo-
morphism.

Proof: If f is an endomorphism then Ker f=M is an ideal and ¢(M?2) <
M. The converse is equally obvious.
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If R; and R, are rings, let R=R;®R; be the (ring) direct sum of R,
and R, Suppose M is an R;—R, module with (rom)ri=ry(mr)) for r;ER;.
Define an R-action on M by (ry, ro)m=rym and m(ry, rs) =mr;. Then M
becomes an R-bimodule. If A=R®;M, with ¢(M?) =0, then this is equi-
valent to taking A to consist of matrices of the form

= 7,
with m&M and r,€R and the usual multiplication of matrices.

PROPOSITION 5: If A is any ring and if f: A—A is an idealization, then
f is a radical decomposition.

Proof: Suppose A=R@,M is the semi-dreict sum corresponding to f.
Since M is an ideal and since m—m—m(—m) =m?=0 for all me M, MCJ.

PROPOSITION 6: If A=RD;M is the semi~direct sum corresponding to an
idealization f of A and if A is aring with 1, then 1ER and JA=JR®D ;M.

Proof: JA is the set of all s€ A such that 1—st is right invertible for all
tcA. Since 1=r-+m implies r=r2+trm, r=r2 and rm=0. Hence
m=rm-+mé=m?2=0, ie., r=1€Rk.

Suppose that s€ A and meM. We need to show that 1—ms is right in-
vertible. If s=r+m’, then since mm'=0, we have 1—m(r+m')=1—mr.
Also, (mr)2=0, whence (1—mr) (1+mr)=1 and

A—ms) A+mf () =1—m(s—F(s)) + (ms) (mf (s)) =1.

If reJR, then s=¢"+m yields 1—rs=1—rr"—rm, and since 1—rm’ is
right invertible in R with right inverse « say, (1—rs)u=1—rmz whence
(1—rs)u(1+rmu) =1 and JRSJA. Hence JRO;MC JA.

Now suppose s=r+meJA. Let t=+"+m'. Then 1—st=1—r'—m'’, where
m’"=rm’+mr’ has a right inverse u=a+b,a=R, b M. Therefore

A—rm —m"") (a+b)=A—rr')a—m"" a+ A —rr")b=1,
i.e., (1—rr)a=1. Since 7/ is arbitrary, r&JR, i.e, s€JRO;M.

Given a ring A with 1, a decomposition f is unitary if A=R®,M, where
R is a ring with identity and M is a unitary R-bimodule. Since f(1£(y))

=f(1)f () =f2(y) =f(y) and since f(f(y)1) =1 (y), the element (1) is the
identity of R.

PROPOSITION 7: Suppose A is any ring with 1 and suppose f : A—>A is any
decomposition. Then f is a unitary decomposition if and only if fF(1)=1.

Proof: Let A=R®y;M be the semi-direct sum associated with f.
If £(1)=1, then M is obviously a unitary R-bimodule. On the other hand
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Fif M is a unitary R-bimodule, then f(1)m=mf(1)=m, and thus
A—fQ)) (z—f (@) =0=z—f(2) —f Q) z+f(z), ie, z=Ff(1)z. Similarly,
(z—f(2)) A—F(1)) =0 implies z==zf(1). Hence f(1)=1.

In particular any idealization is a unitary decomposition.

PROPOSITION 8: Suppose A is a ring with 1. If f: A— A is a radical
decomposition, then f is a unitary decomposition.

Proof: If A=R®;M, then 1=r+m, mcMCJA, implies 1—m=r is right
invertible, say (1—m)u=ru=u—mu=1=r+m. Let u=+"+m', then ' —r=
mu-+m, whence ' =r,u=r+m’. Now, (1—m)G+m')=r(r+tm')=1=r*+
rm’, lLe., r?’=r and m=rm'.

Since 1=r(1+m’), A—r)r(Q+m')=0=1—r, i.e.,r=1 and m=0. Thus

of(1)=1 and f is a unitary decomposition as asserted.

PROPOSITION 9: Suppose A is a ring with 1, and suppose f is a radical
decomposition. If A=RDM is the associated semi-direct sum, then

Proof: The proof is quite similar to the proof of proposition 6, Suppose
that r€JR. Let s=r'+mcA. Then, 1—rs=1—r("+m)=1—rr—rm, and
since rE€JR, 1—rr’ is right invertible in R, i.e., (1—r#)u=1 for some
ucR. Therefore (1—rs)u=Q—rr)u—rmu=1—rmu, and since rmu€M
CJA, 1—rmu is invertible in 4, i.e., (1—rs)us’=1 for some s’ €A. Hence
reJA and JROMC JA.

Suppose now that s=r+me&JA. Let t=r"+m'. Then, 1—st=1—rr""—m"’,
where m’’ =rm’ +mr’'-+mm’. Now 1—st has a right inverse x=a+5, a<R,
b= M. Hence, (1—rr' —m'’) (a+8) =1 —rr"Ya—m'"a-+ (1—rr')b=1 and since
1€R, (1—r)a=1. Since r’ is arbitrary, r&JR, and s€JRO;M.

PROPOSITION 10: Suppose that A=RDyM is the semi—direct sum associated
with an idealization of A. Suppose that R is a ring with 1, JR is T-nilpo-
tent and M is a unitary R-bimodule. Then A is a ring with 1 and JA is T
~nilpotent.

Proof: Since 1(r+m)=r+1m=r+m and(r-++m)1=r-+m, A bas an identi-
ty 1 and £(1) =1, where f is the associated decomposition. By proposition 6,
f is a radical decomposition and JADM.

Consider the sequence {r;+m} <JA, where r,€JR, m;M. Then

(ratmp) ... Gribmy) =rpeeryFmgrp_goeri oo b rgeramy,
since all other terms end up in M2=(.

Pick ¢ such that r,_yr;_3...r;=0 and ¢ such that r., ...r;+1=0. Then, for
k=t (rp-+my)...(ri+m;y) =0, whence JA is T-nilpotent.
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PRrOPOSITION 11: Suppose that A is a ring with 1, and suppose that A=
R®4M is the semi—direct sum associated with a radical decomposition. Then
A/JA=R/JR.

Proof: Since A=R® M and JA=JRDsM, it follows that the mapping
(r+m)+JA— r+JR is an additive isomorphism.

Also (r4+-m) (' +m’)+JA - r’+a+JR’ where mm'=a-+b, acR, b M.
Since mm'€JA=JR®OM, acJR and (+m) (' +m')+JA— rr’+JR,
i.e., the mapping is also multiplicative.

COROLLARY 1: If A=R®sM is the semi-direct sum associated with a radi-
cal decomposition and if R/JR is Artinian then A/JA is Artinian.

COROLLARY b: If A=R®sM is the semi-direct sum associated with a radi
cal decomposition and if R is semi~perfect, then A is semi—perfect. @

COROLLARY 3: If A=R@sM is the semi-direct sum associated with a radi-
cal decomposition and if R is perfect, then A is perfect.

COROLLARY 4: If A=R®sM 1is the semi—direct sum associated with an
idealization and if R is perfect then A is perfect.

Say R is indecomposable if the only decompositions of R are Qg and 1.
Thus Z, the ring of integers is indecomposable. If Q is the field of rationals
the same is true. If p is any prime number then the Steinitz ring Z/(p%),
i>1, has the same property. If F is any field, and if K is its prime sub-
field, F=K®;M, where M is a K-vector space. Thus a field is indecompo-
sable if and only if it is a prime field. There are simple rings which are
decomposable and indecomposable rings which are not semisimple. No group
ring R[G] with G#{1) is indecomposable. Indeed, #* : R[G]— R[G] de-
fined by tr*(z)=tr(z)1, is a decomposition, where tr(z) is the trace map.
Similarly, f: R[X]— R[ X defined by f(P(X))=P(0) is a decomposition.

Since the concept of indecomposability will not be needed in the rest of
this paper we have not attempted an in depth discussion, However, the
observations made above do indicate that indecomposable rings are sufficiently
scarce that an attempt to catalogue them might prove interesting.

5. Normal rings and L.C.I. rings

If A is any ring, then CA is the center of A. A ring R is normal if
C(R/JR)=(CR+JR)/JR. Thus if R is normal, then the elements in the
center of R/JR can be lifted to the center of R. Semisimple and commuta-
tive rings are normal. If R is normal, then if JR is a nil ideal, central
idempotents of R/JR can be lifted to central idempotents of R. A ring R
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is a ring suitable for lifting central idempotents modulo the Jacobson radical
(an L.C.1 ring) if central idempotents of R/JR can be lifted to central
idempotents of R.

By corollary 1 of theorem 1 it follows that if R is perfect and an L.C. I
ring, then R is central perfect. If R is central perfect on the other hand,
then by the same corollary it follows that R is an L.C. L ring. From the
observations made above it follows that if R is normal and perfect it is a
perfect L. C. 1. ring and hence a central perfect ring.

In the sections concerned with group rings we shall consider the problem
of determining normal perfect group rings and relate this to the problem of
determining which group rings are central perfect. For this reason as well
as to give many examples we shall look at normal rings and L.C.I. rings
in somewhat more detail in this section.

ExaAMPLE 2: Not every L.C. L ring is normal. In fact not every Steinitz
ring is normal, Furthermore subrings of normal rings need not be normal
We give some constructions which demonstrate these statements and which
enlarge the class of examples somewhat.

If R is a perfect ring and if R, is the ring of nX#z matrices with coeffi-
cients in R, then R, is perfect. Also, if T,(R) is the ring of lower trian-
gular matrices in R, then T,(R) is perfect. If r,(R) denotes the subring of
T,(R) consisting of those matrices with constant diagonal, then Jr,(R) <
JT,(R), i.e, Jc,(R) is T-nilpotent. Also, 7,(R)/Jr,(R)=R/JR which
is semisimple Artinian. Thus 7,(R) is perfect. Similarly, if = (R) consists
of column-finite row-finite matrices of the lower triangular type with con-
stant diagonal, then J7.(R) is T-nilpotent since it consists of matrices A7,
+X, where Xer (R), X;;=0 for all i and A€JR. Again, r_(R) /T (R)
=R/JR. In fact, the mapping of elements of 7,(R) or r . (R) to their
diagonals is a radical decomposition f with image a ring isomorphic to R.

Thus, if R is a Steinitz ring, then <,(R) and 7,(R) are also Steinitz
rings.

Now let 6={(0y,...,0,) be a sequence of automorphisms of R. Then by
7,(R; 6) we shall denote the subring of 7,(R) consisting of matrices X such
that for some a€R, X;=a%. Thus, if 6=0,=---=0,=1g then r,(R;0)=
7.(R). It follows that 7,(R;o) is indeed a ring. If N consists of all
matrices X&7,(R;0) with X;;=0, then N is an ideal and N»=0, whence
NcJr,(R;0). Suppose that f: 7,(R;0)—r,(R;0) is given by f(X)=Y,
where X;;=Y;; and Y;;=0 if i#j. Then f is a radical decomposition since
N=Ker f. Also, f(z,(R; ¢))=R* is isomorphic to R and if R*@;N corres-
ponds to the decomposition f, then Jr,(R;o)=JR*@®,N by propoition 9
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and 7,(R;0)/Jr,(R,0)=R*/JR*=R/JR by proposition 11. If JR is T-
nilpotent, then by proposition 10, Jr,(R;¢) is T-nilpotent. Hence, if R is
perfect, 7,(R;0) is perfect, while if R is Steinitz, ,(R;0)is also Steinitz.
Clearly, the same construction works for _(R;0).

Furthermore, if we take 0= (g, ..., 0,) to be a sequence of endomorphisms
with NKero;=0 and ¢;(1)=1, then ,(R;0) is a subring of T,(R) and
f(z,(R;0))=R* is isomorphic to R, since the mapping X — a, where
X;;=a’ and X;;=0 if i7j, is an injection and since the mapping is obviously
an epimorphism. Again, if R is perfect then z,(R;0) is perfect and if
R is Steinitz then 7,(R; ) is Steinitz. Suppose now that F is a field with
a nontrivial automorphism 7. Let K be the fixed field of z. Then K+#F.
If 6=(1,7), where 1 denotes the identity map, then 7,(F;¢) is a Steinitz
ring, 72(F;0) =F*®4N, Jr,(F;0) =JF*®;N=N and 7,(F;0)/Jrs(F;0)=
F*=F is a commutative ring.

If X&Cry(F;0) and if Yo =Y;,=0, Y =a, Yoy=a%, with a€F/K, then
XY=YX implies Xp;=X1,==0. If E; is the matrix with (Es);;=08:;0,;, then
XEy,;=E, X implies a=a*, whence a€K+#F. Thus Cry(F;0)=K* and
Cry(F; 0) +Jro(Fy0) [Jra(Fy0) =K*=K+F and 7,(F;0) is not a normal
ring. Since F, is semisimple it is a normal ring. Hence z3(F; ¢) is a subring
of a normal ring which is not itself normal.

The example of a Steinitz ring which is not normal is due to D.S. Passman.

PROPOSITION 12: Suppose R is an L.C.I. ring. Let 0= (04,05, ...) where
0; maps central idempotents to central idempotents and such that if e is a
central idempotent of R, then e¢®1=e° for dll i.

If A=7,(R;0) or A=7_(R;0), then A is an L.C. I ring.

Proof: Let f be the decomposition of A which maps matrices to their di-
agonals as in example 2. Then f is a radical decomposition and F(A)=R¥,
A=R*@,N. Furthermore, the mapping 8 : R—>R* given by 6(a) =X, where
X is the diagonal matrix with X;;=a%, is an isomorphism.

Let z be a central idempotent of R/JR which is lifted to the central idem-
potent ¢ of R and mapped to the element X=60(¢). It follows that X=e¢"1/,
which is clearly a central idempotent with X+JA=¢ in A/JA=R/JR as
in proposition 11.

COROLLARY 1: If R is an L.C. I. ring and if T,(R) is the ring of lower
triangular matrices with coefficients in R, then T, (R) is an L.C.I. ring.

Proof: Let  be a central idempotent of R/JR which is lifted to the cent-
ral idempotent e of R and then mapped to the diagonal matrix el of T,(R).
The latter is a central idempotent as in proposition 12, with eI+ JT,(R)=e.
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COROLLARY 2: If R is an L.C.I. ring and if R, is the complete ring of
nXn matrices with coefficients in R, then R, is an L.C.I. ring.

Proof: Let ¢ be a central idempotent of R/JR which is lifted to the cent-
ral idempotent ¢ of R and then mapped to the diagonal matrix el or R,.
As in proposition 12, the latter is a central idempotent with eI+ JR,=el,
I=I+JR,.

Since R,/JR,=(R/JR),. any central idempotent has the form e/ for some
central idempotent ¢ of R/JR. The conclusion follows.

PRroroOSITION 13: If Aand Bare L.C. I. rings, then R=A@®Bisan L.C. L
ring.

Proof : The proposition follows since
JR=JAPJB and R/JR=A/JADPB/JB.

COROLLARY 1: Let Aj, As ..., A, be a family of L.C.IL rings. Then
R=(A) m DD (An)m, is an L.C. 1. ring.

Since every local ring is an L.C. I. ring, it follows that rings which are
complete matrix rings over local rings and finite direct sums of rings of this
type are L.C. L rings. Replacing the fact that JR is nil by the assumption
that idempotents can be lifted modulo the radical and using the same con-
structions as in theorems 1 and 2 and corollaries, with the rings ¢;Re; local
rings instead of Steinitz rings, it follows that a semiperfect ring is an L. C. L.
ring if and only if it is a finite direct sum of complete matrix rings over
local rings. Furthermore, using the notation ey, ..., ¢, for local idempotents
and fi, ..., fa for central idempotents, we have for semiperfect rings a radical
decomposition f : R—R given by f(r) =r*=}1., firf;, with Ker f=0 if and
only if R is an L.C. I. ring. Finally, if g : R>R is any radical decomposi-
tion, then there is an automorphism @ of R such that (a-g-a ) (R) < F(R).
Furthermore, any two decompositions of the type f : R—R, corresponding
to standard normal decompositions, are conjugate by Azumaya’s theorem,
as in the proof of theorem 2.

Suppose that R is a ring with 1 and f: R—R is a radical decomposition
such that f(R) is a normal ring, then R is almost normal.

ProrosiTION 14: If R is a normal ring, then 7,(R;0) and T.(R;0) are
almost normal rings.

Proof: Let f be the decomposition which maps matrices to diagonal mat-

rices by setting the off-diagonal elements equal to 0 as above. Then f is a
radical decomposition with image isomorphic to R, a normal ring.
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If N=Ker f, then in z,(R;¢), N is nilpotent. For r.(R;0), define A,
as the matrix obtained by setting A;;=0 if i,;>>~n in the matrix A. Solve
for B,=B;+ (B;—By)+ (Bs—By)+---

Since A=A;+ (A,— A+ (A3—A4y) +---, it follows that A—B+AB=0,
so that N is a quasi-regular ideal, i.e., NSJ(z (R;0)).

Thus in example 2 all Steinitz rings constructed are almost normal if one
starts with normal rings.

PROPOSITION 15: If R is a ring with 1 and if f: R—R is a radical de-
composition such that f(R) is almost normal, then R is almost normal.

Proof: Suppose g : A=f(R)—A is a radical decomposition with T=g(A)
a normal ring. Define A : R—R by letting h(z)=gf(x). It follows that
k is a decomposition. By using proposition 9 twice, we find that

JR=JAD4 Ker f and JA=JTD Kerg.

Hence we have a group direct sum JR=JT@PKerg®Kerf. Again,
Kerh=Ker g®DKer f CJR whence % is a radical decomposition, and A(R)=T
is a normal ring, so that R is almost normal.

COROLLARY 1: Suppose that R is an almost normal ring. Then any ring
.(R; 0) or t.(R;0) is an almost normal ring.

PROPOSITION 16: Lf 7,(R;0) or 7.(R;0) is a normal ring, then R is a
normal ring.

Proof: If n=1, there is no problem since 7,(R;0)=R*=R. For n>1,
Cr,(R; 0) is the collection of all matrices al,, where a®1=a%=---=4%, and
a<CR. Thus, if C*R denotes this subring, (C*R)I,+J(z,(R; 0))/J(r,(R;0))
=C(R/JR), whence C*R-+JR/JR=C(R/JR).

Since C*RSCR, CR+JR/JR=C(R/JR) and R is a normal ring. The same
computation holds for 7 (R; o).

ExampLE 3: If R is a normal ring, then T,(R) is not normal in general.
Indeed, let R be a commutative ring and let X be a matrix in 7,(R) which
has a diagonal whose elements are not constant modulo JR. It follows that
in this situation there is no matrix Y in CT,(R)+JT,(R) which is con-
gruent to X modulo JT,(R). Thus T,(R) is not normal.

PROPOSITION 17: If R=A@®@B is the ring direct sum of A and B, then R
is normal if and only if both A and B are normal. Also, R is almost normal
if both A and B are almost normal.

Proof: Since CR=CA®DCB, JR=JADJIB, CR+JR/JR=(CA+JA/JA)D
(CB+JB/JB) = C(A/JAYDC(B/JB) = C(A/JA®B/JB) = C(R/JR), if A
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and B are both normal.

Conversely, if R is normal, let a+JA=a+JR be an element of
C(R/JR). ¥ z+JR maps to at+JA, with z&CR, then z=a+ 8, acCA,
BeCB. Thus we have z-+JR=(a+JA)+ (B+JB), and z+JR=a+JR
implies f+JB=0, i.e., B&JB, whence we may take r=a&=CA, whence
CA+JA/JA=C(A/JA), i.e., A is normal. Similarly B is normal. If A
and B are almost normal, let g4 : A— A and gz : B— B be radical decom-
positions so that g4(A) and gz(B) are normal. Define f: R—R by f(a+5)
=ga(a)+g5(b), where ac A, b=B. Then f is a decomposition with f(R)
=ga(A)+gp(B) a normal ring. Since Kerf=Kerg,PKergz S JADJB=JR,
f is a radical decomposition and R is an almost normal ring.

PROPOSITION 18: Suppose that R is an almost normal ring, then T,(R) is
almost normal.

Proof: Let f: T,(R)—>T,(R) be the radical decomposition which maps
matrices to their diagonals. Then f(T,(R))=R®---@®R is almost normal
and by proposition 15, T,(R) is almost normal.

PROPOSITION 19: The ring R, is normal if and only if R is normal.
Furthermore, if R is almost normal, then R, is almost normal as well.

Proof: Note that CR,= {al,|]acCR}, JR,=(JR), Thus C(R,/JR,)=
C((R/JR),) consists of matrices (a+JR) (I,+JR,) with a+JReC(R/JR).
If R is normal, a=a-+p, a=CR, S=JR and al,+BI,€CR,+JR, whence
CR,+JR,/JR,=C(R,/JR,) and R, is normal. If R, is a normal ring,
then a+JReC(R/JR) implies (a+JR)(I,+JR,) €C(R,/JR,), whence
al,=al,+ B, al,CR,, BEJR,, i.e., B=(a—a)l,=pI, and S=a—ac JR.
Hence CR+JR/JR=C(R/JR) and R is normal

Suppose R is almost normal. Let f: R—R be a radical decomposition with
f(R) normal. Define f,: R,— R, by f,(X)=Y with Y;=f(X;;). Then
X—f.(X)E(JR),=JR, and f,(R,)=(f(R)), which is a normal ring.

The mapping f, is additive and idempotent and Ker fCJR,, i e, f, is
a radical decomposition provided we can prove the multiplicative property.
Suppose XEf,(R,), i.e., X;E€f(R). Then if XY=2Z, Z;=2,X,Y;; and
FZip) =20 f (Xix Yaj) :Zkf(Xik)f(ij)- Thus fn(Z>z'j=f(Zij) =2 f(Xa
Fa(Y)s;. So that f(XY)=F,(Z) =F,(X)f.(Y). Similarly, if Y&f,(R,), then
[o(XY)=F,(X)f,(Y), whence f, is indeed a radical decomposition and R,
is almost normal.

COROLLARY 1: If S is a normal or almost normal Steinitz ring, then S, is
a normal or almost normal perfect ring. Conversely if S, is the complete ring
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of nXn matrices over a Steinitz ring S and if S, is normal perfect, then S
is normal perfect.

PROPOSITION 20: If R is a normal ring, JR anil ideal and if R/JR has
a complete orthogonal set of central idempotents (&, ..., €1, thenthis set may
be lifted to a complete orthogonal set of central idempotents ley, ..., ex of R.

Proof: Suppose 1=é&,+...+é&, where ¢;cC(R/JR). Since R is normal
there is an element a; of R such that a;+JR=¢;, i.e., af—a;EJR.

Using the standard trick, if we let ¢;=a;+2(1—2a;), where x=—%(1——
(1+4n)7V?), n=a?—a;, then ¢; is an idempotent, ¢;-+JR==¢;, where since
a;=CR, ¢,;<CR as well. Since e;;€JR, (ee;)'=e;e;=0 for some integer ¢,
and e;+--+e=u is a central idempotent with 1—u&JR, whence u=1,
i.e., {ey, ..., es 1is a complete orthogonal set of central idempotents as asserted.

PRrROPOSITION 21: If R is a normal perfect ring it is central perfect

Proof: f R/JR= (Dl)m;_@-"@(Dn) P with (D;) m,':f-i (R/JR)=(R/JR)f:
fifi=0;j, then {fi,...,f4 1is a complete orthogonal set of centrally pri-
mitive idempotents and since JR is a nil ideal we may lift this to a complete
orthogonal set {fi,...,f. of central idempotents. Thus the standard normal
decomposition f : R—R given by f(r) =2 firf; is the identity map, whence
R is central perfect as asserted.

COROLLARY 1: If R is a normal perfect ring, then all Steinitz rings which
appear in the representation of R are normal and conversely.

Proof: Since R is central perfect by proposition 21, R=(8,) n,®--D(S,) ..
By propositions 17 and 19 it follows that the S; are normal Steinitz rings.
The converse follows in the same way.

By propositions 17 and 19 it follows also that if R*=(S1), @@ (S, m,
where all the Steinitz rings are almost normal, then R* is almost normal.
Thus if f: R— R is a normal decomposition of the perfect ring R with
F(R)=R*=(8) u,®--®(S,) m, and all the Steinitz rings almost normal, then
R is almost normal.

Group Rings

We shall be concerned with the following problems: classify R and G if
R[G]is: (1) L.C.L; (2) normal; (3) almost normal; (4) normal perfect;
(5) almost normal perfect; (6) central perfect; (7) normal Steinitz;

(8 almost normal Steinitz.
To construct some nontrivial group-ring examples we prove the following.
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PROPOSITION 22: Suppose R is a ring of characteristic p*>0 and suppose
that G is a finite p—group. Then if R is L.C.I. (resp. mormal, almost nor-
mal, normal perfect, almost normal perfect, central perfect, normal Steinitz,
almost normal Steinitz), it follows that RG] is L.C. 1. (resp. normal, almost
normal, normal perfect, almost normal perfect, central perfect, normal Steinitz,
almost normal Steinitz).

Proof: Let us consider the normhomomorphism N(a) =NXa(g)g) =X a(g).
Then N is a decomposition with Ker N, the fundamental ideal, contained
in JR[GJ, i.e., N is a radical decomposition. Thus, R[G]/JR[G]=R/JR.

Suppose that R is an L.C. 1 ring. If # is a central idempotent of R/JR,
lift # to a central idempotent ¢ of R. Then e is a central idempotent of
R[G] and e+JR[G]=e-+JR in the isomorphism of the first paragraph.
Thus R[G] is an L.C. L. ring.

If R is normal, suppose that aJR[G]=C(R/JR). Then since a+ JR[G]
=N(a) +JR[G]=N(a)+JR(in R/JR), there are elements S&CR, y<JR,
with N(a)=p+7. Hence a+JR[G1=p+JR[G] and

CR[G]+JRLG)/JR[G]=C(R/JR) =C({[G]/JR[G]).
Thus R[ G is a normal ring.

Suppose that R is almost normal. Then since N: R[G]—R[G] is a radi-
cal decomposition with N(R[GT) =almost normal, it follows by proposition
15 that R[G] is almost normal.

Since R[G] is perfect if and only if R is perfect and G is finite, the
proposition follows for R normal perfect or almost normal perfect.

If R is Steinitz, then R[G] is Steinitz and conversely. Hence the pro-
position follows for normal Steinitz rings and almost normal Steinitz rings.
If R is central perfect, then

R= (Sl) m1+"'+ (Sn) mpy and R[sz (SIEG]m1+ ek (SuLG]) Mmpr

as we show in the next proposition. If R has characteristic p>>0, then
S; has characteristic *”>>0, whence S;[G] is a Steinitz ring. Hence R[G]
is central perfect.

PROPOSITION 23: Given a ring R and a group G we have the following
isomorphisms: R,[G1=(R[G)),, T.(R)[Gl=T,(R[GD,
72(R; 0)[G1=71,(R[G]; 0%), 7.(R;0)[G]=7.(R[G];0%),
where 0= (0%, 02%, ...) and 0;*(a) =7, a(g)ig=a’*.

Proof: Note that if o; is anendomorphism of R, then ¢,* is an endomor-
phism of R[G] with Ker o;*=Kers,)[G], whence NKer ¢;=0 implies
N Ker 0','*20.

Suppose a€R,[G]. Then a=Xa(g)g, alg) €ER, Define a;;€R[G] by
a;;=2, a(g);jg. Now, we have af=3 a(g)8(h)gh, where (a(g)B(h));;=
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2.1 (g) B (k) ki whence aﬁij: Zg’h(a (g)B(R) ijgh= Zgah(Zka (g) B (h)kj)gh:
2 (Bpna () BB 1igh) = La (B g () zg) (LaB(R) ;) = s aunfy;. Hence the
mappng a— (a;;) has the property that aS— (af;;) = (a;) (Bu), so that since
the mapping is obviously both an epimorphism and a monomorphism we
have R,[Gl=(RL[GD,.

If a=T,(R)[G], then a=Xa(g)g, with a(g),;;=0 if ;>i. Hence if we
map a — (a;;) as above, then if j >4, a;;=2 a(g);;g=0, whence (a;) €
T,(RTG]). The isomorphism T,(R)[GI1=T.(R[G]) is now clearly given
by the restriction of the isomorphism R,[G]= (R[G]), to T,(R)[G

If aez,(R;0)[G], then a=Za(g)g, with a(g);;=0 if j>i and a(g);=
2(g)? for some A=R. Thus a;;=2 a(g);ig = 2 A(g)%g = (FA(g)g)%*, with
Z(g)gER[G].

Thus the isomorphism 7,(R; 6)[G]=1,(R[G]; 0*) is given by the restrict-
ion of the mapping a— (a;;) given above.

The construction 7., (R; 6)[G]=7.(R[G];6*) is the same as the construc-
tion for 7,(R; 0)[Gl=7(R[G]; 0*).

PROPOSITION 24: If R is a semiperfect L.C.I. ring, and if T is an epi-
morphic image of R, then T is a semiperfect L.C. 1. ring.

Proof: If R is a semiperfect L.C.I ring, then R= (81, @@ (Ss)ms
where the §; are local rings, and hence themselves semiperfect L. C. I. rings.
If Iis any ideal of R, then I=(l)), @ -® ), where I; is an ideal of
S;, and where S;/I; is itself a local ring.

Thus T=R/I=(81/1) u,®--D(S,/I,) m,, and the proposition follows from
proposition 13 and its corollary 1 as well as the discussion following that
corollary.

COROLLARY 1: If R[G] is a semiperfect L.C.I. ring so is R.

COROLLARY 2: If R[G] is a central perfect ring (i.e., a perfect L.C. 1.
ring), then R is a central perfect ring.

Proof : The epimorphic image of a Steinitz ring (local perfect) ring is a
Steinitz ring. The result follows from proposition 24.

PROPOSITION 25: If R is a normal local ring and if T is an epimorphic
image of R, then T is a normal local ring.

Proof: If T=R/I, then since ICJR, we have R/JR=(R/I)/(JR/I)=
(R/I)/J(R/I), since R/JR is a division ring. Now, if z&C(R/JR) and
z€CR, with z+JR=% then z+I=2z* vyields z*+J(R/I)=% and
z*€C(R/I), whence the conclusion follows.
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COROLLARY 1: If R[G] is a normal local ring, so is R.
COROLLARY 2: If RLG] is a normal Steinitz ring so is R.

Proof: If R[G7 is perfect so is R. Hence corollary 2 follows from corol-
lary 1.

PROPOSITION 26: If R is a normal semiperfect ring with JR a nil ideal
and if T is an epimorphic image of R, the T is a normal semiperfect ring
with JT a nil ideal.

Proof: Since R is a normal semiperfect ring, R/JR= (D1}, @@ (D) m,
with a complete orthogonal set of centrally primitive idempotents fi, ..., 7
which may be lifted to a complete orthogonal set of centrally primitive idem-
potents f1, ..., fz of R, by proposition 20.

But then it follows that, using the argument following proposition 183,
R= (L)) D@D (Ls) s,, where L;is a local ring. Now, identifying L; with
the appropriate diagonal matrices, we have as in proposition 19, C(L;/JL;)
=CL;+JL;/JL;, whence the L; are normal rings.

U T=R/I, T=Ly/1)u® @ (La/L;)m,, by proposition25. If ILj#L,,
cesy I]ﬁﬁLk, I]l+1=Lk+1, ceny In=Lm then T= (Ll/jl)ml@"'@(lﬁ’a/]k)mka a
direct sum of complete matrix rings over normal local rings. By propositions
17 and 19 this is a normal semiperfect ring.

Since JT'= (JLI/II) m1® o '@ (JLk/Ik)mp with JR = (JLl) m1®"'® (Jle) mg
nil if JR is nil, it follows that JT is also nil, since JT=JR’/1’, where
I'"<JR’. The proposition follows.

COROLLARY 1: If R[G] is a normal semiperfect ring with JR[G] a nil
ideal, then the same is true for R.

COROLLARY 2: If R[G] is a normal perfect ring then R is also a normal
perfect ring.

PROPOISTION 27: If R, is a central perfectring, then R is central perfect
and conversely.

Proof: If R,=(8) @ DS then JS; is T-nilpotent for each
Steinitz ring S;. Now there are ideals I; of R such that (R/I),=R,/(I),
== (Sz) m;:Ai'

Hence J(R/I,)ﬂzJAzz (JS,) mis whence (R/I,) ,l/J(RIi),, = A,/JA,:
(8;/J8;) mi=(D;) m;, which is simple since D; is a division ring. Thus R/J;
is a complete matrix ring over some local ring with T-nilpotent radical,
i.e., R/I; is a complete matrix ring over a Steinitzring, whence R/I; is
central perfect.

Suppose that z&, N LN ...N 1. Then, if ZER,, with Z;=z %;=0 other
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wise, it follows that £ becomes 0 in (R/I}),=A; i.e, ¥=%+...+4 in
(S m, D@ (St) my with #,=0. But then z=0 and I;N...N5=0, so that
R=R/i®--®R/I, by the Chinese Remainder Theorem, whence R is a
central perfect ring.

For the converse we note that if R=A®B, then R,=A,DB, and if
R=S,, then R,=S,. Thus if R is central perfect then R, is clearly central
perfect since R is a perfect L.C. I. ring.

COROLLARY 1: Suppose R[G]is a central perfect ring. Then R[G]=(A;®
- @DADG], where Ai=(S)m, S; @ Steinitz ring. Thus A,LGl= (S,{G])
is central perfect and hence S G is central perfect.

Proof: By corollary 2, proposition 24, R is ceniral perfect. The con-
clusion follows from propositions 23 and 27.

COROLLARY 2: If S;[G] is central perfect for i=1, ...,n and if R=(S1)n®
@D (Sp) m,» then R[G] is central perfect.

Proof: ¥ S;LG] is central perfect, then (S;)n[Gl=(SLGD)n=(AD -
DAY ;= (A) DD (AR p; with A;=(T}),;, where T; is a Steinitz ring,
whence (A4;) p;= (T}) 2jm; and (S;) »,[G] is also central perfect. Hence R[G]
= (SD) m [ G1D P (S,) m[G] is also central perfect.

COROLLARY 3: If RLG] is normal perfect, then R[G]=(A;D--DA,)[G],
where A;=(S) m, Si a normal Steinitz ring. Thus A[G] is normal perfect
and S; G is normal perfect.

Proof: Since R[G]is central perfect if it is normal perfect. The conclu-
sion follows from propositions 17, 19 and corollary 1 above.

COROLLARY 4: If R[G]=(S) n, [GI®-® (S)n,[C], where S{G] isa
normal perfect ring for each i, then R[G] is also a normal perfect ring.

Proof: The corollary follows from propositions 17 and 19 as in the proof
of corollary 2.

The corollaries to proposition 27 lead us to concentrate on the study of
group rings over Steinitz rings in the next section.
6. Group rings over steinitz rings

If S is a Steinitz ring, then its characteristic is 0 or p* for some prime »
and integer i.

THEOREM 4: If S is a Steinitz ring of characteristic p*>0 and if S[G] is
a central perfect ring, then G contains a normal subgroup H such that G/H
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is a p—group and such that O(H), the order of H, is a unit in S.

Proof: Since S[G] is central perfect, S[G]=(Sy)n® D (Ss)m,» where
the S; are Steinitz rings.

Thus, let 1=e¢;-+-+-+e, where {e,...,e, is a complete orthogonal set of
central idempotents, with ¢,5G=(S)) ,;

Hence, if N is thenorm N: SG — S, then N(¢;) is a central idempotent
in S, and N(e)=1 or N(¢;)=0. Since N(1)=1, N(e¢;)=1 for at least one
i, say N(e;)=1. Since N(eie;)=N(e;) N(e;)=0 for i#1, it follows that N
(e)) =0 if i#1. Hence (S;),;=e;SGSw; the augmetnation ideal if i>1 and

0=01®D (82 0, D - - D (S)
with @;= (I}) ), SG/0=8= (81 m,/ 1= (81/ 1) m,, whence m;=1 and I,=w,,
since otherwise we would not obtain a Steinitz ring.

Let H;= {g=Gle,;g=ge;~e}. The mapping G—SG given by g—eg is a
homomorphism with kernel H;, i.e., H; is normal in G.

Furthermore, if HyN...N H, then (¢;+--+e,)g=g=1 so that H;0...N H,
={1>. Also, G/H; is a group of units of (S;) ;-

In order to prove the theorem we need only analyze the groups H; and
G/ H;.

We claim that G/H; is in fact a p—group. Indeed, for g€G, N(1—g) =0,
1—-g€w, and ¢;—e;g€Ew;, i.e., in the mapping S;/w;— S, e;—eg— 0,
whence since ¢;,—1 we have e;g—1. The proof of the first assertion is thus
complete if we prove the following:

LEMMA 7: Suppose thar S is a Steinitz ring of characteristic p'>0, and
suppose that U is a finite subgroup of 1+JS. Then U is a p—group.

Proof: Let T=Z7Z/(p")[ U] be the ring generated by U over Z/(p") con-
sidered as a subring of S. We claim that 7 is itself a Steinitz ring. 7 is
finite since it is a finite Z/ (p*)-module. Also, S/JS is a division ring, A=
T/TNJSSS/JS is a finite (non-commutative) integral domain contained in
a division ring. Since A is algebraic over Z/(p), it follows that A is a
finite division ring and hence a field. Therefore TN JS is a maximal ideal
of T and since UNJSCSJS is T-nilpotent, TNJS=JT, since otherwise
JT=T, an obvious contradiction. HenceT is a Steinitz ring.

If A contains p” elements, then since T/JT, JT/(JT)2 ... are vector
spaces over A, it follows that each of these contains p™: elements, where
m=n dimy (JT):/(JT)iL,

Hence JT contains p™ elements for some m and 1+ J7T is a p-group. Since
U<1+JT, it follows that U is a p-group as well.

Thus it follows that G/H, is a p-group.
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Next we must show that 0(H;) is a unit in S. We have ¢,=Fa(g)g and
for heH,, eh=e;=2a(g)gh, whence a(gh™)=a(g). Let [kH]=2)cy kk.
Then, if gy, ...,g; is a set of coset representatives:

=2 algH ], and
er? =23l = o g Hy [ g Hy
= Zf,i=1 “iaj[gingﬂO (H,y)
=2(Z gigiH=giHA; X jO (H1)) [ngﬂ =€
and ak=2g‘.gjg=gm a,-ajO(Hl).

Also, N(e) =1=0(H)) (222 s:gin=g:11 %:;), whence 0(H;) is a unit in S

as asserted. If we let H=H,, then the theorem follows.

Thus, e.g., if S=Z/(3) and G=S§; then S[G] is perfect but not central
perfect, since by the theorem G would have to contain a normal subgroup
H with G/H a 3-group and 0(XH) a unit in Z/(3). The theorem provides
us with another easy method of constructing perfect rings which are not
central perfect.

From proposition 22 it follows that if H=<1), i.e., G/H=G is a (finite)
p-group, then S[G] is central perfect, so that there are conditions on G
(or on G/H and H) whih will imply the converse in all cases.

We derive another such condition for normal Steinitz rings.

THEOREM 5: Suppose that S is a normal Steinitz ring and suppose that H
is a finite group such that O(H) is a unit in S. Then S[H] is a central
perfect ring.

Proof: We claim that STH]/JS[H1=(S/JS)[H] Indeed, let us map
S [H]-(S/JS)[H] by letting a=2 a(g) g = X (a(g) +JS) g. This mapping
is an epimorphism with kernel (JS)[H].

Under the hypotheses of the theorem we may replace the notion of field
by the notion of Steinitz ring in Passman’s Lemma 7.2.2, Theorem 7.2.7
and Theorem 7.2.10 [¢f. 7, pp. 274-275, 278-279]. As a result, it follows
for the subgroup <1) that JS[H=(S1))S[H1=US)S[H]=US)[H]
whence the claim follows from the fundamental theorem of homomorphismms.
Since (S/JS) is a division ring, and since Q[ H ] is a unit in (S/JS), it
follows that (S/JS)[CH] is a semi-simple Artinian ring by Connell’s gener-
alization of Maschke’s theorem.

In particular, A=(S/JS)[H] contains a complete orthogonal set of cent-
ral idempotents I=&;+...+&, where the &; are minimal, i.e., the rings
¢;Ae; are complete matrix rings over division rings.

If UeCA, then U=3(a(g)+JIS)g, alg)+JSeC(S/JS). Since S is a
normal ring, (CS+JS)/JS=C(S/JS), i.e., there is an element B8(g) €CS
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such that B(g) +JS=a(g) +JS.

Since a(g)+JS is a class funtion, i.e., a(azgz™)+JIS=a(e)+JS, we
may select S(zgz™1)=8(g), and thus under these circumstances U=J3 8(g)g
is an element in the center of S[H] such that U+JS[H]=0U.

Since S[H] is perfect, JS[H is T-nilpotent and thus we may construct
a central idempotent ¢; mapping to a central idempotent ¢; according to the
standard recipe:

e;=u+z(1—2u), z=1/2(1— (1+4n)V/?),
n=ul—u, u—é and 2=CS[H].

Since # is in the center and since e¢; is in fact a linear combination of
powers of u,e; is itself in CS[H .

It follows that if we construct central idempotents ey, ..., ¢, then ee; is a
central idempotent which is in JS[H] if i#j, whence ee;=0, ie., the
set {ej, ..., ez is also an orthogonal set of central idempotents.

Similarly, e;=+...+e;=g is a central idempotent with 1—p¢eJS[H], i.e.,
#=1 and the set is complete.

By the definition it follows that S[H] is central perfect.

COROLLARY 1: If S is a normal Steinitz ring of characteristic 0, then
S[G] is central perfect if and only if G is finite.

Proof: If S is a Steinitz ring of characteristic 0, then § contains the
rational numbers and hence if G is finite, 0(G) is a unit in S. The con-
clusion follows from theorem 5.

The phrasing of theorem 5 does not allow us to replace the work “nor-
mal” by the word “central” since in the proof we make use of the normality
of S only once, but in an essential manner.

With theorem 5 we can handle the situation where we have a split extens-
ion 1-H—-G—-G/H—1 with G/H a finite p-group and 0(H) a unit in S,
a normal Steinitz ring of characteristic »,>>0. Indeed, in this case it follows
that S[G]=S[HG/H], where S[H] is a central perfect ring, i.e.,
S[H1=(T) w® - - ®(Twm, so that by proposition 23, S[HIG/H]=
(T\[G/H]) y®- - -D(T,LG/HD , where T;[G/H] is a Steinitz ring since
T; has characteristic pi°>>0 and since G/H is a finite p-group. Thus we
have the following.

COROLLARY 2: If S is a normal Steinitz ring of characteristic p*>0, and
if 1> H-> G- G/H—1 is a split extension with G/H a finite p—group and
O0(H) a unit in S, then S[G] is central perfect.

To continue with our discussion consider the following propositions as ad-
apted from Passman’s book with the word “field” replaced by “Steinitz ring”.
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LEMMA 6.1.5. Let R be a ring which contains a set of elements le;;1i,j=
=1, ...,n} satisfying
e;ieas=0 for jFa, ejen=ey for j=a and 1=e;1+ent - +e,,
If A is the centralizer in R of all these elements, then R=M,(A) and
A=€11R611.

LEMMA 6.1.6. Let R be a ring and let 1=e;+ e, be a decomposition

i "of one into a sum of orthogonal idempotents. Let G be a subgroup of units

of R and assume G permutes the set {eiy, ..., e} transitively by conjugation.
Then R=M,(A), where A is the ring A=e¢,Re.

LEMMA 6.1.7. Let G be a finite group and let H<|G. Suppose fey, ..., e,}
T is a G-orbit of centrally primitive idempotents of S[H]. Then e=e,++-+e,
is a central idempotent of S[ G| and eSG=M,(e;:SG,) where Gi2H is the

centralizer of e in G.

LEMMA 6.1.8. Let G be a finite group and let H<|G. Suppose e S[H]
is a central idempotent of S| G| with eS[H]=M,(S). Thern eS[G|=
‘M, (S'LG/HY), where S'{G/H] is some twisted group ring of G/H.

THEOREM 6.1.9. Let G be a finite group and let HG. Suppose that
{e11r oo €.} is @ G-orbit of centrally primitive idempotents of S H| with
eSLG1=M,(S). Then e=e,+---+e, is a central idempotent of S[ G| and

eS[Gj =M,,(S tI:GI/H:D ’
where Gi2 H is the centralizer of e; in G and where S Gy/H ]| is some
twisted group ring of Gy/H.

Suppose that S is a normal Steinitz ring of characteristic p°>0. Then let
G be a finite group and suppose H <]G has the property that G/H is a
p-group and O0(H) is a unit in S. It follows from theoremsthat S{H] is
a central perfect ring, say

S[H]:‘_ (Sl)m1+"'+(Sn)m,.
with 1=¢+--+e, where ¢S[H]=(S;),, and where ¢; is a centrally
primitive idempotent for each 7.

Now the group G acts on {ej, ..., ¢z} by conjugation and if G; is the cent-
ralizer of ¢; in G, then the fact that ¢; and ¢; are conjugates implies that G;
and G; are conjugates as well.

Since HEG; <G, it follows that H<|G; and that G;/H is a p—group. Use
lemma 6.1.7 to decompose 1 as a sum of centrally primitive idempotents
of S[G], say 1=f1+--+f; where fi=e=e¢;}---+e¢, and where {ey, ..., ¢,} is
without loss of generality the G-orbit of ¢;, with the rest of the fs const-
ructed in a similar fashion. Then
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S[GI=£1S[G+...+fiS[GI=M,, (e:S[G,]) + ...+ M, (e,S[G.])
where the G; are as defined above.

If S[G] is a central perfect ring, then by propositions 12 and 13 the rings
M,(e;S[G;]) are themselves central perfect and by proposition 27, ¢;S[G;]
is a central perfect ring.

Conversely, if ¢;S[G;] is a central perfect ring in all cases, then S[G] is
itself a central perfect ring.

If the groups G; are such that the rings S[G;] are all central, e g., if
1—-H—G—G;/H—-1 is a split exact sequence for all i, then since ¢;SG; is
a direct summand of a central perfect ring, for each j, it follows that the
rings ¢;S[G;] are central perfect rings by propositions 12 and 13.

ExaMpiE 4: If R={0,1} is the field with two elements and if G=S,, then
R[G]=R[S3;]=R,®7,(R), which is seen to be a normal perfect ring. Thus
even in the situation where we’'re dealing with group algebras, Steinitz rings
enter in an unavoidable manner.

We note that this example is an example in support of a converse of the-
orem 4 which we state in the form of a conjecture.

CONJECTURE: If S is a (normal) Steinitz ring of characteristic >0 and
if H<G is a finite p'-group such that G/H is a finite p—group, then S[G]]
is a central (normal) perfect ring.

The representation of R[G] given in example 4 was arrived at using a
program, a computer and some hand computations involving the idempotents
of R[G]. It is our purpose to discuss these and similar computations else-
where.

From proposition 22 and following, it seems that at least in the case of
perfect rings the classification problems listed at the beginning of the section
on group rings are very much related. At present we are not in a position
to give complete solutions due to the necessity of assumptions concerning
normality as in theorem 5, and problems with the arithmetic of twisted
group rings over Steinitz rings. It is our conjecture that these problems are
only technical and not intrinsic, i.e., the converse to theorem 4 is true.

If R[G] is perfect but not central perfect, then using a standard normal
decomposition we may write RLG]=R[G1*®;M. It would be interesting to
relate the structure of M to that of R and G in general. The characterizat-
ion given in the first section along with a program for computing idempo-
tents provides a (slow) method for determining M. As a problem in com-
putagion, improved methods would always be interesting in any search for
examples or counterexamples to conjectures, including ones made above.
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