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CENTRAL PERFECT RINGS

By JOSEPH NEGGERS AND PAUL J. ALLEN

1. Introduction
Steinitz rings are like division rings in that every linearly independent

subset of a free module can be extended to a basis by adjoining elements of
a given basis [4J. The Wedderburn structure theorem classifies semisimple
Artinian rings as the finite direct sums of complete matrix rings over divi­
sion rings.

In this paper we study those rings which are finite direct sums of com­
plete matrix rings over Steinitz rings. For reasons explained below we call
these rings central perfect rings. A central perfect ring is to a Steinitz ring
what a semisimple Artinian ring is to a division ring. In the (generalized)
Maschke theorem [5J conditions are given for a group ring R[G] to be a
semisimple Artinian ring. In this paper we are among other things concer­
ned with giving conditions for a group ring R[G] to be central perfect. In
dealing with this problem we have to say quite a few things about central
perfect rings in general. Furthermore, the solutions we have given require
the introduction of several tools we have found interesting in their own
right. Accordingly, we have discussed these tools in more detail than abso­
lutely necessary to consider only the problem of classification of central per­
fect group rings.

Since being ~perfect' is a one-sided notion, we shall mean 'right perfect'
whenever the word 'perfect' is used.. For left perfect rings all arguments
have obvious adaptations.

2. Central perfect rings and decompositions

R will always denote a ring with an identity and JR denotes the Jacob­
son radical of R.

An additive idempotent mapping f: R-R such that f(xf(y» f(f(x)y)
f(x)f(y) for all x, yER will be called a decomposition of R. A decompo­

sition f : R-R will be called a normal decomposition of R provided:
(1) ker fk JR; (2) feR) is a central perfect ring.
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Normal decompositions will be an important tool in our investigation of
central perfect rings. A decomposition satisfying condition (1) above will
be called a radical decomposition.

PROPOSITION 1. Central perfect rings are perfect.

Proof: Suppose A is a T-nilpotent ring. Konig's lemma [3J implies that
if {Fi} is a sequence of finite subsets of A, then there is an integer n such
that Fn...F1 =0. It follows that An is also T-nilpotent. Furthermore it is
clear that finite direct sums of T-nilpotent rings and subrings of T-nilpo­
tent rings are T-nilpotent.

Since J(RIEB···EtJRJ =JRlB···EtJJRn and J(R,J = (JR) m (here Rm is the
complete ring of mXm matrices over R), it follows that if Sh ... , Sn is a
collection of Steinitz rings, then (SI) mlEB ... EB (Sn) mn is a perfect ring.

Many examples of perfect rings and perfect group rings which are not
central perfect will be given. Consequently proposition 1 implies that the
problem of characterizing central perfect rings reduces to determining those
perfect rings that are central perfect.

Let R denote a perfect ring. Then RIJR is a semisimple Artinian and
thus RIJR=(D1)m

I
EtJ"'EB(Dn)m", where Dj is a division ring. In particu­

lar, RIJR contains a complete set of primitive orthogonal idempotents eh
... , et(t=ml+ ... +mn) and a complete orthogonal set of centrally primitive
idempotents /1, "', In where

11=e1+"'+eml' ••• ,1n==et- m,,+I+···+et,
without loss of generality.

Using standard techniques (e. g. [6J), we can lift these idempotents since
JR is a nil ideal. We take eh .•. , et to be a complete set of primitive ortho
gonal idempotents in R, where l=el+"'+et> and ei+JR=ei' Letting f1=
el+"'+ eml' ••• , fn=et-m,,+I+"'+ et, we observe that 1 f1+"'+f", fi+JR
= li and f11 •• ·.In is a complete orthogonal set of idempotents. Later exam­
ples will show that the f;' s need not be central even though the 1/s were
central.

Define f: R-R by fer) =r*=~i=dirfi' We will refer to f as a standard
normal decomposition.

THEOREM 1: If R is a perfect ring, then any standard normal decomposit­
ion is a normal decomposition of R.

Proof: Clearly, (.x+y)*=~fi(X+y)ji=X*+Y*, (x*) *=~'fi(~/j.xfj)fi=

~fi2xfi2=~flxfl=~fiXfi=X*. Also, (x*Y)*=~fi(X*Y)fi=J:fi(~'fjxfjY)

fi= ~f/xfjY/j=~/jxf/Yfj=~(fjx/j) (fjy/j) = C'£fjx/i) (~fiYfi)=x*y*.
Similarly (xy*) *=x*y*. Thus the mapping is a decomposition.



Central perfect rings 55

Let R*-f(R) and M=ker I. We must show that Mr;;;;.JR and that R* is
central perfect.

Since 1*=1, M is a unitary R*-bimodule. Furthermore, since r+JR=
1'= L: l;d; and since r*=JR= L: firf;, r-r*EJR and thus Mr;;;;.JR, i. e. ,
1 is a radical decomposition. Now, fi*= L:lddj=/j, whence IjER* and
lir* f; CL: Ijrfj ) -f;rfj, r*f;-firf;, i. e., li is in the center of R*.

We have e/ = L: fjedj, and by the orthogonality of the ei, el* fledl =eh
so that the primitive idempotents are also in R*.

Since R perfect it is semi-perfect and thus if e is a primitive idempotent,
eRe is a local ring. Thus the rings ejRej are local. In fact it is easily seen
that eiJRe;=ejRej nJR, e;JRei=J(ejRei) , and thus J(ejRei) is T-nilpotent,
i. e., e;Rej is a Steinitz ring, since Steinitz rings are perfect local rings [4J.
Now, f;Rfi has radical J(jiRfi) =fiJRfi fiRfi nJR by essentially the same
argument as that for eiRei, and since fiRf;! J(f;Rf;) = 1; (RI JR)l; is prime,
it follows that IjRfj is the complete ring of mjXmj matrices over one of the
Steinitz rings Sj=encj) Rencj), where enCj) is one of the local idempotents
which occur in the expression for fj'

Thus, since R* = L: fiR/; is a ring direct sum of these rings, it follows
that R* is a central perfect ring and that 1 is a normal decomposition as
asserted.

COROLLARY 1; A perlect ring R is central perfect if and only if the idem­
potents el, ... , et, fl' ... ,fn can be chosen in such a way that the idempotents
fh ···,fn are themselves in the center of R.

Proof: If thef; are in the center of R, then r(fl+"'+fn)=r=IJirf;=
r* and M=O, i. e., fer) =r=r* is the identity map, whencef(R) =R*=R
is central perfect. On the other hand, if R is central perfect, then R=
(Sl)m/B···EB(Sn)m. and if we select the ei to be the appropriate matrices
with one 1 on the diagonal and 0' s elsewhere, then fh" .,fn will be the
identities for (81) ml' •.• , (8n) rn. respectively, whence they themselves are in
the center of R.

The terminology "central perfect' was arrived at from the observations
that central perfect rings rings are perfect and that the complete orthogonal
set of centrally primitive idempotents lh ... ,1n of RI JR can be lifted to a
complete orthogonal set of centrally primitive idempotents Ih .. .,in'

Given decompositions 1 and g of R, we define an equivalence relation f
==g provided there is an automorphism a of R such that f=a·g·a- l. In
this case the decompositions f and g are conjugate. Notice that a'g'a-1 is
a decomposition of R whenever g is a decomposition of R and a is an
automorphism.
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Since automorphisms leave the Jacobson radical invariant, it follows that
a'g'a- l is a radical decomposition whenever g is a radical decomposition.
If R is perfect and if g is a normal decomposition, then a'g' a-I is also a
normal decomposition.

Now suppose that g is a standard normal decomposition with associated
primitive (local) idempotents eb ... , et and associated central idempotents/h ,
In. Thus, a'g'a-I (r) =a-I(~/ia(r)/j) = ~a-I (/j) ra-I (/j), a-I (el) + +
a-l(fl)+"'+a-l(ln)=a-l(et_mn+l)+"'+a-l(et), that is., a'g'a-l is a
standard normal decomposition, with associated primitive (local) idempotents
a-I (el) , ... , a-I (et) and associated central idempotents a-I (fl) , ... , a-I (fn).

THEOREM 2: Let I and g be standard normal decompositions of the perlect
ring R. Then f and g are conjugate decompositions.

Proof: Suppose I has associated primitive (local) idempotents eh ... , et and
g has associated primitive idempotents ab ... , al.

By Azumaya's theorem t=l and there exists a unit v or R and a permut­
ation P of the numbers 1, ..., t such that vej=apwv.

Let a: R-R be the inner automorphism a(r) =vrv-l.

Then a-I (ap(j) =ej, a (ej) =apW and since g(ap(j) =ap(j) (as in theorem 1),
(a-l.g·a) (ej) =ej. Thus a'g'a-l and I are normal decompositions which
map the elements ej to the elements ej. Since the central idempotents asso­
ciated with standard normal decompositions are minimal among the central
idempotents which can be constructed as sums of the local idempotents asso­
ciated with these standard normal decompositions, if follows that if two
standard normal decompositions have the same associated local idempotents,
then they have the same associated central idempotent~. But then it follows
that the mappings are themselves identical. Thus, in our case I=a'g'a-r,
i. e., I g.

Now suppose that g : R-R is a normal decomposition. Then g (R) = A is
a central perfect ring, say A= (SI)m1EB"'EB (Sn) mn' If Ij is the idempotent
which acts as the identity on (Sj) mj and which annihilates (Sj) mj if j *- i,
then 1~/1+..,+In and since (S) mj contains no central idempotents other
than 0 or 1, 117' ...In is a complete orthogonal set of centrally primitive
idempotents. Also, Il=el+"'+em1, ..., I,,=et-mn+l+"'+et> t=ml+"'+mn,

where the e/s correspond to the appropriate matrices with a single 1 on the
main diagonal. Then, since Steinitz rings contain no idempotents other than
o or 1, eh ... , et is a complete orthogonal set of primitive idempotents.

Since R=AEBkerg, and since kerg~JR, it follows that the set el+JR,
..., et+JR is a complete orthogonal set of primitive idempotents in the semi-
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simple Artinian ring RIJR. Thus the idempotents f10 ... ,fn can be used in
constructing a standard normal decomposition f : R-----+R as above. If we let
R* f(R) , then since the f; are central idempotents of A, it follows that
g(R) c;;;.R* feR). Using this observation along with theorem 2 we have the
following result.

COROLLARY 1: Suppose R is a perfect ring and suppose f : R-----+R is a stan­
dard normal decompositon of R. If g : R-'>R is any normal decomposition of
R, then there is an automorphism a of R such that (a·g·a- l ) (R) c;;;.f(R).

Standard normal decompositions of perfect rings therefore give essentially
unique best possible decompositions of perfect rings as direct sums of central
perfect rings and remainders, the kernels of the standard normal decomposi­
tions.

We close this section with a proposition which is a counterexample, makes
use of the ideas developed in theorems 1 and 2 and which uses a construct­
ion variants of which will be used below. Furthermore we show that not

all normal decompositions are standard normal decomposition.

PROPOSITION 2: Not every perfect ring is central perfect.

Proof: Suppose R is any Steinitz ring. Let m>1 and let T m(R) be the
ring of lower triangular matrices with coefficients in R. Thus, if X E T m (R) ,
then X;j=O if j>i. It follows that JTm (R) consists of all matrices X with
X;;EJR for all i. Now, Tm(R)/JTm(R)=R/JRtfJ···tfJR/JR, which is the
direct sum of division rings.

Also, since the matrices with 0' s on the diagonal form a nilpotent ideal
and since JR is T-nilpotent, then by Konig's lemma JTm(R) is T-nilpo­
tent, i. e., T m (R) is perfect.

The set Ell, ..., Emm, where E;; denotes a matrix with a 1 in the (i, i)
position and 0's elsewhere yields a complete orthogonal set of primitive and
centrally primitive idempotents in T m (R) / JTm (R) , and hence we may use
these to construct a standard normal decomposition f : T m (R) -'>T m (R) with
f(X) = ~EiiXEii, i. e., f( X) is the diagonal part of X. Since ker f con­
sists of all matrices with 0 on the diagonal, kerf:;t:O, whence T m (R) is not
central perfect.

Notice that X I(X) + (X-f(X» writes X as the sum of its diagonal
part and its off-diagonal part in this standard normal decomposition.

EXAMPLE 1. Let F be a field and let R be the ring of 3X3 lower trian­
gular matrices with constant diagonals and coefficients in F. Then R is a
Steinitz ring and JR consists of the matrices with 0's on the diagonal.
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Thus, (JR)z::j=O, (JR) 3=0. Let S=REBJR, with (r, s) (r', s') = (rr', sr' +rs').
Then S is a Steinitz ring with JS=JRtf)JR. Define f: S~S by fer, s) =
(r,O) and g: S~S by g(r,j) = (r-j,O). Then f and g are normal decom­
positions with f(S) =g(S) =R. Now (ker f)2=0 and (ker g)2::j=0. Thus f
and g are not conjugate and since S is a Steinitz ring, they are not the
standard normal decomposition since only the identity map is a standard
normal decomposition. We note that f'g=f and g·f=g.

3. Semi-direct sums

In the previous section the notion of decomposition was used to obtain a
structure theorem for perfect rings involving central perfect rings. In this
section and the following section we study decompositions in a more gene­
ral setting both to obtain a better idea of the nature·of a decomposition and
to derive a stock of results which will be useful later on. In the following
section we will also give a variety of examples, counterexamples and con­
structions involving decompositions and perfect rings.

In this section we demonstrate the (usual) equivalence between the (in­
terior) notion of a decomposition and the (exterior) notion of a direct sum.
The direct sums we deal with are not ring direct sums although the end
result is a ring. These are the semi-direct sums discussed in this section.

Let R be a ring and let M be an R-bimodule, i. e., M is a left and right
R-module such that for all rh rzER and mEM, (rlm)r2=rl (mrz). If S=
REBM is the direct sum of the R-bimodules R and M, then S is itself an
R-bimodule. A multiplication t/J on M is quite simply a mapping t/J : ML»S
such that if we define the product on S by (rl+ml) (rZ+m2) =rlrZ+mlrZ+
rlm2+t/J(mhmZ), then S becomes a ring. We denote this ring by REB<pM,
and we shall refer to REB,pM as a semi-direct sum of R and the bimodule
M.

LEMMA 1: Let M be an R-bimodule and letS=REBM. Then t/J: MZ-tS
is a multiplication if and only if t/J is a bi-additive mapping u'hich satisfies
the following additional properties:

(1) t/J (rmh m2) = rt/J (mh mz);
(2) t/J(mh m2r) =t/J(mh m2)r;
(3) t/J(mh rm2) =rP(mlr, mz);
(4) if t/J(mj, m2) =r+m, t/J(m2' m3) =r'+m', then

rm3+ rP (m, m3) = mlr'+ t/J (mb m') .

Proof: Suppose that t/J is a multiplication, i. e., S=Rffi",M is a ring.
Then (1), (2), (3) and (4) are consequences of the associative law. Thus
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these properties are necessary.
On the other hand, if ifJ : MZ_S is a bi-additive map satisfying properties

(1), (2) , (3) and (4), then it is a straight forward matter to show that
RfBif>M is indeed a ring.

LEMMA 2: Suppose that S=R(fjif>M is a semi-direct sum of Rand M.
Define f: S - S by f(r+m) =r. Then f is a decomposition of S.

Proof: Since S= R +M, it follows that f is an additive idempotent funct­
ion on S. Also if x=rl+ml> y=rz+mz, then

f(f(x)y) --f(rlrZ+rlmZ) =rlrz=f(x)f(y) and f(xf(y» -f(x)f(y).

LEMMA 3: Suppose that f: S-S is a decomposition. Let R=f(S), M=ker
f and let ifJ : MZ_S be given by ifJ(ml, mz) =mlmZ. Then S=R(fjif>M, and the
decomposition given in lemma 2 is f itself.

Proof: Since f is additive and idempotent we may write S=RtBM, where
the direct sum is of groups. Since f(f(x)y) =f(x)f(y) , it follows that
f(S) =R is a subring of S. Furthermore since f(f(x)m) -f(x)f(m) =0,
f(mf(y» ~f(m)f(y)=0, and since (md(x» mZ=ml (f(x)mz), it follows that
M is an R-bimodule. Since S is a ring, ifJ is a multiplication and S=RtBif>M
is a semi-direct sum. Since f(x) f( f(x) + (x-f(x»), and f(x-f(x» =0,
it follows that f(r+ m) =r, i. e., f is the decomposition associated with the
semi-direct sum S=R(fjif>M as in lemma 2.

LEMMA 4: If S=R(fjif>M is a semi-direct sum, and if f is the associated
decomposition, then R f(S), M=kerf, and RfBif>M is the semi-direct sum
associated with f as in lemma 2.

Proof: Entirely straightforward.

Now, let Cl be the category whose objects are pairs (S,f) where f : S­
S is a decomposition. Given pairs (S,f) and (S' .I') a morphism a : (S,f)
- (S' .I') is a ring homomorphism a : 8-'>8' such that a ·f' - f' a. Quite
clearly, the composition of morphisms is a morphism and since identity
maps are morphisms, it follows readily that Cl is indeed a category.

If R=f(S) , M=kerf, R' ~f'CS'), M' =kerf', then
a(R) =a(f(8» --I' (a(S» ~R', and f' (a (r» =a(f(M» =0,

whence a(M) kM', i. e., a: M-M'.
Similarly, let Cz be the category whose objects are triples CR, M, ifJ),

where R is a ring, M is an R-bimodule and ifJ : MZ - R(fjM is a multipli­
cation. Given triples (R, M, ifJ) and (R', M', ifJ'), amorphism (R, M, ifJ)­
(R', M', if/) is a pair ((3, (3*) where (3 : R - R' is a ring homomorphism
and (3* (rm) =(3 (r) (3* (m), (3* (mr) =(3* (m) (3 (r) and if ifJ(mh mz) =r+m, then
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q/ (~* (ml), ~* (mz» =~(r) + ~* (m).
Then again it can be easily seen that the composition of morphisms

(~, ~*). (r, r*) = (~'r, ~*'r*) is a morphism and that (h, IM) is the identity
morphism. It is then a simple matter to show that Cz is indeed a category.

LEMMA 5: If T: Cl -'> Cz is defined by T(S,j) = (f(S), Kerf, 1», where
1> : Ker f2 ~ 8 is the restriction of ordinary multiplication, and if T(a) =
(alf(S), alKerf) for morphis11ls a: (S,J)-'> (S',j') , then T is a covariant

functor.

Proof: Straightforward.

LEMMA 6: If U: CZ~CI is defined by U(R, M, 9) = (R0Jif>M,J) ,
where f is the standard projection of R0Jif> M onto R, and U(~, ~*) =a,
where a(r+m) =~(r) +/3* (m) for morphisms (/3, ~*) : (R, M, 1» ~ (R', M', 1>'),
then U is a covariant functor.

Proof: We have
a (rl+ml) (rz+ mz) = /3 (rl) /3 (rz) + (3 (rl) (3* (mz) +/3* (ml) + (3 (rz) + (3 (r) + (3* (m)
where 1>(mh mz) =r+m. Hence from the properties of (3* and (3, it follows
directly that a is in fact a ring homomorphism. Also,
af(r+m) =a(r), and f' aCr+m) -f' «(3(r) + (3* Cm» -f' «(3(r» =(3(r) =a(r),
i. e., I' ·a=a·f', whence a is a morphism in Cl' It is now easy to show
that U is in fact a covariant functor.

THEOREM 3: with the categories Cl and Cz as defined above, and with the
functors T: Cl ~ C2 and U: C2 --> Cl as given, we have T· U=I(C1) and
U·T=I(C2), where TCC;) is the identity functor on C;.

Proof: We have U T(S,J) = (f (S) 0JrfiKer f, f) = (S,J) by lemmas 3 and
4. Also, TU(R, M, 1» =T(RC3Jif>M,J) = (R, M,1» by lemmas 2 and 4. Fur­
thermore, if a: (S,f)~CS',J') is a morphism of Cb then UT(a)=U(al
f(S),aIKer f)=a*, where a*(f(x) + (x-f(x»)=a(x), i.e., UT(a)=a.

Finally, if «(3, (3*): (R, M, 1»--> (R', M', 1>') is a morphism of C2, then
TUC(3, (3*) =T(a), where a(r+m) =/3(r) +(3* (m) and T(a) = (aiR, aiM) =

(~, (3*), i. e., TU «(3, (3*) = «(3, (3*) and the conclusion follows.

Thus according to theorem 3, the notions of a semi-direct sum and of a
decomposition are equivalent in the functorial sense indicated.

If C is the category of rings and homomorphisms, then the functor
F : C~ Cl given by F(S) = (8, 1.), where 1. : 8--8 is the identity map, and
f(a) =a for a homomorphism a : 8 - 8' embeds C in Cl as a full subcate­
gory. Indeed, if ex: S-,>8' is any homomorphism, then ex: (8,1.)-(8',1/)
is a morphism in Cl> since ex ,1/= 1.'a. The {unctor TF: C-C2 associates
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with S the triple (S, 0, rjJ), where rjJ: {O} 2_SEBO is the multiplication.
Another way to embed C in Cl is to use the functor G : C-Cl given by

G(S)=(S, Os), where Os: S-S is the zero map, and G(a)=a for a homo­
morphism a: S-S'. Again, since a'Os' =Os·a for any a, G is a functor
and G(e) is a full subcategory of Cl' TG: C-C2 associates with S the
triple (0, S, rjJ) where rjJ : S2_0EBS is the multiplication.

The nature of the category Cl or C2 can of course be investigated in much
greater detail, but for our purposes theorem 3 is quite sufficient.

4. Properties of decompositions

In this section we prove several propositions about decompositions needed
in the rest of the paper. In addition we discuss some of the standard exam­
ples of decompositions.

The principle of idealization is an instance of a special type of decom-·
position. Here we have a ring R, an R-bimodule M and a multiplication
rjJ : ML~REBM given by rjJ(mh m2) =0. Thus REB",M becomes a ring with
the multiplication defined by (r+m) (r' +m') =rr'+rm'+mr'. Therefore in
particular the associated decomposition f: A-A, A=REB",M, is a ring
homomorphism.

PROPOSITION 3: Suppose that f: A - A is a decomposition such that
xy+f(x)f(y) =f(x)y+xf(y) for all x, yEA.

Then A=REB1>M, where rjJ(mh m2) =0 for all mh m2EM. Conversely, if
A=REB",M, where rjJ(mh m2) =0 for all ml> m2EM, then the associated
decomposition f satisfies the condition

xy+f(x)f(Y) f(x)y+xy(y) for all x, yEA.

Proof: Since M=Kerf, mlm2+f(ml)f(m2) =mlm2 f(ml)m2+ml!(m2) =0,
i. e., A=REB",M, where rjJ(mh m2) =mlm2=0. For the converse, since
x-f(x) EM, (x-f(x» (y-f(y» =0 and the proposition follows.

Thus, by an idealization we shall mean a decomposition f: A-A such
that xy+f(x)f(y) f(x)y+xf(y) for all x, yEA. To prove that an ideali­
zation is a ring homomorphism we note that

f(xy) +f(x)f(y) f(x)f(y) +f(x)f(y) and f(xy) f(x)f(y",).

PROPOSITION 4: If A=REBM with associated decomposition f, then M is
an ideal if and only if rjJ (M2) ~M and this is so if and only if f is an endo­
morphism.

Proof: If f is an endomorphism then Ker f=M is an ideal and rjJ(M2) ~
M. The converse is equally obvious.
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If RI and R z are rings, let R=RIffiRz be the (ring) direct sum of RI
and R z. Suppose M is an RI-Rz module with (rZm)rl=rZ(mrl) for riERi'
Define an R-action on M by (rh rz)m=rzm and m(rh rz) =mrl' Then M
becomes an R-bimodule. If A=Rffiq,M, with ifJ(MZ) =0, then this is equi­
valent to taking A to consist of matrices of the form

a-(:~ ~J
with mEM and riER and the usual multiplication of matrices.

PROPOSITION 5: If A is any ring and if f : A-A is an idealization, then
f is a radical decomposition.

Proof: Suppose A=Rffiq,M is the semi-dreict sum corresponding to f.
Since M is an ideal and since m-m-m(-m) =m2=0 for all mEM, Mc;;.J.

PROPOSITION 6: If A=Rffiq,M is the semi-direct sum corresponding to an
idealization f of A and if A is a ring with 1, then 1ER and JA=JRffi<j>M.

Proof: JA is the set of all sEA such that
tEA. Since l=r+m implies r=rz+rm,
m=rm+m2=m2=0, i. e., r=lER.

1- st is right invertible for all
r=r2 and rm=O. Hence

Suppose that sEA and mEM. We need to show that I-ms is right in­
vertible. If s=r+m', then since mm'=O, we have I-m(r+m')=l-mr.
Also, (mr) 2=0, whence (I-mr) (1+mr) =1 and

(l-ms) (1+mf(s» =l-m(s-f(s» + (ms) (mf(s» =1-
If rEJR, then s=r'+m yields 1-rs=1-rr' -rm, and since 1-rm' is

right invertible in R with right inverse u say, (I-rs)u=I-rmu whence
(l-rs)u(I +rmu) =1 and JRc;;.JA. Hence JRffiq,Mc;;.JA.

Now suppose s=r+mEJA. Let t=r'+m'. Then I-st=l-rr'-m", where
m"=rm'+mr' has a right inverse u=a+b, aER, bEM. Therefore

(I-rm' -m") (a+b) = (I-rr') a-m"a+ (I-rr") b=l,
i. e., (l-rr')a=l. Since r' is arbitrary, rEJR, i. e., sEJRffiq,M.

Given a ring A with 1, a decomposition f is unitary if A=Rffi,pM, where
R is a ring with identity and M is a unitary R-bimodule. Since f(If(y»

f(l)f(y) fZ(y) fey) and since f(j(y) 1) f(y) , the element f(l) is the
identity of R.

PROPOSITION 7: Suppose A is any ring with 1 and suppose f: A-A is any
decomposition. Then f is a unitary decomposition if and only if f(l) = 1.

Proof: Let A=Rffi,pM be the semi-direct sum associated with f.
If f(l) =1, then M is obviously a unitary R-bimodule. On the other hand
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~ if M is a unitary R-bimodule, then f(l) m=mf(I) =m, and thus
(1-/(1)) (x-/(x)) =O=x-f(x) -f(l)x+f(x) , i. e., x f(I)x. Similarly,
(x-/(x)) (l-f(l)) =0 implies x=xf(l). Hence f(l) =1.

In particular any idealization is a unitary decomposition.

PROPOSITION 8: Suppose A is a ring with 1. If f: A ~ A is a radical
decomposition, then f is a unitary decomposition.

Proof: If A=REE\.M, then l=r+m, mEMc;;;.JA, implies 1-m=r is right
invertible, say (l-m)u=ru=u-mu=l=r+m. Let u=r'+m', then r'-r=
mu+m, whence r' =r, u=r+m'. Now, (I-m) (r+m') =r(r+m') =1=r2+
rm', i. e., r2=r and m=rm'.

Since l=r(l+m'), (l-r)r(l+m') =O=l-r, i. e. ,r=l and m=O. Thus
-f(l) =1 and f is a unitary decomposition as asserted.

PROPOSITION 9: Suppose A is a ring with 1, and suppose I is a radical
decomposition. If A=RE±\I>M is the associated semi-direct sum, then

JA=JR EBq,M.

Proof: The proof is quite similar to the proof of proposition 6, Suppose
that rEJR. Let s=r'+mEA. Then, 1-rs=1-r(r'+m)=1-rr'-rm, and
since rE JR, 1-rr' is right invertible in R, i. e., (1 - rr') u= 1 for some
uER. Therefore (l-rs)u= (l-rr')u-rmu=l-rmu, and since rmuEM
c;;;.JA, 1-rmu is invertible in A, i.e., (l-rs)us'=l for some s'EA. Hence
rEJA and JREBq,Mc;;;.JA.

Suppose now that s=r+mEJA. Let t=r' +m'. Then, 1-st=1-rr" -m",
where m" =rm'+mr'+mm'. Now 1-st has a right inverse u=a+b, aER,
bEM. Hence, (l-rr' -m") (a+b) = (I-rr')a-m"a+ (l-rr')b=l and since
1ER, (l-rr')a=1. Since r' is arbitrary, rEJR, and sEJREBq,M.

PROPOSITION 10: Suppose that A=REBq,M is the semi-direct sum associated
with an idealization of A. Suppose that R is a ring with 1, JR is T-nilpo­
tent and M is a unitary R-bimodule. Then A is a ring with 1 and JA is T
-nilpotent.

Proof: Since l(r+m) =r+ 1m=r+m and (r+m) l=r+m, A has an identi­
ty 1 and 1(1) = 1, where I is the associated decomposition. By proposition 6,
I is a radical decomposition and JAEBq,M.

Consider the sequence h+mj} c;;;.JA, where rjEJR, mjEM. Then
(rk+mk) ... (rl +ml) =rk···rl+mkrk-I···rl+...+rk···r2mh

since all other terms end up in M2=0.
Pick t such that rt-Irt-2 ...rl=0 and t' such that rt', ...rt+I=O. Then, for

k=t', (rk+mk) ... (rl+ml) =0, whence JA is T-nilpotent.
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COROLLARY b: If A=REBq,M is the semi-direct sum associated with a radi
cal decomposition and if R is semi-perfect, then A is semi-perfect.

PROPOSITION 11: Suppose that A is a ring with 1, and suppose that A=
Rffiq,M is the semi-direct sum associated with a radical decomposition. Then
AIJA=RIJR.

Proof: Since A=REBq,M and JA=JREBq,M, it follows that the mapping
(r+m) +JA~ r+JR is an additive isomorphism.

Also (r+m) (r' +m') +JA~ rr' +a+JR' where mm'=a+b, aER, bEM.
Since mm' EJA=JREBq,M, aEJR and (r+m) (r' +m') +JA~ rr' +JR,
i. e., the mapping is also multiplicative.

COROLLARY 1: If A=Rffiq,M is the semi-direct sum associated with a radi­
cal decomposition and if RIJR is Artinian then AIJ A is Artinian.

,.
COROLLARY 3: If A=Rffiq,M is the semi-direct sum associated with a radi­

cal decomposition and if R is perfect, then A is perfect.

COROLLARY 4: If A=Rffiq,M is the semi-direct sum associated with an
idealization and if R is perfect then A is perfect.

Say R is indecomposable if the only decompositions of R are OR and 1R.
Thus Z, the ring of integers is indecomposable. If Q is the field of rationals
the same is true. If p is any prime number then the Steinitz ring ZI (pi),
i'2:.1, has the same property. If F is any field, and if K is its prime sub­
field, F=Kffiq,M, where M is a K-vector space. Thus a field is indecompo­
sable if and only if it is a prime field. There are simple rings which are
decomposable and indecomposable rings which are not semisimple. No group
ring R[G] with G* <1> is indecomposable. Indeed, tr*: R[G] ~ R[G] de­
fined by tr*(x) =tr(x) 1, is a decomposition, where tr(x) is the trace map.
Similarly, f : R[X] ~ R[X] defined by f(P(X)) =P(O) is a decomposition.

Since the concept of indecomposability will not be needed in the rest of
this paper we have not attempted an in depth discussion, However, the
observations made above do indicate that indecomposable rings are sufficiently
scarce that an attempt to catalogue them might prove interesting.

5. Normal rings and L. C. 1. rings

If A is any ring, then CA is the center of A. A ring R is normal if
C(RI JR) = (CR+JR) I JR. Thus if R is normal, then the elements in the
center of RIJR can be lifted to the center of R. Semisimple and commuta­
tive rings are normal. If R is normal, then if JR is a nil ideal, central
idempotents of RIJR can be lifted to central idempotents of R. A ring R
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is a ring suitable for lifting central idempotents modulo the Jacobson radical
(an L. C. 1. ring) if central idempotents of RI.JR can be lifted to central
idempotents of R.

By corollary 1 of theorem 1 it follows that if R is perfect and an L. C. 1.
ring, then R is central perfect. If R is central perfect on the other hand,
then by the same corollary it follows that R is an L. C. 1. ring. From the
observations made above it follows that if R is normal and perfect it is a
perfect L. C. 1. ring and hence a central perfect ring.

In the sections concerned with group rings we shall consider the problem
of determining normal perfect group rings and relate this to the problem of
determining which group rings are central perfect. For this reason as well
as to give many examples we shall look at normal rings and L. C. 1. rings
in somewhat more detail in this section.

EXAMPLE 2: Not every L. C. 1. ring is normal. In fact not every Steinitz
ring is normal, Furthermore subrings of normal rings need not be normal
We give some constructions which demonstrate these statements and which
enlarge the class of examples somewhat.

If R is a perfect ring and if Rn is the ring of n X n matrices with coeffi­
cients in R, then Rn is perfect. Also, if T n(R) is the ring of lower trian­
gular matrices in Rn then Tn(R) is perfect. If 'fn(R) denotes the subring of
T n (R) consisting of those matrices with constant diagonal, then.J'fn (R) f;;:

JTn(R), i. e., J'n (R) is T-nilpotent. Also, Tn(R) / J'n(R) =R/JR which
is semisimple Artinian. Thus Tn(R) is perfect. Similarly, if "oo(R) consists
of column-finite row-finite matrices of the lower triangular type with Con­
stant diagonal, then J 'f00 (R) is T -nilpotent since it consists of matrices }J

+X, where XE:",,(R),Xii=O for all i and AEJR. Again, Too(R)/JToo(R)
=RIJR. In fact, the mapping of elements of Tn(R) or ',,,,,(R) to their
diagonals is a radical decomposition f with image a ring isomorphic to R.

Thus, if R is a Steinitz ring, then "n(R) and <n(R) are also Steinitz
rings.

Now let (J= «(JI> ... , (In) be a sequence of automorphisms of R. Then by
rn (R; (J) we shall denote the subring of T n (R) consisting of matrices X such
that for some aER, Xii=aIJi • Thus, if (J=(J2=···=(Jn=l R, then rn(R; (J) =
Tn (R). It follows that rn (R; (J) is indeed a ring. If N consists of all
matrices XE 'l:n(R; (J) with Xii=O, then N is an ideal and Nn=o, whence
Nr;;;.J'l:n(R; (J). Suppose that f: rn(R; (J)----+Tn(R; (J) is given by f(X) = Y,
where X u= ¥ii and Yij=O if i*j. Then f is a radical decomposition since
N=Ker f. Also, feen(R; (J» =R* is isomorphic to R and if R*(J),pN corres­
ponds to the decomposition f, then .JTn(R; (J) =JR*(J)9N by propoition 9

I
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and 7:n(R;(J)/Jrn(R,(J)=R*/JR*=R/JR by proposition 11. If JR is T­
nilpotent, then by proposition 10, Jrn(R;(J) is T-nilpotent. Hence, if R is
perfect, rn(R; (J) is perfect, while if R is Steinitz, rn(R; (J) is also Steinitz.
Clearly, the same construction works for r= (R; (J).

Furthermore, if we take (J= ((Jb ..., (In) to be a sequence of endomorphisms
with nKer (J i = 0 and (J; (1) = 1, then rn(R; (J) is a subring of T n (R) and
f(7:n(R;(J» =R* is isomorphic to R, since the mapping X -+ a, where
X;; = afJi and Xij=O if i*j, is an injection and since the mapping is obviously
an epimorphism. Again, if R is perfect then 7:n (R; (J) is perfect and if
R is Steinitz then 7:n (R; (J) is Steinitz. Suppose now that F is a field with
a nontrivial automorphism 7:. Let K be the fixed field of 7:. Then K*F.
If (J= (1, 7:), where 1 denotes the identity map, then 7:z(F; (J) is a Steinitz
ring, 7:z(F; (J) =F*fBq,N, J'C2(F; a) =JF*fBq,N=N and 7:z(F; (J) IJ7:z(F; a) =
F*=F is a commutative ring.

If XEC7:z(F; a) and if YZ1=Y1Z=0, Yn=a, Yzz=aT
, with aEFIK, then

XY=YX implies X Z1 =X1Z=0. If E Z1 is the matrix with (EZ1 )ij=oz/51j, then
XE21=Ez1 X implies a=aT

, whence aEK*F. Thus C7:z(F; (J) =K* and
C7:z(F;(J)+J7:z(F;(J)/J7:z(F;(J)=K*=K*F and rz(F;(J) is not a normal
ring. Since Fz is semisimple it is a normal ring. Hence 7:2 (F; (J) is a subring
of a normal ring which is not itself normal.

The example of a Steinitz ring which is not normal is due to D. S. Passman.

PROPOSITION 12: Suppose R is an L. C. 1. ring. Let (J= ((J!> (J2, ...) where
(J i maps central idempotents to central idempotents and such that if e is a
central idempotent of R, then ~l=~i for all i.

If A=rn(R; (J) or A=7:",,(R; a), then A is an L. C. 1. ring.

Proof: Let f be the decomposition of A which maps matrices to their di­
agonals as in example 2. Then f is a radical decomposition and f(A) =R*,
A=R*fBq,N. Furthermore, the mapping 0: R-+R* given by o(a) =X, where
X is the diagonal matrix with Xu=afJi, is an isomorphism.

Let e be a central idempotent of RIJR which is lifted to the central idem­
potent e of R and mapped to the element X=O(e). It follows that X=e"I/,
which is clearly a central idempotent with X+JA=e in A/JA=RIJR as
in proposition 11.

CoROLLARY 1: If R is an L. C. 1. ring and if Tn(R) is the ring of lower
triangular matrices with coefficients in R, then T n (R) is an L. C. 1. ring.

Proof: Let e be a central idempotent of RIJR which is lifted to the cent­
ral idempotent e of R and then mapped to the diagonal matrix eI of T n (R).
The latter is a central idempotent as in proposition 12, with eI+JTn(R) =e.
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COROLLARY 2: If R is an L. C. I. ring and if Rn is the complete ring of
nXn matrices with coefficients in R, then Rn is an L. C. I. ring.

Proof: Let e be a central idempotent of RIJR which is lifted to the cent­
ral idempotent e of R and then mapped to the diagonal matrix eI or Rn.
As in proposition 12, the latter is a central idempotent with eI+JRn=eI,
]=I+JR".

Since RnlJRn= (RI JR) n, any central idempotent has the form eI for some
central idempotent e of RIJR. The conclusion follows.

PROPOSITION 13: If A and Bare L. C. I. rings, then R=AEBB is an L. C. I.
ring.

Proof: The proposition follows since
JR=JAEBJB and RjJR=A/JAEBB/JB.

COROLLARY 1: Let AI> A z, .•• , An be a family of L. C. I. rings. Then
R= (A1)m1EB"'Ef) (An)mn is an L. C. I. ring.

Since every local ring is an L. C. 1. ring, it follows that rings which are
complete matrix rings over local rings and finite direct sums of rings of this
type are L. C. L rings. Replacing the fact that JR is nil by the assumption
that idempotents can be lifted modulo the radical and using the same con­
structions as in theorems 1 and 2 and corollaries, with the rings ejRe; local
rings instead of Steinitz rings, it follows that a semiperfect ring is an L. C. 1.
ring if and only if it is a finite direct sum of complete matrix rings over
local rings. Furthermore, using the notation eh ... , et for local idempotents
and fh .. ·,fn for central idempotents, we have for semiperfect rings a radical
decomposition f : R~R given by fer) =r*= "£i;d;rf;, with Ker f=O if and
only if R is an L. C. I. ring. Finally, if g : R~R is any radical decomposi­
tion, then there is an automorphism a of R such that (a'g'a- 1) (R) c;;;;.f(R).
Furthermore, any two decompositions of the type f : R~R, corresponding
to standard normal decompositions, are conjugate by Azumaya's theorem,
as in the proof of theorem 2.

Suppose that R is a ring with 1 and f : R~R is a radical decomposition
such that feR) is a normal ring, then R is almost normal.

PROPOSITION 14: If R is a normal ring, then Tn(R; 6) and T",,(R; (J) are
almost normal rings.

Proof: Let f be the decomposition which maps matrices to diagonal mat­
rices by setting the off-diagonal elements equal to 0 as above. Then f is a
radical decomposition with image isomorphic to R, a normal ring.
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If N = Ker f, then in 1:" (R; (J) , N is nilpotent. For 1:00 (R; 0), define An
as the matrix obtained by setting A;j=O if i,j>n in the matrix A. Solve
for Bn=B1+ (Bz-B1) + (B3 -Bz)+···

Since A=A1+ (Az-A1) + (A3-Az)+···, it follows that A-B+AB=O,
so that N is a quasi-regular ideal, i. e., N~J(1:oo(R;0-».

Thus in example 2 all Steinitz rings constructed are almost normal if one
starts with normal rings.

PROPOSITION 15: If R is a ring with 1 and if f : R~R is a radical de­
composition such that feR) is almost normal, then R is almost normal.

Proof: Suppose g : A=j(R)-+A is a radical decomposition with T=g(A)
a normal ring. Define h : R----'>R by letting hex) =gf(x). It follows that
h is a decomposition. By using proposition 9 twice, we find that

JR=JA(f)</> Ker f and JA=JTfB'PK~rg.

Hence we have a group direct sum JR=JT(f;KergfBKerf. Again,
Kerh=Ker gfBKerf~JR whence h is a radical decomposition, and heR) = T
is a normal ring, so that R is almost normal.

COROLLARY 1: Suppose that R is an almost normal ring. Then any ring
1:" (R; 0-) or Too (R; (J) is an almost normal ring.

PROPOSITION 16: If 1:,,(R; 0-) or T",,(R; 0-) is a normal ring, then R is a
normal ring.

Proof: If n=l, there is no problem since 1:'1 (R; 0-) =R*=R. For n>l,
C1:n(R; 0-) is the collection of all matrices aIm where aUl=au2=···=aun, and
aECR. Thus, if C*R denotes this subring, (C*R) I"+J(-r,, (R; 0-» / J(T" (R; (J»
=C(R/JR) , whence C*R+JR/JR=C(R/JR).
Since C*R~CR, CR+JR/JR=C(R/JR) and R is a normal ring. The same
computation holds for Too (R; (J).

EXAMPLE 3: If R is a normal ring, then T,,(R) is not normal in general.
Indeed, let R be a commutative ring and let X be a matrix in T ll (R) which
has a diagonal whose elements are not constant modulo JR. It follows that
in this situation there is no matrix Y in CT,,(R) +JT"(R) which is con­
gruent to X modulo JTll (R). Thus T ll (R) is not normal.

PROPOSITION 17: If R=A(f;B is the ring direct sum of A and B, then R
is normal if and only if both A and B are normal. Also, R is almost normal
if both A and B are almost normal.

Proof: Since CR=CA(f;CB, JR=JAfBJB, CR+JR/ JR= (CA+JA/ JA)0j
(CB+JB/JB) = C(A/JA)tf)C(B/JB) = C(A/JAtf)B/JB) = C(R/JR), if A
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and B are both normal.

Conversely, if R is normal, let a+JA=a+JR be an element of
C(R/ JR). If x+JR maps to a+JA, with xECR, then x=a+f3, aECA,
f3ECB. Thus we have x+JR= (a+JA) + (f3+JB) , and x+JR=a+JR
implies f3+JB=O, i. e., f3EJB, whence we may take x=aECA, whence
CA+JA/JA=C(A/JA) , i. e., A is normal. Similarly B is normal. If A
and B are almost normal, let gA : A -. A and gB : B -. B be radical decom­
positions so that gA (A) and gB (B) are normal. Define f : R-+R by f(a+b)
=gA(a) +gB(b), where aEA, bEE. Then f is a decomposition with feR)
=gA(A)+gB(B) a normal ring. Since Kerf=KergAEBKergBs::;:;:JAEBJB=JR,
f is a radical decomposition and R is an almost normal ring.

PROPOSITION 18: Suppose that R is an almost normal ring, then Tn(R) is
almost normal.

Proof: Let f: Tn(R)-+Tn(R) be the radical decomposition which maps
matrices to their diagonals. Then f(Tn(R» =REB···EBR is almost normal
and by proposition 15, T n (R) is almost normal.

PROPOSITION 19: The ring Rn is normal if and only if R is normal.
Furthermore, if R is almost normal, then Rn is almost normal as well.

Proof: Note' that CRn= {aInl aECR} , JRn= (JR)". Thus C(Rn/ JRn) =
C«R/JR)n) consists of matrices (a+JR) (I,,+JRn) with a+JREC(R/JR).
If R is normal, a=a+f3, aECR, fJEJR and aIn+f3I"ECRn+JRm whence
CR,,+JR,,/ JR,,=C(Rn/ JR,,) and Rn is normal. If Rn is a normal ring,
then a+JREC(R/JR) implies (a+JR) (In+JR,,) EC(R,,/JRn), whence
aIn=aIn+B, aInECRm BEJR", i. e., B= (a-a)I,,=f3In and f3=a-aEJR.
Hence CR+JR/ JR=C(R/ JR) and R is normal.

Suppose R is almost normal. Let f : R-.R be a radical decomposition with
feR) normal. Define f" : Rn -. R" by f,,(X) = Y with Yij f(Xi). Then
X-f,,(X) E (JR)n=JR" and frIeR,,) = (f(R»", which is a normal ring.

The mapping f" is additive and idempotent and Ker fr;;;.JR", i. e., f" is
a radical decomposition provided we can prove the multiplicative property.

Suppose XEfn(R,,), i. e., XijEf(R). Then if XY=Z, Zij=~kXikYkj and
f(Zij) = ~d(Xik Ykj) = ~d(Xik)f(Yk)' Thus fn(Z)ij~f(Zij)= ~k fn(X)ik
fn(Y)kj. So that f(XY) fn(Z) -f,,(X)fn(Y)' Similarly, if YEf,,(R,,), then
fn(XY) f,,(X)f,,(Y), whence f" is indeed a radical decomposition and Rn
is almost normal.

COROLLARY 1: If S is a normal or almost normal Steinitz ring, then Sn is
a normal or almost normal perfect ring. Conversely if SrI is the complete ring
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of n X n matrices over a Steinitz ring S and if Sn is normal perfect, then S
is normal perfect.

PROPOSITION 20: If R is a normal ring, JR anil ideal and if R/JR has
a complete orthogonal set of central idempotents {eh ... , ek}, thenthis set may
be lifted to a complete orthogonal set of central idempotents {el,"" ek} of R.

Proof: Suppose l=el+ ... +ek' where eiEC(R/JR). Since R is normal
there is an element (Xi of R such that (Xi+JR=e;, i. e., (Xi2-(XiEJR.

Using the standard trick, if we let ei=(Xi+x(1-2(Xi), where x= ~ (1­

(1+4n)-1/2) , n=(Xi2-(Xi, then ei is an idempotent, ei+JR=ei' where since
(Xi ECR, eiECR as well. Since eiejEJR, (eie)t=eiej=O for some integer t,
and el+ "'+ek=u is a central idempotent with 1-uEJR, whence u=l,
i. e., {eh ... , ek} is a complete orthogonal set of central idempot€llts as a~serted.

PROPOSITION 21: If R is a normal perfect ring it is central perfect

Proof: If R/JR=(DI)m/B ... tf)(Dn)m., with (Di)mt=Ji(R/JR) = (R!JR)Ji ,

Ji li=oij, then {fh ... ,1n} is a complete orthogonal set of centrally pri­
mitive idempotents and since JR is a nil ideal we may lift this to a complete
orthogonal set {fh ... ,1n} of central idempotents. Thus the standard normal
decomposition f : R-R given by f(r) = 1:; firfi is the identity map, whence
R is central perfect as asserted.

COROLLARY 1: If R is a normal perfect ring, then all Steinitz rings which
appear in the representation of R are normal and conversely.

Proof: Since R is central perfect by proposition 21, R= (SI) mjtf)···tf) (S.) m.'

By propositions 17 and 19 it follows that the Si are normal Steinitz rings.
The converse follows in the same way.

By propositions 17 and 19 it follows also that if R*= (SI) mjtf)···tf) (Sn) m.'
where all the Steinitz rings are almost normal, then R* is almost normal.
Thus if f: R - R is a normal decomposition of the perfect ring R with
feR) =R*= (SI)mltf) .. ·tf) (Sn)m. and all the Steinitz rings almost normal, then
R is almost normal.

Group Rings

We shall be concerned with the following problems: classify Rand G if
R[G] is: (1) L. C. I.; (2) normal; (3) almost normal; (4) normal perfect;
(5) almost normal perfect; (6) central perfect; (7) normal Steinitz;
(8) almost normal Steinitz.

To construct some nontrivial group-ring examples we prove the following.
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PROPOSITION 22: Suppose R is a ring of characteristic pi>O and suppose
that G is a finite p-group. Then if R is L. C. 1. (resp. normal, almost nor­
mal, normal perfect, almost normal perfect, central perfect, normal Steinitz,
almost normal Steinitz), it follows that R[G] is L. C. 1. (resp. normal, almost
normal, normal perfect, almost normal perfect, central perfect, normal Steinitz,
almost normal Steinitz).

Proof: Let us consider the normhomomorphism N(a) =N~a(g)g)=~a(g).
Then N is a decomposition with Ker N, the fundamental ideal, contained
in JR[G] , i. e., N is a radical decomposition. Thus, R [G]I JR[G]=RI JR.

Suppose that R is an L. C. 1. ring. If e is a central idempotent of RIJR,
lift e to a central idempotent e of R. Then e is a central idempotent of
R[G] and e+JR[G]=e+JR in the isomorphism of the first paragraph.
Thus R[G] is an L. C. I. ring.

If R is normal, suppose that aJR[G]EC(R/JR). Then since a+JR[G]
=N(a)+JR[G]=N(a)+JR(in RIJR), there are elements ~ECR, rEJR,
with N(a) =~+r. Hence a+JR[G]=p+JR[G] and

CR[G]+JR[G] IJR[G]=C(R/ JR) =C(r[G]1JR[G]).
Thus R[G] is a normal ring.

Suppose that R is almost normal. Then since N: R[G]-)R[G] is a radi­
cal decomposition with N(R[G]) =almost normal, it follows by proposition
15 that R[G] is almost normal.

Since R[G] is perfect if and only if R is perfect and G is finite, the
proposition follows for R normal perfect or almost normal perfect.

If R is Steinitz, then R[G] is Steinitz and conversely. Hence the pro­
position follows for normal Steinitz rings and almost normal Steinitz rings.
If R is central perfect, then

R= (Sl)ml+"'+ (Sn)mn and R[G] = (Sl[G]ml+"'+ (SnLG])mn'
as we show in the next proposition. If R has characteristic pi>O, then

Sj has characteristic piCP>O, whence S{G] is a Steinitz ring. Hence R[G]
is central perfect.

PROPOSITION 23: Given a ring R and a group G we have the following
isomorphisms: Rn[G] = (R[G])m Tn(R) [G]= Tn(R[G]) ,

Tn(R; (7) [G]=Tn(R[G]; 17*), T",(R; (7) [G]=T",(R[G]; 17*),
where 17*= (171*' 172*' ... ) and 17;* (a) = ~ a(g)u;g=au;*.

Proof: Note that if 17i is anendomorphism of R, then 17i* is an endomor­
phism of R[G] with Ker 17;*= (Ker17i) [G], whence nKer 17i=O implies
n Ker 17;*=0.

Suppose aERn[G]. Then a=:.Ea(g)g, a (g) ERn. Define aijER[G] by
aij=~ a(g)ijg. Now, we have a~=~ a(g)~(h)gh, where (a(g)~(h»ij=
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I;ka (g) ik{3(h) kj, whence a{3ij= I;g'h (a (g) {3 (h) ijgh= I;g'h (I;ka (g) ik{3 (hlkj) gh=
I;k(I;g,ha(g) ik{3(h) kjgh) = I;k (I;ga(g) jkg) ("'£h{3 (h) kjh) = I;k aik{3kj' Hence the
mappng a- (aij) has the property that a{3- (a{3i) = (ail.) ({3n) , so that since
the mapping is obviously both an epimorphism and a monomorphism we
have Rn[G] = (R[G])n'

If aETn(R)[G], then a=X a (g)g, with a(g)ij=O if j>i. Hence if we
map a - (aij) as above, then if j> i, aij=X a (g) ij g=O, whence (aij) E

Tn(R[G]). The isomorphism Tn(R) [G]= Tn(R[G]) is now clearly given
by the restriction of the isomorphism R n[G] = (R[G]) n to T n(R) [G].

If aE'C'n(R; (1) [G], then a=Xa(g)g, with a(g)ij=O if j>i and a(g)ij=
A(g) 0'; for some AER. Thus Ctjj=X a(g)jjg = X 2(g)O"jg = (XA(g)g)O';*, with
XA(g)gER[G].

Thus the isomorphism T'n(R; (1) [G]=T'n(R[G]; <1*) is given by the restrict­
ion of the mapping a- (ajj) given above.

The construction T'oo(R;(J)[G]='C'oo(R[G];(J*) is the same as the construc­
tion for 'C'n(R; (1) [G]=-r(R[G]; <1*).

PROPOSITION 24: If R is a semiperfect L. C. 1. ring, and if T is an epi­
morphic image of R, then T is a semiperfect L. C. 1. ring.

Proof: If R is a semiperfect L. C. 1. ring, then R= (Slm1EB"'EB (Sn)mn'
where the Si are local rings, and hence themselves semiperfect L. C. 1. rings.
If I is any ideal of R, then 1= (Il)m1EB···EB(In)mn' where I j is an ideal of
Si, and where S;/ Ii is itself a local ring.

Thus T=R/I=(Sr/I1)m1EB···(f)(Sn/In)mn' and the proposition follows from
proposition 13 and its corollary 1 as well as the discussion following that
corollary.

COROLLARY 1: If R[G] is a semiperfect L. C. 1. ring so is R.

COROLLARY 2: If R[G] is a central perfect ring (i. e., a perfect L. C. 1.
ring) , then R is a central perfect ring.

Proof: The epimorphic image of a Steinitz ring (local perfect) ring is a
Steinitz ring. The result follows from proposition 24.

PROPOSITION 25: If R is a normal local ring and if T is an epimorphic
image of R, then T is a normal local ring.

Proof: If T=R/I, then since Ir;:;;.JR, we have R/JR=(R/I)/(JR/I) =
(R/I)/J(R/I), since R/JR is a division ring. Now, if xEC(R/JR) and
xECR, with x+JR=x, then x+I=x* yields x*+J(R/I) =x and
x*EC(R/I), whence the conclusion follows.
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COROLLARY 1: If R[G] is a normal local ring, so is R.

COROLLARY 2: If R[G] is a normal Steinitz ring so is R.

Proof: If R[G] is perfect so is R. Hence corollary 2 follows from corol­
lary l.

PROPOSITION 26: If R is a normal semiperfect ring with JR a nil ideal
and if T is an epimorphic image of R, the T is a normal semiperfect ring
with JT a nil ideal.

Proof: Since R is a normal semiperfect ring, RIJR=(D1)m/B···ttJ(Dn)mn'
with a complete orthogonal set of centrally primitive idempotents 110 ... , 1no
which may be lifted to a complete orthogonal set of centrally primitive idem­
patents f10 ...,h of R, by proposition 20.

But then it follows that, using the argument following proposition 13,
R= (L1) m1ttJ···ffi (Ln) mn' where L j is a local ring. Now, identifying L j with
the appropriate diagonal matrices, we have as in proposition 19, C(Ld JL j )

=CLj+JL;/JL;, whence the L j are normal rings.
If T= RII, T= (L1II1) mlffi··· ffi (LnIIn) mn, by proposition25. If I1::f= L1>

... , h*Lk, Ik+l=Lk+h ... , In=Ln, then T=(L1/h)m1EB"'EB(LkIIk)mk' a
direct sum of complete matrix rings over normal local rings. By propositions
17 and 19 this is a normal semiperfect ring.

Since JT=(JLi/Il)mlttJ"'EB(JLkIIk)mk' with JR'=(JL1)m/B···EB(JLk)mk
nil if JR is nil, it follows that JT is also nil, since JT=JR'I I', where
I' s JR'. The proposition follows.

CoROLLARY 1: If R[G] is a normal semiperfect ring with JR[G] a nil
ideal, then the same is true for R.

COROLLARY 2: If R[G] is a normal perfect ring then R is also a normal
perfect ring.

PROPOISTION 27: If Rn is a central perfectring, then R is central perfect
and conversely.

Proof: If R n= (Sl)m1EB"'EB(Sk)mk' then JSj is T-nilpotent for each
Steinitz ring Sj. Now there are ideals I j of R such that (RIIj ) n= Rnl (1;) n
= (Sj) m, = A j •

Hence J(RlIj)n=JAj=(JSj)mi' whence (RlIj)nIJ(RIj)n=AdJAj=
(S;/ JSj) mi= (Dj) rni' which is simple since Dj is a division ring. Thus RII j
is a complete matrix ring over some local ring with T -nilpotent radical,
i. e., RlIj is a complete matrix ring over a Steinitzring, whence RIIj is
central perfect.

Suppose that xEI1 n12 n... nh Then, if xERno with xn=x xij=O other
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wise, it follows that x becomes 0 in (Rj I;) n=A;, i. e., X=X1 +",+Xk in
(Sl)m1EB,··EB(Sk)mk with x;=O. But then x=O and I1n ... nIk=O, so that
R=RjI1EB .. ·EBRjIk by the Chinese Remainder Theorem, whence R is a
central perfect ring.

For the converse we note that if R=AEBB, then Rn=AnEBBn and if
R=Sm' then Rn=Smn. Thus if R is central perfect then Rn is clearly central
perfect since R is a perfect L. C. 1. ring.

COROLLARY 1: Suppose R[G] is a central perfect ring. Then R[G]=(A1EB
···EBAn)[G], where A;=(S;)m" Si a Steinitz ring. Thus A;[G] = (S;[G]) m,
is central perfect and hence SlG] is central perfect.

Proof: By corollary 2, proposition 24, R is central perfect. The con­
clusion follows from propositions 23 and 27.

COROLLARY 2: If Si[G] is central perfect for i=l, ... , n and if R= (Sl)m1EB
EB .. ·EB (Sn) mn' then R[G] is central perfect.

Proof: If Sj[G] is central perfect, then (Sj)m,[G] = (S;[G])mi= (A1EB· ..
EBAk)mi=(A1)m,EB· .. EB(Ak)mi with A j=(Tj)llj> where T j is a Steinitz ring,
whence (Aj)mj= (T)lljmj and (Sj)mJG] is also central perfect. Hence R[G]
= (SI) mJG]EB· .. EB (Sn) mJG] is also central perfect.

COROLLARY 3: If R[G] is normal perfect, then R[G] = (A1EB· ..EBAll) [G],
where A;= (S;) m,' Si a normal Steinitz ring. Thus Aj[G] is normal perfect
and S;[G] is normal perfect.

Proof: Since R[G] is central perfect if it is normal pErfEct. The conclu­
sion follows from propositions 17, 19 and corollary 1 above.

CoROLLARY 4: If R[G] = (Sl)ml [G]EB···EB (Sn)mJG], where Sj[G] is a
normal perfect ring for each i, then R[G] is also a normal perfect ring.

Proof: The corollary follows from propositions 17 and 19 as in the proof
of corollary 2.

The corollaries to proposition 27 lead us to concentrate on the study of
group rings over Steinitz rings in the next section.

6. Gronp rings over steinitz rings

If S is a Steinitz ring, then its characteristic is 0 or p; for some prime p
and integer i.

THEOREM 4: If S is a Steinitz ring of characteristic p;>O and if S[G] is
a central perfect ring, then G contains a normal subgroup H such that GjH
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is a p-group and such that 0 (H), the order of H, is a unit in S.

Proof: Since S[G] is central perfect, S[G] = (SI) m/B"'E8 (Sn) m.' where
the S; are Steinitz rings.

Thus, let l=el+"·+e., where {eh ... , en} is a complete orthogonal set of
central idempotents, with e;SG= (S;) mj

Hence, if N is thenorm N: SG - S, then N(e;) is a central idempotent
in S, and N(ei) =1 or N(e;) =0. Since N(l) =1, N(e;) =1 for at least one
i, say N(el) =1. Since N(elei) =N(el)N(e;) =0 for i:;i:1, it follows that N
(e;) =0 if i:;i:I. Hence (S;)mj=e;SGc;;;..w; the augmetnation ideal if iz1 and

W=Wl E8 (S2) m2E8· .. E8 (Sn) m.
with Wl=(II)ml,SGlw=S=(Sl)m/Wl=(SdIl)ml' whence 1Jll=l and Il=Wh
since otherwise we would not obtain a Steinitz ring.

Let H i= {gEGleig=gei=e;}. The mapping G-SG given by g-eig is a
homomorphism with kernel Hi, i. e., Hi is normal in G.

Furthermore, if HI n... nH n then (el+... +en)g=g=l so that HI n'" nH n
= <1). Also, GI Hi is a group of units of (S;) m;'

In order to prove the theorem we need only analyze the groups HI and

GIHl •

We claim that GIHI is in factap-group. Indeed, forgEG, N(l-g)=O,
l-gEw, and el-elgEwh i. e., in the mapping Sr/Wl - S, el-elg - 0,
whence since el-1 we have elg-I. The proof of the first assertion is thus
complete if we prove the following:

LEMMA 7: Suppose that S is a Steinitz ring of characteristic pi>O, and
suppose that U is a finite subgroup of 1+JS. Then U is a p-group.

Proof: Let T=ZI (pi) [U] be the ring generated by U over ZI (pi) con­
sidered as a subring of S. We claim that T is itself a Steinitz ring. T is
finite since it is a finite ZI (p;)-module. Also, SI JS is a division ring, A=
TIT nJS c;;;.. SI JS is a finite (non-commutative) integral domain contained in
a division ring. Since A is algebraic over Z/ (p), it follows that A is a
finite division ring and hence a field. Therefore T nJS is a maximal ideal
of T and since un JSc;;;..JS is T-nilpotent, Tn JS=JT, since otherwise
JT= T, an obvious contradiction. HenceT is a Steinitz ring.

If A contains pn elements, then since TIJT, JTI(JT)2, ... are vector
spaces over A, it follows that each of these contains pm; elements, where
1lli==n dimA(JT);/(JT);+I.

Hence JT contains pm elements for some 1ll and 1+JT is a p-group. Since
U<1+JT, it follows that U is a p-group as well.

Thus it follows that GIH 1 is a p-group.
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Next we must show that O(HI) is a unit in S. We have el=Za(g)g and
for hEHh eIh=el=Za(g)gh, whence a (gh-1) =a(g). Let [kHl]=ZkeH1kh.
Then, if gr. ... ,gt is a set of coset representatives:

el = I::=1 a;[g;H1], and
e12= I::.j=l aiaj[giHI][gjHI]

= I::,j=1 a;aj[g;gjH1]O(H1)

= I: (I:gigjH=g"HaiajO (HI» [gkHI] =el
and ak= ~gigjH=g.Ha;ajO (HI)'

Also, N(el) =1=O(H1) (I:kI:gigjH=g"H a;a), whence O(HI) is a unit in S
as asserted. If we let H = H h then the theorem follows.

Thus, e. g., if S=Zj (3) and G=S3' then S[G] is perfect but not central
perfect, since by the theorem G would have to contain a normal subgroup
H with G; H a 3-group and O(H) a unit in Zj (3). The theorem provides
us with another easy method of constructing perfect rings which are not
central perfect.

From proposition 22 it follows that if H=<l), i. e., G/H=G is a (finite)
P-group, then S[G] is central perfect, so that there are conditions on G
(or on G/H and H) whih will imply the converse in all cases.

We derive another such condition for normal Steinitz rings.

THEOREM 5: Suppose that S is a normal Steinitz ring and suppose that H
is a finite group such that O(H) is a unit in S. Then S[H] is a central
perfect ring.

Proof: We claim that S[H]/ JS[H]= (S/ JS) [H]. Indeed, let us map
S [H]~(S/JS)[H] by lettinga=Za(g)g~Z(a(g)+JS)g.This mapping
is an epimorphism with kernel (JS)[H].

Under the hypotheses of the theorem we may replace the notion of field
by the notion of Steinitz ring in Passman's Lemma 7.2.2, Theorem 7.2.7
and Theorem 7.2.10 [cf. 7, pp. 274-275, 278-279]. As a result, it follows
for the subgroup (1) that JS[H]= (JS<l»S[H]= (JS)S[H]= (JS)[H]
whence the claim follows from the fundamental theorem of homomorphisms.
Since (S/JS) is a division ring, and since O[H] is a unit in (S/JS) , it
follows that (S / J S) [H] is a semi-simple Artinian ring by Connell's gener­
alization of Maschke's theorem.

In particular, A= (S/JS) [H] contains a complete orthogonal set of cent­
ral idempotents l=el+ ... +ek, where the ei are minimal, i.e., the rings
eiAe; are complete matrix rings over division rings.

If UECA, then tJ=Z (a (g) +JS)g, a (g) +JSEC(S/JS). Since S is a
normal ring, (CS+JS) /JS=C(S/JS) , i. e., there is an element f3(g) ECS
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such that f3(g) +JS=a(g) +JS.
Since a (g) +JS is a class funtion, i. e., a (xgx-1) +JS=a(g) +JS, we

may select f3(xgx- 1) =f3 (g) , and thus under these circumstances U='Z f3(g)g
is an element in the center of S[H] such that U+JS[H]= U.

Since S[H] is perfect, JS [H] is T-nilpotent and thus we may construct
a central idempotent e1 mapping to a central idempotent ej according to the
standard recipe:

e;=u+x(1-2u), x=l/2(1- (1+4n) 1/2),
n=u2-u, u~ei and uECS[H].

Since u is in the center and since e; is in fact a linear combination of
powers of u, e; is itself in CS [H].

It follows that if we construct central idempotents eh •.. , eh then e;ej is a
central idempotent which is in JS[H] if i:j:j, whence e;ej=O, i. e., the
set {eh ...' ekl is also an orthogonal set of central idempotents.

Similarly, e1+ ... +ek=,u is a central idempotent with 1-,uEJS[H], 1. e.,
,u=1 and the set is complete.

By the definition it follows that S[H] is central perfect.

CoROLLARY 1: If S is a normal Steinitz ring of characteristic 0, then
S[G] is central perfect if and only if G is finite.

Proof: If S is a Steinitz ring of characteristic 0, then S contains the
rational numbers and hence if G is finite, O(G) is a unit in S. The con­
clusion follows from theorem 5.

The phrasing of theorem 5 does not allow us to replace the work "nor­
mal" by the word "central" since in the proof we make use of the normality
of S only once, but in an essential manner.

With theorem 5 we can handle the situation where we have a split extens­
ion 1~H-G-G / H -1 with G/ H a finite p-group and 0 (H) a unit in S,
a normal Steinitz ring of characteristic Pi>O. Indeed, in this case it follows
that S[G]=S[H][G/H], where S[H] is a central perfect ring, i. e.,
S[H]= (T1)m1

EB·· ·EB(Tn)m., so that by proposition 23, S[H][G/H]=
(T1[G/H])m

1
EB·· ·EB(Tn[G/H])m., where TlG/H] is a Steinitz ring since

T j has characteristic pjCil>O and since G/ H is a finite p-group. Thus we
have the following.

CoROLLARY 2: If S is a normal Steinitz ring of characteristic p;>O, and
if 1- H - G - G,I H ~ 1 is a split extension with G/H a finite p-group and
O(H) a unit in S, then S[G] is central perfect.

To continue with our discussion consider the following propositions as ad­
apted from Passman's book with the word "field" replaced by "Steinitz ring".
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LEMMA 6. 1. 5. Let R be a ring which contains a set of elements {ejj Ii, j =

:1, ... , n} satisfying
ejjeab=O for j=l=a, ejjeab=ejb for j=a and l=ell+e22+···+enn.

If A is the centralizer in R of all these elements, then R ~M n(A) and
A=el1Rel1·

LEMMA 6.1. 6. Let R be a ring and let l=el+···+en be a decomposition
r'of one into a sum of orthogonal idempotents. Let G be a subgroup of units

of R and assume G permutes the set {ell, ... , en} transitively by conjugation.
Then R~Mn(A), where A is the ring A=elRel.

LEMMA 6. 1. 7. Let G be a finite group and let H <]G. Suppose {eh •.. , en}
':is a G-orbit of centrally primitive idempotents of S[H]. Then e=el+···+en

is a central idempotent of S[G] and eSG~Mn(elSG1) where Gl '";2H is the
,centralizer of el in G.

LEMMA 6.1. 8. Let G be a finite group and let H<]G. Suppose eES[H]
is a central idempotent of S[G] with eS[H]~Mm(S). Then eS[G]~

Mm (se[GIH]) , where se[GIH] is some twisted group ring of GIH.

THEOREM 6. 1. 9. Let G be a finite group and let H <}G. Suppose that
{en, ... , en} is a G-orbit of centrally primitive idempotents of S[H] with
elS[G]~Mm(S). Then e=el+···+en is a central idempotent of S[G] and

eS[G]~Mmn(se[GdH]),
where Gl '2H is the centralizer of el in G and where se[GdH] is some
twisted group ring of GlI H.

Suppose that S is a normal Steinitz ring of characteristic pj>O. Then let
G be a finite group and suppose H <] G has the property that GIH is a
p-group and 0 (H) is a unit in S. It follows from theoremsthat S [H] is
a central perfect ring, say

S[H]= (Sl)ml +...+ (Sn)m"
with l=el+ ···+em where e;S[H] = (Sj)n; and where ej is a centrally
primitive idempotent for each i.

Now the group G acts on {eh ... , ek} by conjugation and if G j is the cent­
ralizer of ej in G, then the fact that ej and ej are conjugates implies that Gj
and Gj are conjugates as well.

Since Hc;;,Gjc;;,G, it follows that H<]G j and that G;/H is a p-group. Use
lemma 6. 1. 7 to decompose 1 as a sum of centrally primitive idempotents
of S[G], say 1 fl+···+fl where fl=e=el+···+en and where {eh ... , en} is
without loss of generality the G-orbit of eh with the rest of the f/ s const­
ructed in a similar fashion. Then
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S[G] f1S[G]+ ...+fzS[G]=Mn1 (e1S[G1]) + ...+Mn/etS[Gt])
where the Gi are as defined above.

If S[G] is a central perfect ring, then by propositions 12 and 13 the rings
Mn(ejS[GD) are themselves central perfect and by proposition 27, ejS[Gj]
is a central perfect ring.

Conversely, if ejS[Gj] is a central perfect ring in all cases, then S[G] is
itself a central perfect ring.

If the groups Gi are such that the rings S[GJ are all central, e. g., if
I~H~Gi~G;/H~1 is a split exact sequence for all i, then since ejSGj is
a direct summand of a central perfect ring, for each j, it follows that the
rings ejS[GJ are central perfect rings by propositions 12 and 13.

EXAMPLE 4: If R= to, I} is the field with two elements and if G=S3' then
R[G]=R[S3] = R2ffi'Z"2(R) , which is seen to be a normal perfect ring. Thus
even in the situation where we're dealing with group algebras, Steinitz rings
enter in an unavoidable manner.

We note that this example is an example in support of a converse of the­
orem 4 which we state in the form of a conjecture.

CoNJECTURE: If S is a (normal) Steinitz ring of characteristic pi>O and
if H<jG is a finite p'-group such that G/H is a finite p-group, then S[G]
is a central (normal) perfect ring.

The representation of R[G] given in example 4 was arrived at using a
program, a computer and some hand computations involving the idempotents
of R[G]. It is our purpose to discuss these and similar computations else­
where.

From proposition 22 and following, it seems that at least in the case of
perfect rings the classification problems listed at the beginning of the section
on group rings are very much related. At present we are not in a position
to give complete solutions due to the necessity of assumptions concerning
normality as in theorem 5, and problems with the arithmetic of twisted
group rings over Steinitz rings. It is our conjecture that these problems are
only technical and not intrinsic, i. e., the converse to theorem 4 is true.

If R[G] is perfect but not central perfect, then using a standard normal
decomposition we may write R[G]=R[G]*ffi.,M. It would be interesting to
relate the structure of M to that of Rand G in general. The characterizat­
ion given in the first section along with a program for computing idempo­
tents provides a (slow) method for determining M. As a problem in com­
putation, improved methods would always be interesting in any search for
exa~ples or counterexamples to conjectures, including ones made above.
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