SOME MAXIMAL EQUIDISTANT PERMUTATION ARRAYS

By M. DEZA AND S. A. VANSTONE*)

1. Introduction

An equidistant permutation array (EPA) is a $v \times r$ array defined on a symbol set V such that

- (1) every row is a permutation of the symbol set V
- (2) every pair of distinct rows has precisely λ common colume entries. We denote such an array by $A(r, \lambda; v)$.

An EPA, $A=(r, \lambda; v)$ is said to be maximal if it is impossible to add a (v+1)st row to A such that the resulting array is an $A(r, \lambda; v+1)$. A maximal $A(r, \lambda; v)$ is denoted by $\overline{A}(r, \lambda; v)$. Define

$$R(r, \lambda) = \max\{v: \text{ there exists an } A(r, \lambda; v)\}$$

and

$$\overline{R}(r, \lambda) = \min\{v: \text{there exists an } \overline{A}(r, \lambda; v)\}.$$

There are a number of results on the function $R(r, \lambda)$. Some of these results can be found in [3], [5] and [7]. In this paper, we are interested in maximal *EPAs*. We require several more definitions.

A generalized Room square (GRS) is an $r \times r$ array defined on a symbol set V of cardinality v such that

- (1) every cell contains a (possibly empty) subset of V,
- (2) every element of V is contained in every row and column of the array precisely once and
- (3) every pair of distinct elements of V is contained in λ of the cells. Such an array will be denoted by $S(r, \lambda; v)$.

An (r, λ) -design D is a collection B of subsets (blocks) taken from a finite set V of elements (varieties) such that

- (1') every element of V is contained in precisely r blocks of D
- (2') every pair of distinct elements of V is contained in exactly λ blocks of D.

If each block of D has cardinality k, D has v varieties and 6 blocks,

Received Jan. 8, 1980

^{*)} Research supported by NSERC under grant #A9258

then D is called a balanced incomplete block design and is denoted (v, b, r, k, λ) -BIBD.

In section 2, (r, λ) -designs are used to generalize a construction for maximal EPAs which was given in [6]. In section 3, we show that this construction applied to BIBDs has been shown [6] to give maximal EPAs.

2. EPAs and (r, 1)-designs.

Let a be a permutation acting on the set $N = \{1, 2, 3, ..., n\}$. Define

$$E(a) = \{i \in \mathbb{N} : a(i) \neq i\}.$$

For any $A \subseteq S_n$, $E(A) = \{E(a) : a \in A\}$. Let $L = \{l_1, l_2, ..., l_t\}$ be a set of positive integers. A(n, L) is a set of permutations such that for all $a, b \in A$, $(a \neq b), n - |E(a^{-1}b)| \in L$. In the case where |L| = 1, A(n, L) is just an EPA.

LEMMA 2.1. Let A=A(n,L) such that

- (i) $|E(a) \cap E(b)| \le 1$ for all $a, b \in A$, $a \ne b$. Then:
 - a) |E(A)| = |A|;
 - b) $E(a^{-1}b) = E(a) \cup E(b)$ for all $a, b \in A$, $a \neq b$ and hence $n |E_1 \cup E_2| \in L$ for all $E_1, E_2 \in E(A)$, $E_1 \neq E_2$;
- c) A is a proper subset of some A(n, L) with property (i) iff there exists $E' \subset \{1, 2, ..., n\}$ such that $|E'| \neq 1$, $E' \notin E(A)$ and $n |E' \cup E| \in L$ for any $E \in E(A)$.
- *Proof.* a) We have, of course, $|E(A)| \le |A|$ from definition of E(A). Suppose |E(A)| < |A|. Hence E(a) = E(b) for some $a, b \in A, a \ne b$. We obtain $E(a) \cap E(b) = E(a) = E(b)$; condition (i) implies $E(a) \le 1$, $E(b) \le 1$. But neither E(a) = 1 nor E(b) = 1 is possible. We have |E(a)| = |E(b)| = 0, i. e., both a, b are the identity permutation. This contradicts the supposition $a \ne b$.
- b) For any $a, b \in S_n$ we have E(a) $VE(b) \subseteq E(a^{-1}b) \subseteq E(a) \cup E(b)$ where $E(a)VE(b) = (E(a) \cup E(b)) (E(a) \cap E(b))$ is the symmetric difference of the sets E(a), E(b). In case $|E(a) \cap E(b)| = 0$ we have $E(a^{-1}b) = E(a) \cup E(b)$ immediately. Suppose now that $|E(a) \cap E(b)| = 1$ and $E(a) \cap E(b) = \{p\}$ for some $p \in \{1, ..., n\}$. We have $a(p) \neq p \neq b(p)$. The case a(p) = b(p) will imply $a(a(p)) \neq a(p)$, $b(a(p)) \neq a(p)$, that is, $a(p) \in E(a) \cap E(b)$ and $|E(a) \cap E(b)| > 1$ which contradicts to condition (i). Hence, $a(p) \neq b(p)$ and $E(a^{-1}b) = E(a) \cup E(b)$.
 - c) This follows from a) and b).

In the next theorem we give a construction for a class of A(n, L).

THEOREM 2.1. If there exists an (r, 1)-design D with n blocks and v varieties, then there exists an A(n, n-2r+1; v).

Proof. Let $T = \{B_1, B_2, ..., B_n\}$ be the blocks of D. For each variety $x \in D$, let f_x be any permutation acting on T such that $E(f_x) = \{B : x \in B\}$. We now show that $A = \{f_x : x \in D\}$ is an A(n, l; v). It is clear that A satisfies property (i) of Lemma 2. 1. Hence, from (b) of Lemma 2. 1, $E(a^{-1}b) = E(a) \cup E(b)$ for all $a, b \in A$ $(a \neq b)$. But E(a) = r, for all $a \in A$ and, thus, $E(a^{-1}b) = 2r - 1$. This completes the proof.

This result generalizes a construction given in [6].

COROLLARY 2.1. Let A=A(n,l) be the permutation array corresponding to a given (r,1)-design D. If G is the GRS corresponding to A, then the blocks of G having cardinality greater than one are precisely the blocks of the complement to D.

Proof. A block B of G of cardinality $k \ge 2$ corresponds to a set $\{a_1, a_2, ... a_k\}$ permutations of A with the property that $a_i(b) = a$ for all $i, 1 \le i \le k$ and fixed elements a and b. Since $k \ge 2$, and $t(a_i, a_j) = 0$ for all i, j $(i \ne j)$, then $a \notin E(a_i)$, $1 \le i \le k$. Hence, the elements of D associated with $a_1, a_2, ..., a_k$ do not occur in the block B' of D associated with b. Hence, the elements of D associated with $a_1, a_2, ..., a_k$ form the block \overline{B}' . This completes the proof.

We remark that the same procedure applied to an (r, λ) -design will produce an A(n, L) where $L = \{n-2r+\lambda+t: 0 \le t \le \lambda-1\}$. This result follows from the fact that for any two permutations $a, b(a \ne b) \mid E(a^{-1}b) \mid = \mid E(a) \mid + \mid E(b) \mid - \mid E(a) \cap E(b) \mid - t(a, b)$ where $t(a, b) = \mid \{i \in E(a) \cap E(b) : a(i)\} \mid$ and the fact that $0 \le t(a, b) \le \lambda - 1$.

Theorem 2.1 shows that any (r, 1)-design with n blocks can be used to produce an A(n, n-2r+1). Given an A(n, l), when can we produce an (r, 1)-design. An A(n, l) is said to have property (i') if $|E(a)| = r = \frac{n+1-l}{2}$, for all $a \in A$ and $|E(a) \cap E(b)| = 1$ for all $a, b \in A$ $(a \neq b)$. It is easily seen that there exists an (r, 1)-design with n blocks if and only if there exists an A(n, n-2r+1) having property (i').

LEMMA 2.2. Let A = A(n, l) have property (i') and $A \cup \{a'\}$ be an A(n, l) for some $a' \in S_n \setminus A$. Then

- a) $|E(a')| \ge r-1$.
- b) |E(a')| = r 1 iff $E(a') \cap E(a) = \phi$, for all $a \in A$. |E(a')| = r iff $|E(a') \cap E(a)| = 1$, for all $a \in A$. |E(a')| = r + 1 iff $|E(a') \cap E(a)| = 2$, and t(a, a') = 0 for all $a \in A$.

c) $|E(a')| \ge r+2$ implies $|E(a') \cap E(a)| \ge 2$, and $|E(a') \cap E(a)| + t(a,a') = |E(a')| - r+1 \ge 3$ for all $a \in A$.

Proof. Recall $|E(a^{-1}a')| = |E(a)| + |E(a')| - |E(a) \cap E(a')| - t(a, a')$. Since |E(a)| = r for all $a \in A$ and $|E(a^{-1}b)| = n - l$ for all $a, b \in A(a \neq b)$ then $|E(a')| = r - 1 + |E(a) \cap E(a')| + t(a, a')$. (a) now follows. (b) follows from the above and Lemma 1 using the fact $|E(a) \cup E(a')| \le 1$ implies t(a, a') = 0. This completes the proof.

Recall that A=A(n,l) is maximal and denote it by $\overline{A}(n,l)$ if $A \cup \{a'\} \neq A(n,l)$ for any $a \in S_n \setminus A$. An (r,1)-design D with V varieties and b blocks is extendible to an (r,1)-design D' with v+1 varieties and b blocks if D is isomorphic to a restriction of D'. This is a special case of the extension given implicitly in c) of Lemma 1. An A=A(n,l) with property (i') is strongly extendible if there exists an element $a \in S_n \setminus A$ such that $A \cup \{a\}$ is an A(n,l) with property (i').

THEOREM 2.2. An A(n, l) with property (i') is strongly extendible iff the corresponding (r, 1)-design is extendible.

COROLLARY 2.2. An A(n, l; v) with property (i') is extendible to an A(n, l; n) with property (i') if $v > \left[\frac{n-l-1}{2}\right]^2$.

Proof. This follows from a result on extendible (r, 1)-designs which can be found in [8].

We conclude this section with the following useful lemmas on EPAs A=A(n,l,v) with $|A|=v\geq 2$. Suppose that |E(a)|=r for any $a\in A$. It is evident that $r\geq 2$.

LEMMA 2.3 Suppose that |E(a)|=2 for any $a \in A$. Then either

- a) l=n-4, $E(a) \cap E(b) = \phi$ for any $a, b \in A$, $a \neq b$; or
- b) l=n-3, $|\bigcap E(a)|=1$; or $a \in A$
- c) l=n-3, $A = \{(i, j), (i, k), (j, k)\}$ for some $1 \le i < j < k \le n$.

Proof. A consists of transpositions, i.e., cycles of length 2. The case a) corresponds to the possibility that every pair of these distinct cycles has no element of $\{1, 2, ..., n\}$ in common. The only possibility is that every pair of these cycles has exactly one element in common. For this case Lemma (3.4) of [4] gives only two possibilities corresponding to cases b) and c).

REMARK. Using known equalities ([3]),

$$\max |A(n, n-3)| = n-1, \max |A(n, n-4)| = \lfloor n/2 \rfloor$$

we can show easily that

in the case a) of Lemma 2.1, $A = \overline{A}(n, n-4)$ iff $v = \lfloor n/2 \rfloor$;

in the case b) of Lemma 2.1, $A = \overline{A}(n, n-3)$ iff v = n-1.

Also, $A = \overline{A}(n, n-3)$ in the case c) of Lemma 2.1.

LEMMA 2.4. Let
$$A=A(n, l; v)$$
. Then $l\neq n-1$ and $l\leq n-3$ for $|A|>2$.

Proof. It follows trivially from Lemma 2.1. In fact, suppose l=n-2 and a_1 , a_2 and a_3 are three distinct elements of A. Then $\{a_1^{-1}a_2, a_1^{-1}a_3\}$ is an A(n, n-2; 2) with $|E(a_1^{-1}a_2)| = |A(a_1^{-1}a_3)| = 2$, which is an impossibility.

LEMMA 2.5. Let A=A(n, l; v), v>2 and let $a' \in A$.

Denote $A' = \{b^{-1}a' : b \in A, b \neq a'\}; then$

- a) A' = (n, l; v-1) with
- b) |E(a)| = n-l for any $a \in A'$ and

c)
$$|E(a) \cap E(b)| \ge \max \left[\frac{n-l}{2}, 2\right]$$
 for any $a, b \in A'$, $a \ne b$.

Proof. a) and b) follows from the fact that Hamming distance $|E(a^{-1}b)|$ on S_n is invariant of translation, i. e.,

$$|E(a^{-1}b)| = |E((ac)^{-1}(bc))| = |E((ca)^{-1}(cd))|.$$

Let $a, b \in A', a \neq b$.

$$n-l = |E(a^{-1}b)| \ge |E(a)VE(b)| = |(E(a) \cup E(b)) - E(a) \cap E(b)|$$

= $|E(a)| + |E(b)| - 2|E(a) \cap E(b)| = 2(n-l) - 2|E(a) \cap E(b)|$.

Hence, $|E(a) \cap E(b)| \ge (n-l)/2$. Moreover, (n-l)/2 > 1 (because $l \le n-3$) from Lemma 2.1 and $|E(a) \cap E(a)|$ is an integer; so c) is proved.

3. Maximal EPAs

In this section we find several classes of maximal EPAs.

Let LS(n+l, l; n) be an A(n+l, l; n) obtained from a latin square by adjoining l fixed points.

THEOREM 3.1. For each positive integer n and l, LS(n+l, l; n) is an $\overline{A}(n+l, l; n)$

Proof. Let G be the GRS associated with LS. The nonemply cells of G contain blocks of size 1 and n. Without loss of generality, assume that the blocks of size n occur in $l \times l$ subarray S and S occurs in the upper left

corner of G and L is the latin square subarray in the lower right corner. Suppose G is extendible by adjoining a new element x. If x is contained in all blocks of size n, x cannot occur in any cell of L. Hence, x cannot occur in any row or column of G which contains L. Suppose there is some block B of size n which does not contain x. x must occur once in the row of G which contains B. This row does not contain a row of L. Since x must occur with every element x times, x must occur in each row and column of x. This is impossible. Hence, x is not extendible and x is maximal.

This theorem implies that $\overline{R}(n, l) \le n - l$. We conjecture that $\overline{R}(n, l) = n - l$. Another class of maximal *EPA*s is given in the next theorem.

THEOREM 3.2. If there exists a(v, b, r, k, l)-BIBD, $(k \ge 3)$, then there exists an $\overline{A}(b, b-2r+1; v)$.

A proof of this theorem can be found in [9]. In this special case, where v=b, the result stated in Theorem 3.2 was obtained in [6].

4. A(n, l; n):

We now consider a special class of maximal EPAs. An EPA A(n, l; v) is called square if n=v. We are interested in $\overline{A}=A(n, l; n)$. For l=0, a latin square provides an example of an $\overline{A}(n, 0; n)$ for any n. For $l=q^2-q$, $n=q^2+q+1$ and, if there exists a finite projective projective plane, then there exists ($\lceil 6 \rceil$) an $\overline{A}(q^2+q+1, q^2-q; q^2+q+1)$.

It is shown ([1]) that

$$|A(n, l)| \le \max\{l+2, (n-l)^2 + (n-l) + 1\}.$$

If $(n-l)^2+(n-l)+1 \le l$, then $|A(n,l)| \le l+2$ and, hence, from lemma 2.4 |A(n,l)| < n and the square cannot exist. This will occur provided $l \ge n-1-\sqrt{n+2}$. Let f(n) be the maximum value of l such that an A(n,l;n) exists.

THEOREM 4.1.

- a) $f(n) < n-1 \sqrt{n+2}$
- b) Let $n=q^2+q+1$ for q a prime power p^a . Then $n-1-2\sqrt{n-1} < q^2-q \le f(n) \le q^2-1$.
- c) f(7) = 2.

Proof. Part (a) follows from the above. The lower bound in (b) follows from the results of [1]. The upper bound follows from (a), and the fact that $q^2+q-\sqrt{q^2+q+3} < q^2+q-\sqrt{q^2}=q^2$.

In the case of n=7, $f(7) \le 3$ or $f(7) \le 2$. From (b) of the theorem, $f(7) \ge 2$. Hence, f(7) = 2. This completes the proof.

We conjecture that the lower bound in (b) is the exact value of f(n). Since there exists an A(6, 1; 7) ([3]), there exists an A(7, 2; 7) which is not obtained from a finite projective plane using theorem 3.1. Thus, the extremal case for f(2) is not unique. We remark, however, that the A(7, 2; 7) just given is not maximal. Another example of a square having the parameters of a square constructed in [6] but not obtainable by this construction is an A(43, 30; 43). To construct such an array by the result of [6] requires a finite projective plane of order 6. This array can be constructed as follows. By a construction given in [5], there exists an A(2q-1, q-3; q(q-2)) If we take q=11, we obtain an A(21, 8; 99). Deleting 56 permutations and adding 22 fixed points, produces the required array.

References

- 1. M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne de positions communes, J. Comb. Theory (A), 20(1976), 306-318.
- 2. M. Deza, R. C. Mullin, and S. A. Vanstone, Room squares and equidistant permutation arrays, Ars Combinatoria, 2(1979), 235-244.
- 3. M. Deza, and S. A. Vanstone, Bounds for permutation arrays, Journal of Statistical Planning and Inference, 2(1978), 197-209.
- 4. M. K. Farahat, The symmetric group as a metric space, Journal London Math. Soc., 35(1960), 215-220.
- K. Heinrich, W. D. Wallis, and G. H. J. van Rees, A general construction for equidistant permutation arrays, preprint.
- 6. P. Lorimer, Maximal permutation arrays, Discrete Math., 1979.
- 7. G. H. J. van Rees and S. A. Vanstone, Equidistant permutation arrays, Journal of the Australian Math. Soc., (submitted).
- 8. S. A. Vanstone, *The extendibility of* (r, 1)-designs, Proc. 3rd Manitoba Conf. on Numerical Math. (1973), 409-418.
- 9. S. A. Vanstone, A note on a class of maximal equidistant permutation arrays, Utilitas Math., (submitted).

Université Paris VII, University of Waterloo