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SOME MAXIMAL EQUIDISTANT PERMUTATION ARRAYS

By M. DEZA AND S. A. VANSTONE*>

1. Introduction

An equidistant permutation array (EPA) is a vXr array defined on a symbol
set V such that

(1) every row is a permutation of the symbol set V
(2) every pair of distinct rows has precisely ;( common colume entries. We

denote such an array by A(r, ;(;v).
An EPA, A= (r, ;(;v) is said to be maximal if it is impossible to add

a (v+I)st row to A such that the resulting array is an A(r, ;(;v+I). A
maximal A(r, ;(;v) is denoted by A(r, ;(;v). Define

R(r,;()=max{v: there exists an A(r,;(;v)}

and

R(r,;()=min{v:there exists an A(r,;(;v)}.

There are a number of results on the function R (r, ;(). Some of these results
can be found in [3J, [5J and [7J. In this paper, we are interested in maxi­
mal EPAs. We require several more definitions.

A generalized Room square (GRS) is an rXr array defined on a symbol set
V of cardinality v such that

(l) every cell contains a (possibly empty) subset of V,
(2) every element of V is contained in every row and column of the array

precisely once and
(3) every pair of distinct elements of V is contained in ;( of the cells.

Such an array will be denoted by S(r, ;(;v).
An (r, ;() -design D is a collection B of subsets (blocks) taken from a finite

set V of elements(varieties) such that
(1') every element of V is contained in precisely r blocks of D
(2') every pair of distinct elements of V is contained in exactly ;( blocks

of D.
If each block of D has cardinality k, D has v varieties and 6 blocks,
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then D is called a balanced incomplete block design and is denoted (v, b, r,
k, }')-BIBD.

In section 2, (r,).) -designs are used to generalize a construction for maxi­
mal EPAs which was given in [6]. In section 3, we show that this con­
struction applied to BIBDs has been shown [6J to give maximal EPAs.

2. EPAs and (r, I)-designs.

Let a be a permutation acting on the set N = {I, 2, 3, ... , n}. Define

E(a) = {iEN : a (i) *i}.

For any A~Sm E(A) = {E(a) : aEA}. Let L= {1l> 12, ••• , le} be a set of
positive integers. A(n, L) is a set of permutations such that for all a, bEA,
(a*b), n-IE(a-1b) IEL. In the case where ILl =1, A(n, L) is just an EPA.

LEMMA 2.1. Let A=A(n, L) such that
(i) IE(a) nE(b) 1::;1 for all a, bEA, a=l=b.

Then:
a) \E(A) 1= IAI;
b) E(a-1b) =E(a) UE(b) for all a, bEA, a*b and hence

n-jE1UE2 1 EL for all El> EzEE(A), E1*Ez;
c) A is a proper subset of some A (n, L) with property (i) iff there

exists E'c{1,2, ...,n} such that \E'I=I=l, E'ftE(A) and n-IE'UEIEL
for any EEE(A).

Proof. a) We have, of course, IE (A) I ::; IA I from definition of E (A).
Suppose \E(A)I<IAj. Hence E(a)=E(b) for some a,bEA, a*b. We ob­
tain E(a) nE(b) =E(a) =E(b); condition (i) impliesE(a)::;l,E(b)::;l. But
neither E(a) =1 nor E(b) =1 is possible. We have IE(a) 1= IE(b) I=0,
i. e., both a, b are the identity permutation. This contradicts the supposi­
tion a =1= b.

b) For any a, bE8n we have E(a) VE(b) ~E(a-Ib)~E(a) UE(b) where
E(a)VE(b) = (E(a) UE(b» - (E(a) nE(b» is the symmetric difference of the
sets E(a),E(b). In case IE(a) nE(b) 1=0 we have E(a-1b)=E(a) UE(b)
immediately. Suppose now that IE(a) nE(b) 1=1 and E(a) nE(b) = {P}
for some pE {I, ... , n}. We have a(p) *p=l=b(p). The case a(p) =b(p) will
imply a(a(p» =1= a CP) , b(a(p» *a(p), that is, a(p) EE(a) nE(b) and
IE (a) nE (b) I>1 which contradicts to condition (i). Hence, a (p) =l=b (p) and
E(a-1b) =E(a) UE(b).

c) This follows from a) and b).

In the next theorem we give a construction for a class of A (n, L).
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THEOREM 2. 1. If there exists an (r, 1) -design D with n blocks and v va­
rieties, then there exists an A (n, n-2r+ I;v).

Proof. Let T= {Bh B2, ... , B n} be the blocks of D. For each variety xE

D, let fx be any permutation acting on T such that E(fx) = {B : xEB}.
We now show that A= {fx : xED} is an A(n, l;v). It is clear that A sati­
sfies property (i) of Lemma 2.1. Hence, from (b) of Lemma 2. 1, E(a-1b) =
E(a) UE(b) for all a, bEA (a*b). But E(a) =r, for all aEA and, thus,
E(a-1b) =2r-1. This completes the proof.

This result generalizes a construction given in [6J.

COROLLARY 2.1. Let A=A(n,l) be the permutation array corresponding to
a given (r, I)-design D. If G is the GRS corresponding to A, then the blocks
of G having cardinality greater than one are precisely the blocks of the com­
plement to D.

Proof. A block B of G of cardinality k?:=2 corresponds to a set {ah a2, ...
ak} permutations of A with the property that a; (b) =a for all i, I~i~k and
fixed elements a and b. Since k?:=2, and tea;, aj) =0 for all i,j Ci:::f:-j), then
a$E(a;), I~i~k. Hence, the elements of D associated with ah a2, ... , ak
do not occur in the block B' of D associated with b. Hence, the elements
of D associated wth ah a2, ... , ak form the block B'. This completes the
proof.

We remark that the same procedure applied to an (r, A)-design will pro­
duce an A(n,L) where L= {n-2r+A+t: O~t~A-I}. This result follows
from the fact that for any two permutations a, b(a:::f:-b) \E(a-1b) 1= IE(a) 1+
IE(b) 1-IE(a) nE(b) I-tea, b) where tea, b) =1 {iEE(a) nE(b) : a(i)} I and

the fact that O~t(a, b) ~A-l.
Theorem 2. 1 shows that any (r, 1) -design with n blocks can be used to

produce an A (n, n - 2r+ 1). Given an A (n, 1) , when can we produce an

(r,I)-design. An A(n,Z)is said to have property (i') ifIE(a)l=r n+~-l,

for all aEA and IE(a) nE(b) 1=1 for all a,bEA (a*b). It is easily seen
that there exists an (r, I)-design with n blocks if and onlyif there exists an
A (n, n - 2r+ 1) having property (i').

LEMMA 2. 2. Let A = A (n, 1) have property (i') and A U {a'} be an A (n, 1)
for some a' ESn"'-.A. Then

a) IE(a') I?:=r-l.
b) IE(a')I=r-I iff E(a')nE(a)=ep, for all aEA.

IE(a') I=r ijJ IE(a') nE(a) I=1, for all aEA.
IE (a') I=r+ 1 iff IE (a') nE (a) I=2, and t (a, a') =0 for all aE A.



48 M Deza and S. A. Vanstone

c) lEea') I zr+2 implies IE(a') nE(a) Iz2, and
IE(a') nE(a) I+t(a, a') = !E(a') l-r+1z3 for all aEA.

Proof. Recall IE(a-1a') \ = \E(a) 1+ \E(a') 1-IE(a) nE(a') I-t(a, a'). Sin
ce IE(a) \ =r for all aEA and IE(a-1b) I=n-l for all a, bEA(a1=b) then
\E(a') I=r-1+ IE(a) nE(a') I+t(a, a'). (a) now follows. (b) follows from
the above and Lemma 1 using the fact IE(a) UE(a') 1::;;1 implies t(a,a')=
O. This completes the proof.

Recall that A = A (n, I) is maximal and denote it by 11 (n, I) if A U {a'} 1=
A (n, l) for any a E S""'A. An (r, 1) -design D with V varieties and b blocks
is extendible to an (r, I)-design D' with v+ 1 varieties and b blocks if D is
isomorphic to a restriction of D'. This is a special case of the extension
given implicitly in c) of Lemma 1. An A=A(n, I) with property (i') is
strongly extendible if there exists an element aES""'A such that A U {a} is
an A (n, I) with property (i').

THEOREM 2. 2. An A (n, I) with property (i') is strongly extendible if{ the
corresponding (r, 1) -design is extendible.

CoROLLARY 2.2. An A(n,l; v) with property (i') is extendible to an

A(n,l;n) with property (i') if v> [n--;:-lr
Proof. This follows from a result on extendible (r, 1) -designs which can

be found in [8J.

We conclude this section with the following useful lemmas on EPAs
A=A(n,l,v) with IA\=vz2. Suppose that IE(a) l=r for any aEA. It is
evident that r z 2.

LEMMA 2.3 Suppose that jE(a) I=2 for any aEA. Then either

a) 1=n-4, E(a) nE(b) =1> for any a, bEA, a1=b; or

b) 1=n-3, In E(a) I=1; or
aEA

c) 1=n-3, A= {(i,i), (i, k), (j, k)} for some l::;;i<i<k::;;n.

Proof. A consists of transpositions, i. e., cycles of length 2. The case
a) corresponds to the possibility that every pair of these distinct cycles has
no element of {I, 2, ..., n} in common. The only possibility is that every
pair of these cycles has exactly one element in common. For this case
Lemma (3.4) of [4J gives only two possibilities corresponding to cases b)
and c).
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REMARK. Using known equalities ([3J) ,

maxIA(n, n-3) I=n-I, maxIA(n, n-4) I= [n/2J
we can show easily that

in the case a) of Lemma 2.1, A=A(n, n-4) iff v=[n/2J;

in the case b) of Lemma 2.1, A=A(n, n-3) iff v=n-I.

Also, A=A(n, n-3) in the case c) of Lemma 2.1-

LEMMA 2.4. Let A=A(n,l;v). Then l:f::n-I and l-::;'n-3for IAI>2.

Proof. It follows trivially from Lemma 2.1. In fact, suppose l=n-2 and
at. a2 and a3 are three distinct elements of A. Then {al -la2, al-la3} is an
A(n, n-2; 2) with IE(al-la2) 1= \A (al- la3) 1=2, which is an impossibility.

LEMMA 2.5. Let A=A(n,l;v), v>2 and let a' EA.
Denote A' = {b-la' : bE A, b*a'}; then

a) A' = (n, l; v-I) with
b) IE(a) I=n-l for any aEA' and

c) IE(a) nE(b) I~max rn;l, 2] for any a, bEA', a*b.

Proof. a) and b) follows from the fact that Hamming distance IE(a-1b) !
on S" is invariant of translation, i. e. ,

IE(a-Ib) I= IE«ac)-I(bc» 1= IE«ca)-I(cd» I.
Let a, bEA', a:f::b.

n-l= IE(a-lb) I~ IE(a)VE(b) I= I (E(a) UE(b» -E(a) nE(b) I
= IE(a) 1+ IE(b) 1-2IE(a) nE(b) I=2(n-l) -2IE(a) nE(b) I·

Hence, IE(a) nE(b) I~ (n-l)/2. Moreover, (n-l)/2>1 (because l-::;'n-3)
from Lemma 2. 1 and IE (a) nE (a) I is an integer; so c) is proved.

3. Maximal EPAs

In this section we find several classes of maximal EPAs.
Let L8(n+l, l; n) be an A(n+l, l; n) obtained from a latin square by

adjoining 1 fixed points.

THEOREM 3.1. For each positive integer nand l, LS(n+l, l; n) is an
A(n+l, 1; n)

Proof. Let G be the GRS associated with L8. The nonemply cells of G
contain blocks of size 1 and n. Without loss of generality, assume that the
blocks of size n occur in lXl subarray 8 and .8 occurs in the upper left
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corner of G and L is the latin square subarray in the lower right corner.
Suppose G is extendible by adjoining a new element x. If x is contained in
all blocks of size n, x cannot occur in any cell of L. Hence, x cannot oc­
cur in any row or column of G which contains L. Suppose there is some
block B of size n which does not contain x. x must occur once in the row
of G which contains B. This row does not contain a row of L. Since x
must occur with every element 1 times, x must occur in each row and
column of L. This is impossible. Hence, G is not extendible and LS is
maximal.

This theorem implies that R(n, 1) ~n-I. We conjecture that R(n, 1) =n-l.
Another class of maximal EPAs is given in the next theorem.

THEOREM 3.2. If there exists a(v, b, r, k, I)-BIBD, (k::?:3), then there exists
an A(b, b-2r+1; v).

A proof of this theorem can be found in [9J. In this special case, where
v=b, the result stated in Theorem 3.2 was obtained in [6].

4. A(n, l; n):

We now consider a special class of maximal EPAs. An EPA A (n, 1; v) is
called square if n=v. We are interested in A=A (n, 1; n). For 1=0, a latin
square provides an example of an A(n, 0; n) for any n. For I=q2- q, n=q2
+q+ 1 and, if there exists a finite projective projective plane, then there
exists ([6J) an A(q2+q+ 1, q2_ q; q2+ q+ 1).

It is shown ([l]) that

IA(n, I) I ::;;max {I+2, (n-l)2+ (n-I) + I}.

If (n-I)2+(n-l)+l~I, then IA(n,I)1~1+2 and, hence, from lemma 2.4
IA (n, I) I<n and the square cannot exist. This will occur provided
l::?:n-l- Vn+2. Let fen) be the maximum value of 1 such that an
A (n, 1; n) exists.

THEOREM 4. l-
a) f(n) <n-l- Vn+2

b) Let n=q2+ q+ 1 for q a prime power p. Then
n-1-2 v'n-l<q2-q~f(n)~q2-1.

c) f(7) =2.

Proof. Part (a) follows from the above. The lower bound in (b) follows
from the results of [1]. The upper bound follows from (a), and the fact
that q2+ q _ vq2+q+3<q2+q- v;j2= q2.
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In the case of n=7, f(7) <3 or f(7) ~2. From (b) of the theorem,
f(7) 22. Hence, f(7) =2. This completes the proof.

We conjecture that the lower bound in (b) is the exact value of f(n).
Since there exists an A (6, 1; 7) ([3J) , there exists an A (7, 2; 7) which is
not obtained from a finite projective plane using theorem 3. 1. Thus, the
extremal case for f(2) is not unique. We remark, however, that the A(7,
2; 7) just given is not maximal. Another example of a square having the
parameters of a square constructed in [6J but not obtainable by this const­
ruction is an A (43,30; 43). To construct such an array by the result of [6J
requires a finite projective plane of order 6. This array can be constructed
as follows. By a construction given in [5J, there exists an A (2q-1, q-3;
q(q-2» If we take q=l1, we obtain an A (21, 8; 99). Deleting 56 permu­
tations and adding 22 fixed points, produces the required array.
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