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Introduction

The theory of distributions is, among other things, a language. With its
aid, many of the operations of classical analysis can be performed univer­
sally. When applied to convolutions, however, the theory has a serious flaw:
the convolution of two distributions is not defined unless one of the distri­
butions has compact support. (We refer here to the definition as it is most
commonly given.) Hence the theory leaves out important topics, such as Ll
algebras, where the compact support hypothesis is not satisfied.

This article attempts to remedy that defect, while at the same time stay­
ing close to standard treatments of the subject. It is our aim to show that,
by making a fairly simple modification in the definition of convolution, we
obtain a comprehensive notion given once and for all which covers most of
the classical cases.

Previous work in this direction has been done by Chevalley ([2J; see also
[4J, p. 498), Shiraishi [17J, and others [8,l1J. It seems that Shiraishi
has given the best definition, and our development is based on his approach.
Here and in [21J we have attempted a systematic development, tying toge­
ther integrability and the operational calculus connected with it, convolu­
tion, associative laws, and some applications. There is one detail in which
our development differs from others, and this may be worth mentioning.
While all of the above mentioned approaches (including ours) use the same
space of test functions, we use a different topology, the so called "strict
topology" . (A description of the test function space, tR, (Rk), and its topo­
logy is given in Section IT.)

Now to return to our problem. Ideally, one would like to define the con­
volution for two arbitrary distributions. Unfortunately there does not seem
to be any natural way to do this. All de finitions proposed so far, including
ours, apply only in certain cases. Moreover there are counterexamples, invol­
ving e. g. the question of associativity for triple convolutions, which suggest
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that such limitations are inevitable. The standard definition of convolution for
distributions requires all but one of the distributions to have compact sup­
port. But there are other cases, such as the convolution of measures, where
quite different principles are invoked. Thus we have several different instan­
ces of convolution, all obviously related, yet each one requiring slightly
different treatment. What is wanted is a single notion of convolvability that
combines all of these cases, and that specifies at the outset which distribu­
tions are convolvable and which are not.

Our approach is to start with the well known fact that, formally speak­
ing, the convolution f*g acting on a test function (j)EQ)(Rk) is equal to the
2k-fold integral

JRk(j)(X) JR.d(x-y)g(y) dydx

= JRkJRk(j) (x+y)f(x)g (y) dxdy,

where the variables x, yERk. The question is: what should this integral
mean when f E Q)' (Rk) and gE Q)' (Rk) are distributions? In particular, for
which pairs f, g is it defined? Looked at this way, the question reduces to

defining JRkh(X)dx, h being a distribution on Rk and k an integer (here k

replaces the 2k above). Now, still proceding formally, JRkh(X)dx is equal

to the "inner product" of the distribution h tested against the "test function"
1. Thus we are led to introduce a test function space which contains the
constant function 1, namely:

£ (Rk) =the space of COO functions on Rk which are bounded together with
all of their mixed partial derivatives. [In Section II we will give an appro­
priate topology on £ (Rk) so that Q) (Rk) is dense in £ (Rk) and hence its
dual space £' (Rk) c Q)' (Rk). ]

Now we define a distribution hE Q)' (Rk) to be "integrable" if it ha~ an
extension to a continuous linear functional on £ (Rk) (i. e. if hE£' (Rk) ). Of

course we set JRkh (x) dx = <h, 1>. Finally we will define convolvability of

two arbitrary distributions f, gE Q)' (Rk) in terms of this notion of integr­
ability: Briefly, f and g in Q)' (Rk) are called convolvable if the distribution
(j)(x+y)f(x)g(y) EQ)'(R2k) is integrable for every test function <pEQ)(Rk).
Then f*g is given by the formula
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It is important to note that the expression <p(x+y)f(x)g(y) always exists
as a distribution on R2k: for f(x)g(y) is a tensor product with respect to the
independent variables x, y, and <p(x+y) is a Coo function, so that all of the
multiplications indicated here can be carried out. Only the integrability of
rp(x+y)f(x)g(y) is in question, and this is decisive for the convolvability
of f and g.

The space t!6' (Rk) of integrable distributions turns out to consist of all
finite sums of derivatives of bounded complex measures: i. e. every fE
t!6' (Rk) has a representation as a finite sum f = ~f.1.a (a), where the f.1.a are

«

bounded complex measures. This is proved in an Appendix, which deals with
structural questions. ewe prefer to keep the core of our development, in Sec­
tion n, independent of such questions.) Recall that we have defined the
convolvability of two distributions f and g to mean integrability of <p(x+y)
f(x)g(y) for every test function rp. Now rp(x) EQ)(Rk) has compact support,
but of course rp(x+y) does not; its support is an "infinite strip" in the pro­
duct space RkXRk. Thus the convolvability of f and g depends on the be­
havior of f(x)g(y) along such strips: briefly, the restriction of f(x)g(y)
to these "strips" must be integrable.

Our definition of convolvability can be looked at from a different view­
point. In Section II we will introduce the notion of the "partial integral"
of a distribution fE Q)' (Rk) over a linear subspace VeRk. Then it will
turn out that fE Q)' (Rk) and gEQ)'(Rk) are convolvable if and only if the
partial integral

(f*g) (x) = SRkf(x-y)g(y)dy

exists (where the tensor product f(x-y)g(y) is a distribution on R2k, and
the partial integral is taken over the subspace Rk corresponding to the y

variable).
We obtain a Fubini-type theorem, which states that the partial integral

can be iterated, and a "variable constants theorem". These will be used in
a subsequent paper ([21]) to extend the convolution operation to three or
more distributions.

Having outlined our approach, this may be a good place to mention one
of the main difficulties in generalizing the definition of f*g. Recall that
the standard definition requires one of the distributions, say g, to have
compact support This suggests that we use a sequence of g n with compact
support to approximate an arbitrary g. The extension to more general g

would then be made via continuity. Unfortunately, however, under the
distribution topology the convolution f*g is not even a closed operator as a
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function of both variables, and hence is certainly not continuous (For a
counterexample, see the end of Section Ill. ). Of course in certain classical
cases, e. g. in convolving functions in LP with those in Lq, p-l+q-l::2:: 1,
there is another topology-namely the LPxLq topology-in terms of which
the convolution is continuous. But this would require introducing a different
topology for each special case; and that is precisely what we want to avoid.

A key property of the definition <f*g,~>=JR2k~(X+Y)f(x)g(Y)dxdY

given above is that it is symmetric in f and g; thus it automatically allows
various growth and decay conditions on f and g to balance each other out.
To complete this approach, we need to put a topology on the test function
space pg (Rk). The appropriate choice is the so called "strict topology".
Loosely speaking, this is the topology of uniform convergence on compact
subsets, together with global uniform boundedness: ~,,~O in pg(Rk) means
that, for all derivatives ~,,(a) (with a fixed), ~,,(a)(x)~O uniformly on
compact subsets as n~oo, and there exists some constant Ma such that
I~"(a) (x) I~Ma for all x, n. Actually, the strict topology is not first-coun­
table, but for most purposes one can treat it as if it were. It has been studied
by Buck, Herz, Rubel, Collins [1, 6, 13, 3J and others.

The introduction of a "new" (i. e. not completely standard) space pg (Rk)
may seem a heavy price to pay for defining convolution more generally. How­
ever, the resulting development is completely straightforward. Only a pre­
liminary knowledge of the theory of distributions is needed to follow our
demonstrations (we do not even use the closed graph theorem). Instead of
topological vector space arguments, we use "mesa functions" (C= functions
with compact support which are identically lover a given interval) to loc­
alize the problems.

As for the applications, which will be discussed in Section Ill, our goal
is to show that various classical cases of convolution fit into our framework.
In addition to the cases mentioned above, we will find that the Hilbert trans­
form and the generalized Hilbert transforms can be defined as convolutions
between their kernels and LP functions. We do not prove here hard analytic
theorems like the boundedness of the Hilbert transform in LP, because our
purpose is merely to provide an abstract framework for studying such ques­
tions.

The reasons for seeking such generality are, of course, mainly linguistic.
Thus consider the one dimensional Hilbert transform: formally it may be de­
fined as a convolution, TU) = (1/x) *f. But, under the classical definition,
since the kernel 1/x is not V and does not have compact support, (1/x) *1
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is only meaningful when the function f is smooth. The classical method for
avoiding this difficulty is to state the key theorem very carefully; thus it mi·
ght read:

(1) The operator TU) = 0/x) *f is well defined for functions f which are
Coo with compact support;

(2) if 1<p<00, the resulting operator is bounded in terms of the LP-norm;
(3) therefore T has a unique extension to a bounded operator on LP.

However, as we shall see, it is easy to show that 0/x) *f exists as a
distribution. Then the above theorem can be stated:

For l<p<oo, if fELP, then (l!x) *fE LP, and 11(l!x)*fllp~Cp!lfllp.

I. Standard preliminary results

We will establish some notations and definitions and state some basic facts
from classical distribution theory. For more details, we refer the reader to
Edwards [4J and Yosida [20].

Notations. Let q;(x) be a complex valued Coo function on Rk and a= (ah
... ,ak) be a multi-index with aj20. Then lal denotes al+"'+ak and

q;(a) (x) = (a I aI /OXlal ...OXkak) q; (x), x= (Xh ... , Xk) E Rk.

Let a= (ah , ak) and {3= ({3h •••, {3k). We say a?:.{3, if aj?:.{3j.
Let x= (Xl> , Xk) ERk. Then Ix I=max(lxIi, ..., Ixkl).
Let f be a continuous linear form on a topological vector space X. We

will denote f(x) by <f, x), xEX.

The following test function spaces are standard and very well known ex­
cept for £(Rk).

DEFINITIONS. We will work on real Euc1idean space Rk and consider the
following families of test functions:

1. 1. Q) (Rk) is the space of COO functions with compact support on Rk,
endowed with the following topology: A family of functions U in Q) (Rk) is
open if and only if un Q)K is open in Q)K for any compact subset Kin Rk;
here Q)K consists of all Coo functions with support on K with the topology
given by the family of semi-norms 11q;lIa,K=max sup Iq;(fi) (x) I, q;E Q)K and

O;fi,fi;f;a zeK

a a multi-index.

1. 2. g (Rk) is the space of all Coo functions on Rk, with the topology
given by the family of semi-norms !Iq;lla'K defined in (1. 1) above (however
here these semi-norms determine the topology directly; the much stronger
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topology in (1. 1) is the direct limit of restrictions to the subspaces Q)K).

[The dual spaces Q)' (Rk) and €/ (Rk) , defined below, are just the space of
all Schwartz distributions and the subspace of distributions with compact
support. ]

We will consider IS(Rk), which is not so well known, but will be essen­
tial for our development of convolutions between distributions.

1. 3. IS (Rk) is the space of Coo functions on Rk which are bounded toge­
ther with all of their mixed partial derivatives. We will define a topology
on IS (Rk) later, in Section Il.

1. 4. We denote by Q)' (Rk) , 6' (Rk) , and IS (Rk) , the spaces of distribu­
tions formed by taking the duals of Q) (Rk) , 6' (Rk) and IS' (Rk), respectively.

It is evident that the spaces Q) (Rk) , 6 (Rk), IS (Rk) , Q)' (Rk) , 6' (Rk) , and
IS' (Rk) defined as above are tcpological vector spaces. Furthermore it will
turn out that Q) (Rk) elS (Rk) e6 (Rk) and that 6' (Rk) eIS' (Rk) eQ)' (Rk).

A notational remark. Very often we will consider spaces Q) (U), 6 ( U),
etc., where U is a linear subspace of Rk. We will not give any detailed
description of these spaces, since they are self explanatory. There is only
one point worth mentioning. The identification of ordinary fuctions I(x)

with distributions is via the inner product (/(x) , p(x)=fRk f (x) q;(x)dx.

When we break up Rk into the direct sum of two complementary subspaces,
Rk= UEB V, then we want the Haar measures du, dv and dx to be norma­
lized so that dx=dudv. We will always assume that this holds.

Let us now define the support of a distribution.

1. 5 DEFINITION. For a distribution I, we define the support of I to be
the smallest closed set F in Rk such that, for any q; E Coo which belongs to
a proper test function space and is supported outside of F, <f, q;) =0.

1. 6 DEFINITION. Let ({J"EQ)(Rk). Then we say that ({J,,-O in Q)(Rk) , if
there is a compact set K in Rk such that the supports of the ({J,,' s are all
in K, and ({J,,(a)-o uniformly for any multi-index a.

The following theorems are well known. So we will skip the proofs, with
a reference to Edwards [4J and Yosida [20].'

1. 7 THEOREM. fEQ)' (Rk) if and only if (I, ({J,,)-O whenever ({J,,-O
in Q)(Rk).

REMARK. The topology on Q) (Rk) is not first countable. That IS why
Theorem 1. 7 is interesting.
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1. 8 THEOREM. 6' (Rk) consists of distributions which have compact support.

Finally we will define the tensor product -of two distributions.

1. 9 DEFINITION. Let U and V be complementary subspaces of Rk, (i. e. ,
UEB V=Rk and un V= {O}) and let feu) and g(v) be arbitrary distributions
in Q)'(U) and Q)'(V), respectively. Then the tensor product f(u)g(v) is
that distribution on Rk given by (f(u)g(v), p(u, v»=(f(u), (g(v) , p(u, v»)
for any p(u, v) EQ)(UEB V) =Q)(Rk).

REMARK. Since g is continuous and p has compact support, ()(u)=<g(v),
p(u, v» is a Coo function with compact support. Hence the above is well
defined.

1.10 THEOREM. The tensor products is commutative: f(u)g(v) =g(v)f(u).

1. 11 DEFINITION. Let U and V be complementary subspaces of Rk, and
letf(u) be a distribution on U (i.e., fEQ)'(U». Then we define the ex­
tension along V, feu, v) of feu), to be the tensor product of feu) with the
distribution g(v) =1 on V. (This corresponds, in the case of ordinary fun­
ctions, to setting feu, v) f(u).)

II. Convolution of two distributions in Q)' (R").

In this section we will define convolution between two distributions in a
natural way. We will use the fact that 1E &, (R") , and if f and g are in
V(Rk) and qJEQ)(Rk) then

<f*g, p)=SRkSRk!(X-y)g(y)p(x) dydx

= SRkSRkf(x)g(y)p(x+y)dxdy,

which we can formally describe as <f(x)g(y)p(x+y), I). That is, <f*g,
qJ) is f(x)g(y)p(x+y), as a functional on &'(R2k) , evaluated at 1. (Recall
that &, (Rk) denotes the family of Coo functions on Rk which are bounded
together with all of their derivatives. )

In the following, we will give an appropriate topology on rJ6 so that Q) is
dense in rJ6. Then we will define a distribution fEQ)' to be "integrable" if
it has an extension to a continuous linear functional on &, (i. e. if fE&").
Finally we will define "convolvability" of two arbitrary distributions f, gE
Q)' in terms of this notion of integrability.

2. 1 DEFINITION. The topology on &, (Rk) is given by the family of semi­
norms: for qJE&'(R"),
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where p(x) is a continuous function on Rk which approaches zero as!xl-H)O,
and a is a multi-index.

This topology, sometimes known as "the strict topology", has been studied
by various authors [1, 6, 13, 3J.

2. 2 DEFINITION. We denote by £' (Rk) the space of distributions formed
by taking the dual of £ (Rk).

REMARKS. CJ?n~O in £(Rk) (i. e. IICJ?nllp,a-O as n- oo for all semi-norms
11 IIp,a) if and only if, for each multi-index a, the sequence CJ?n Ca) is unifor­
mly bounded on R" and converges to zero uniformly on compact sets. Even
though the space £ eR") is not first countable, this description in terms of
sequences is adequate for most purposes (cf. Proposition 2.3 below).

2. 3 PROPOSITION. The space tR, (Rk) coincides with the set of all finite sums
of derivatives of bounded complex measures. Thus every fE tR,' (Rk) has a repre­
sentation as a finite sum f= L.fJa Ca\ where the fJa are bounded complex mea-

a

sures.
Furthermore, a distribution fEQJ' eR") is continuous on B(Rk) (i. e. fE

tR,' eRk)) if and only if, for every sequence CJ?nE QJ (Rk) (not £ (R")) : CJ?n~O

in the topology of £(Rk) implies <f, <Pn>~O.

We will give the proof of this proposition in an Appendix. Because it is
somewhat less elementary, Proposition 2.3 will not be used in the rest of
the paper.

Now let us see that Q) eRk) is dense in tR, (Rk) in the topology of tR, (Rk).

2.4 PROPOSITION. The space Q)(Rk) of test functions is dense in £(Rk) in
the topology of £ (R").

We note that Proposition 2. 4 would fail if, instead of the strict topology,
we had used the topology of uniform convergence on Rk.

Proof. Choose "mesa functions" OnEQJ(Rk) so that:

1
1 if Ixl sn,

(1) On (x) = (Ixl =maxlx;I);
o if Ixl ;;:::n+l,

(2) for each a, IOnCa ) (x) I is bounded independent of n, x.
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,//,Z
-3 -2 -1 o

Figure 1. A sequence of test functions converging to 1 in the manner of Proposition 2.4.

(This is easy to achieve: for a I-dimensional picture, see Figure 1; the
k-dimensional case is handled by taking products of functions like those in
the figure. )

Let (j)Er!6(Rk). Then since ()n(x)(j) (x) EQ)(Rk), it suffices to show that
()n(j)~(j) in r!6(Rk). But (1) implies, for any multi-index a, «()n(j) Ca) (x) = (j)Ca)
(x) for Ix I<n, which in turn gives uniform convergence on compact sets.
Also (2) together with the Leibniz formula for «()n(j) Ca)gives us uniform
boundedness of «()n(j) Ca), Hence we have ()n(j)-(j) in r!6 (Rk) with ()n(j) E Q) (Rk) ,
which proves the proposition. Q. E. D.

It is evident that the topology of Q) (Rk) is stronger than the topology on
r!6 (Rk) , Hence we have that every distribution in r!6' (Rk) corresponds to a
unique distribution in Q)' (Rk). The same relation holds between 6 (Rk) and
r!6 (Rk) , That is, r!6 (Rk) is dense in 6 (Rk) in the topology of 6 (Rk) , and the
topology on B (Rk) is stronger than the topology on 6 (Rk) , Hence we have
the following proposition.

2. 5 PROPOSITION. 6' (Rk) c:;;. r!6' (Rk) c:;;. Q)' (Rk).

The next proposition is about the tensor product in r!6 (Rk).

2. 6 PROPOSITION (Closure). (a) Let V and V be complementary subspaces
of Rk, so that Rk= UEB V. Let feu) and g(v) be distributions in r!6' (V) and
r!6' (V) respectively. Then the tensor product f(u)g(v) Er!6' (Rk).

(b) f E B' (Rk) , (j) E B (Rk) implies (j)f E r!6' (Rk); furthermore, if <jJ E r!6 (Rk) ,
then «(j)f, <jJ)=(f, 1XP).

(c) fEr!6'(Rk) implies jCa) Er!6' (Rk) for each multi-index a; tf <jJEr!6(Rk) ,
then (oflax!> <jJ) = <f ,-O<jJ/OXl), and similarly for other partial derivatives.

Proof. The proofs of (b) and (c) are almost trivial, but there is one
logical point worth mentioning. Take (c): if the test' function <jJ were in
Q)(Rk), then the identity (ofIox!> <jJ)=(f, -o<jJloxl) would be true by defini­
tion. But since <jJ E r!6 (Rk) , we must approximate <p by a sequence of func­
tions <p"EQ)(Rk) such that <jJn-<jJ in the topology of r!6(Rk). Then also
o<pnloxc-"01Jlaxl in r!6 (R''), and we are done.
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For (a), we could use the structure theorem (2. 3) (proved in an Appen­
dix) . However we prefer to give a more conceptual proof.

LEMMA. Let <pE£(Rk). Then for each partial derivative, say a/aXl> we
have

in the topology of £ (Rk).

Proof. Routine.

Now we go back to the definition of the tensor product (1. 9).

<f(u)g(v), <p(u, v)=f'(u), <g(v), <p(u, v)).

This definition applies just as well to "test-functions" <p E £ (Rk) as to those
in Q) (Rk) (here is where the Lemma is needed), and thus the tensor prod­
uct f(u)g(v) gives a continuous linear functional on £(Rk).

Now we define integrability:

2.7 DEFINITION. A distribution fEQ)' is integrable if it can be extended

to a continuous linear functional on £ (i. e. f E £'). The integral fRkf(x)dx

is defined to be <f, 1).

With the above definitions and propositions in hand, we are ready to de­
fine our main object

2. 8 DEFINITION. Two distributions f and g in Q)' (Rk) are convolvable if,
for every test function <pEQ)(Rk), the distribution <p(x+y)f(x)g(y) (EQ)'

(R2k)) is integrable over R2k, i. e. (ji(x+y)f(x)g(y) E£'(R2k). In that case
we define the convolution f*g by;

<f*g, (ji) = <<p (x+y)f(x)g(y), I).

The following proposition will show that the convolution defined by De­
finition 2. 8 is in fact a distribution in Q)' (Rk) .

2.9 PROPOSITION. If <p(x+y)f(x)g(y)E£'(R2k) for every <pEQ)(Rk), then
f*g defined by Definition 2. 8 is continuous on Q) (Rk).

Proof· Applying Theorem 1. 7, let (jin E Q) (Rk) be such that <Pn~ 0 in
Q) (Rk) and let K be a compact set containing the support of (jin for every n.
Choose a mesa function 0kE Q)(Rk) with OK (x) =1 for xEK. Then (jin(x+y) =
<Pn(x+y) OK (x+y). Hence

(f*g, <Pn>=(<Pn(x+y)f(x)g(y), I)
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= <OK (x+y) q;1l (x+y)f(x)g (y) , 1)

= <OK (x+y)f(x)g (y) , lfJll(x+y»

--'><()K(x+y)f(x)g(y), 0> = 0 as n--'>OO,

because OK (x+y)f(x)g(y) EtI6'(R2k) and lfJll--'>O in Q)(Rk) implies q;1l(x+y)--'>O
in tI6 (R2k) .

Hence f*g is continuous. Q. E. D.

Our last definition introduces the notion of partial integrability; this leads
to an "operational calculus" on distribution space.

2. 10 DEFINITION. Let U and V be complementary subspaces of Rk (i. e.
Rk=UtBVand un V= {O}). We say that a distribution fEQ)'(Rk) is par­
tially integrable over V if for each lfJ(u) EQ)(U), the product q;(u)f(u, v) is

an integrable distribution on Rk. We define fvf(u, v)dv to be the distribu­

tion on U given by

q;(u)--'><lfJ(u)f(u, v), I).

REMARK 1. By choosing a 0KE0(U) as in the proof of Proposition 2.9,
we can easily verify that q;(u)-<lfJ(u)f(u, v), I) is continuous on 0(U).

Another question is whether the existence of Lf(u, v) dv is independent of

U. But if U' is another subspace complementary to V, then the correspond­
ing variables u and u' are related by a non-singular linear transformation.
The resulting distributions on U and U' are transformed in the same ma-

nner, of course. A complete structural description of when f/(u, v)dv exists

is given in an Appendix. We observe that f is "integrable over Rk" if
and only if f is "integrable" in the sense of Definition 2.7.

REMARK 2. It is natural to choose the Haar measure on U, V; and Rk so
that the measure on Rk is the product measure corresponding to those on U
and V. Actually, this assumption plays no part in the purely distribution­
theoretic results below, because the notion of an abstract distribution (as a
linear functional on a test-function space) does not involve Haar measure.
It is in the transition from functions to distributions, via the formula <f, q;)

=ff(x) q; (x) dx, that the Haar measure plays a role.

REMARK 3. Of course the partial integral of f over V may exist even
when f is not integrable over Rk. A simple example is feu, v) =g(u)h(v),
where g is any distribution in 0' (U) and hEtI6' (V).
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2. 11 LE.MMA (Consistency). Let the subspaces U and V be as above, and
let p be a finite complex measure defined on Rk. Then the "partial integral"
difined in (2. 10) corresponds to the ordinary partial integral of measure
theory.

Proof· For convenience, let us denote by Vm and Vd repectively the mea­
sure-theoretic and distribution-theoretic (Definition 2. 10) entities defined

formally by the partial integral fvP (u, v) dv. We have to show that the

measure V m corresponds to the distribution Vd in the usual way, i. e. that,

for all test-functions <p(u) EQ)(U), fu<p (u) dVm= <Vd, <p).

By measure theory we have

f <P(U)dVm=f <p(u)dp(u, v),
u uE9v

where the <p Cu) in the right hand integral is the natural extension of <p (u)
from U to Rk=UffiY: From Definition 2. 10 we have (Vd'<P)=(<P(u)p(u,v),
I), and since J1. is a finite measure and <p is bounded, this coincides with

f Cu)dpCu, v), as desired. Q. E. D.
u(£v<fJ
The above definition of the partial integral enables us to describe f*g in

a very function-like way.

2. 12 THEOREM. Two distributions f and g on Rk are convolvable if and
only if the following partial integral exists (and then that integral gives the

convolution)

(f*g) (x) = SRk!(x-y)g(y)dy,

where the tensor product f(x-y)g(y) is di./ined on R2k.

Since non-singular linear changes of variables are permissible in distribu­
tion theory, it follows that tensor products such as f(x-y)g(y) are well
defined.

Proof. The partial integral fRkf(x-y)g(y)dy exists if and only if <p(x)

f(x-y)g(y) EJ3' (R2k) for all <p(x) EQ)(Rk). But, since non-singular linear
changes of variables map J3' (Rk) into itself, <p(x)f(x-y)g(y) E£" (R2k) is
equivalent to <p(x+y)f(x)g(y) EJ3' (R2k) , which in turn implies that f and
g are convolvable. Q. E. D.

The following extension lemma is based on the fact that if q;(v) EJ3(V),
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X=UEBV; then <p(u,'O)E&(X), where <p(u,'O)=<p('O) (i.e. <p(u,'O) is con­
stant along all lines parallel to the subspace U). We note that the corres­
ponding statement for Q)(V) is false.

2.13 EXTENSION LEMMA. Let X= UEB V. Then the map defined by mapping
each function <p('O) on V into <p(u, v) =<p('O) is continuous in the topology of
/.S (X).

Proof. Clear.

As a corollary of (2. 13), we see that the following is well defined (it
depends on U as well as V):

2.14 DEFINITION. Let X=UEBV, fEtR/(X). Then the restrictionfl/.S(V)
of f to &(V) is defined by applying f to the extensions <p(u, v) =<p('O)

described in the above lemma.

REMARKS. In other words, the restriction of f to & (V) is the dual map
/.S' (X) -&' (V) to the map given in the lemma. This is equal to the partial

integral fu!(u, 'O)du. We observe that if we considered the standard Schwartz

spaces Q) and Q)', instead of & and £', then nothing like the extension or
restriction lemmas would be true.

We will now construct "mesa-functions" which will play the role of iden­
tity and will be of great help in the rest of the section.

2. 15 EXISTENCE LEMMA. For any <p (u, v) E Q) (Ut£] V) there are mesa func­
tions (}(u) EQ)(U) and 7)('0) EQ)(V) such that

<p(u, v) =(}(u)<p(u, v) =(}(u) 7) (v) <p (u, v).

Proof. Let a>O be such that <p(u, v) =0 for lul?:.a or l'Ol?:.a. Choose
(}(u) EQ)(U), 7)('0) EQ)(V) so that (}(u) =7)('0) =1 for lul Sa and I'O\-sa.
Then <p(u, v) =()(u)<p(u, v) = O(u)7)('O)<p(u, v). Q. E. D.

The next theorem, together with the one which follows, forms the main
tool in extending the notion of convolution to three or more distributiens.
This is carried out in a sequel to the present paper [21].

2.16 THEOREM (Fubini's theorem). Let U and V be complementary sub­
spaces of Rk, and let V be the sum of two complementary subspaces S, T. Sup-

pose that Svf(u, 'O)d'O exists. Then the iterated integral LSrf(u, s, t) dtds

exists and equals Svf(u, 'O)d'O.
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Proof. Recall the definition of the partial integral (2.10): Given a de­
composition X= YEBZ of a finite dimensional real vector space X, and a

distribution fECJ)' (X), we say fzf(y, 2)dz exists if and only if q;(y)f(y, z)

E£' (X) for all q;(y) ED(Y); then <fzf(y, z)dz, q;(y» = <q; (y)f(y, z), I).

[In order to understand the minutae of this argument, it is important to
recall that <q;(y)f(y, z), I) is defined only indirectly. Originally, q;(y)f(y,2)
is a distribution E CJ)' (X) (so that it acts on the subspace CJ) (X) c£ (X»,
but it is continuous in terms of the £-topology, and so it can be extended
to £(X). Recall that the constant function lE£(X), but l$CJ)(X). ]

First we will show that fTf(u, s,t)dt exists; its existence implies that it

defines a distribution g(u, s) EQ)' (UEBS) (cf. Remark 1 after 2.10).
Let q;(u, s) ECJ)(U(f)S) and choose a mesa function 8(u) EQ)(U) so that

q;(u, s) =q;(u, s)O(u) (cf. Existence lemma 2.15). Then

q; (u, s)f (u, s, t) =q; (u, s) (j (u)f(u, s, t) E £' (R") ,

because q; (u, s) E £ (R") (clearly q; (u, s) and its derivatives are bounded),
and 8 (u)f(u, s, t) E£' (Rk) since f is partially integrable over v: (Recall

that q;E£, FE£' implies q;FE£', after (2.6).) Thus g(u, s) = fTf(u, s, t)dt

exists.
Now let us show that g(u, s) is integrable over S.

LEMMA. With the above assumptions on f, let g(u, s) = fTf(u, s, t) dt, and

let q;(u) ECJ)(U). Then q;(u)g(u, s) E£'(U(f)S) (which means Ssg(u, s)ds

exists). Furthermore, 1f cf;(u, s) E£(UEBS), and cf;(u,s,t) denotes the
natural extension of 1J from UEBS to Rk, then:

<q;(u)g(u, s), 1J(u, s»=<q;(u)f(u, s, t), cf;(u, s, t».

Proof of lemma. Begin by taking 1J(u, s) ECJ)(UEBS) (and not £(UEBS».
Then:

<q; (u) g (u, s), 1J (u, s» = <g (u, s), q; (u)cf; (u, s»

=< fTf(u, s, t)dt, q;(u)cf;(u, s»=< q;(u)1J(u, s)f(u, s, t), IRk)'

So far we have only used the fact that g(u, s) exists (i. e. that f is parti­
ally integrable over T). Now we recall that, by hypothesis, f is partially
integrable over V; and hence q;(u)f(u, s, t) E£'(Rk). Thus we may write:
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<rp(u)g(u, s), 1;(u, s»=<rp(u)f(u, s, t), 1;(u, s, t»,

still assuming that 1;E<;])(Ut£;S). By the Extension lemma 2.13, the natural
injection of £ (Vt£;8) into £ (Rk) given by setting 1; (u, s, t) =1; (u, s) is con­
tinuous in the £-topology. Then, since (j)(u)f(u, s, t) E£' (Rk) , it follows
that the mapping

1; -- <rp(u)g(u, s), 1;(u, s»=<(j)(u)f(u, s, t), 1;(u, s, t»
is continuous in the topology of £(VEjJ8). Hence rp(u)g(u, s) EiS' (V$8).

This in turn implies that the preceding identity is valid for all 1;EIS(UEjJ8),
proving the lemma.

To prove the theorem, we apply the lemma to the functions 1;eu, s) =luEBs
and 1;(u, s, t) =lRk (and in addition we use the definition of partial integra­
tion several times). Thus:

<fJrf(u, s, t)dt, (j)(u» = <Lg(u, s)ds, rp(u»

= <rp(u)g(u, s), l uEBs) = <rp(u)f(u, s, t), IRk) = <fvf(u, v) dv, rp(u». Q. E. D.

2.17 THEOREM (Variable constants theorem). Let Rk= UEjJv, V=Stf!T.
Let feu) EQ)' (V), f*O, and g(s, t) EQ)' (V). Then

H(u, s) = Lf(u)g(s, t)dt

exists as a distribution on UEjJ8 if and only if

G(s) = Srg(s, t)dt

exists as adistribution on S, in which case H(u, s) -f(u)G(s).

Note. The products involved here are tensor products. This explains why
the multiplier must have the form feu) and not feu, s). In defining G(s),
we have regarded T as a subspace of V, not Rk. It is easy to see what
happens if we extend the distribution g(s, t) from V to Rk, by forming
its tensor product with the distribution feu) =1 on U. There is a similar
extension of G(s) from 8 to SEjJU. Then the above theorem, applied to
feu) =1, shows that these extensions correspond in the obvious way.

REMARK. The above theorem fails if f=O. ~

Proof of theorem. Let us assume that H(u, s) is defined and show that
G(s) is defined. Thus we assume that 1;(u, s)f(u)g(s, t) EiS' (Rk) for all
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<j;(u, s) EQ)(UffiS), and we want to show that p(s)g(s, t) EtE,' (V) for all
pes) EQ)(S). Choose functions as follows:

(l) s(u) EQ)(U) such that (f(u), s(u»*O;
(2) a mesa function O(u) EQ)(U) such that O(u)s(u) =s(u).
Take any a(s, t) EQ)(V) and pes) E Q)(S). Then since we have
O(u)a(s, t) EQ) (Rk), we can compute:

(s(u)p(s)f(u)g(s, t), fJ(u)a(s, 0)

= (e(u)f(u) , fJ(u» (1J(s)g(s, t), a(s, t»

= f(u), e(u» (<p (s) g (s, t), a(s, t»

by (1) and (2). Hence

(1J(s)g(s, t), a(s, t»=Const (e(u)p(s)f(u)g(s, t), fJ(u)a(s, t»,

where the constant = (f(u), S(u»-l.

Now s(u) <p(s)f(u)g(s, t) ErZ'(Rk), since s(u)1J(s) EQ)(U(BS) and
f(u)g(s, t) is partially integrable over T. This shows that the mapping

a - (<p(s)g(s, t), a(s, t» is continuous in terms of the rZ-topology, i. e. that
<p(s)g(s,t) ErZ'(V), as desired. Hence G(s) exists.

Now for the converse: assume that G(s) exists. Let <j;(u, s) EQ)(UEJjS).
Choose fJ(u) EQ)(U) and <pes) EQ)(S) so that fjJ(u, s) =<j;(u, s)8(u)<p(s), by
Existence lemma 2. 15. Then using Proposition2. 6, the tensor product

cjJ(u, s)f(u)g(s, t) =fjJ(u, s){)(u)f(u)p(s)g(s, t) ErZ' (Rk) ,

because cjJ(u,s)E£(Rk) (by the Extension lemma 2.13), (}(u)f(u) EtE,'(U)
(since it has compact support), and p(s)g(s, t) ErZ' (V) (since G(s) exists).

Hence fTf(u)g(s, t)dt exists.

Proof of equality: Take fjJ(u) EQ)(U) and pes) EQ)(S). We use the fact
that finite linear combinations of products like cjJ (u) p (s) are dense in
Q)(U(BS). Then fjJ(u)f(u) ErZ' (U), <p(s)g(s, t) ErZ'(V), and after Pro­
position 2. 6:

(H(u, s), cjJ(u)p(s» = (rf;(u)p(s)f(u)g(s, t), IRk>

= <cjJ(u)f(u) , 1u) (<p(s)g(s, t), Iv>

=(f(u), rf;(u» (G(s), q;(s»

=(f(u)G(s), rf;(u)q;(s».

Hence H(u, s) =f(u)G(s). Q. E. D.
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III Applications

It was our aim to define a notion of convolution between distributions
which encompasses as many as possible of the classical cases.

3. 1 THECREM. Two distributions f, gE Q)' (Rk) are convolvable if any of the
following holds:

(a) g has compact support;
(b) Rk=Rl and f and g have support on [O,ooJ;
(c) f=f.1. and g=)) are complex measures, and the convolution of the posi-

tive measures fRk If.1.\ (x-y)dl))\ (y) is locally finite. In particular, if fELP

and gE L9 and 1/p + 1/q~ 1, then f*g exists.
Furthermore in each of (a), (b) and (c), the convolution coincides with the

classical ones.

REMARK. Theorem 3.1 could be extended to include many other exam­
ples, among them: tempered distributions convolved with rapidly decreasing
distributions, exponentially bounded distributions convolved with exponen­
tially decaying ones, distributions of LP type, etc. In fact, all of these
cases can be gotten from Theorem 3. 1 combined with Theorem 3. 4 below.

Proof of (3. 1).
(a). Let <pEQ)(Rk). Then <p(x+y)f(x)g(y) has compact support on R2k

because g and <p have compact support on Rk. Hence by Proposition 2. 5,
<p(x+y)f(x)g(y)E&'(R2k). Sof and g are convolvable.

Now let us compute <f*g, <p) for q;EQ) (Rk). Since g and <p have compact
support on Rk, there is a mesa function cjJ(x, y) EQ)(R2k) such that q;(x+y)
g(y) =q; (x+y)g(y)cjJ (x, y). Hence

<f*g, q;)=<q;(x+y)f(x)g(y), I)

= <cjJ(x, y)<p(x+y)f(x)g(y), l)=<f(x)g(y), <p(x+y)cjJ(x, y»

=<f(x), <g(y), <p(x+y)cjJ(x, y»)= <f(x) , <g(y), q;(x+y»).

Note that these equalities follow because <p (x+ y) cJ; (x, y) E Q) (R2k) , and <p
(x+y)cJ;(x, y) =q;(x+y) on the support of g. So <f*g, <p) coincides with
classical definition.

(b). For any <pEQ)(Rl), <p(x+y)f(x)g(y) has compact support on R2
because q;(x+y)f(x)g(y):;i:O only if 0:::;; x, O:::;;y and x+y::S:;M for some
M>O. Hence <p(x+y)f(x)g(y) E!6' (R2) which implies that f and g are
convolvable.

To compare <f*g, <p) with classical definition, let us again choose a mesa
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Then f(x) is convolvable with

function <jJ(x, y) EQJ(R2) so that qJ(x+y)f(x)g(y) =qJ(x+y)f(x)g(y)<jJ(x, y).
Then

(f*g, qJ) = «(jJ(x+y)f(x)g(y), I)

=<f(x)g(y), (jJ(x+y)<jJ(x, y»=( f(x) , <g(y), (jJ(x+y)<jJ(x, y»).

Now let us see that (f(x), (g (y) , (jJ (x+y)<jJ (x, y»)=<f(x), (g(y), p(x+y»).
Let () (x) = (g(y), P(x+y)<jJ (x, y» and 1j(x) = <g(y), p(x+y». Then over
the support of f, ()(x) =1J(x) because qJ(x+y)f(x)g(y) =qJ(x+y)f(x)g(y)
<j;(x,y). Hence <f(x),{)(x»=(f(x),1j(x». So we have <f*g,(jJ)=<f(x),
<g(y), (jJ(x+y»).

(c). Let (jJEQJ(Rk). Then p(x+y).u(x)v(y) is a finite complex measure
on R2k because

f Ip(x+y) Idlftl (x)dlvl (y) =fR2kIP(X) Idlftl (x-y)dlvl (y)
R2k

=f J Ip(x) Idlftl (x-y)dlvl (y),
R Rk

and o(x) =f Iftl (x-y)dlvj (y) is a locally finite measure. Hence
Rk

p(x+y)ft(x)v(y) E£' (R2k) (cf. Lemma A. 1 in the Appendix) and

<p(x+y) ft(x)v(y), l>=J qJ(x+y)dft(x)dv(y) ,
R2k

where the integral is an ordinary measure theoretic one. So ft*V is defined
and coincides with classical definition. Q. E. D.

A nice application is that we can now formally express the Hilbert Tra­
nsform as a convolution.

3.2 THEOREM. Let f(x) =l/x, xER1.
LP(RI) functions for l~P<oo.

Proof. Let

Il/x if O<lxl <1 10 if Ixl ~1
fI(x) = and f2(X)=

o if 1~ lxi, l/x if Ixl>l.
Then f2 (x) ELq for 1<q~ 00 and hence by the previous Theorem (c), f2
is convolvable with LP functions for l~p<oo.

Now flex) is a distribution because fleX) =d/dxloglxl, Ixl ~l;and logx
being locally integrable, is a distribution. Since fl (x) has compact sup­
port, it is convolvable with any other distribution, particularly with LP
functions. Q. E. D.
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We extend the application to singular integrals.

3.3 THEOREM. Let K(x) be a function on R" such that K(x) =.Q(x) f Ixl",
where Q(x) is a bounded measurable function, Q(Ax) =.Q(x) for il>O, and

f Q(x)dx=O. Then K(x) is convolvable with LP functions for l~p<oo.
Ixi~1

Proof. The idea of the proof is the same as that of the proof for the
Hilbert Transform. Let

IK(X) if O<lxl <1,
K 1 (x) = ° if Ixl ~1,

and
1
0 if Ixl <1,

K 2 (x) =
K(x) if Ixl ~1.

Now we must show that K 1 (x) defines a distribution. Firstly, smce

f Q(x)dx=O, the Cauchy principal value HmI K(x)dx=O. Hence
Ixl~l 6-oo<lxl<1

for any <pEQ)(R"),

limf K(x) <p(x) dx=f K(x) (<p(x) -<p (0» dx.
6~o<lxl<1 O<lxl<1

Now 1<p(x)-<p(O)I~lxlsupl<p'(z)l, where <p' is the gradient of <po So

I(K1 (x),<P(x»I=IJ K(x) (<p(x)-<p(O»dxl
o<lxl<1

~(f IK(x) Ilxldx)supj<p'(z) I.
0< I x I <1 z

Since f IK(x) Ilxldx=f (IQ(x) Iflxl") IxldxJ0< I x I <1 J0< I x I <1

(which in polar coordinates r= lxi, dx~r"-1dr)

=r(rfr") (r"-1)dr f IQ(x)ldx=f 1.Q(x)ldx<oo,Jo Ixl~1 Ixl=1

we have that K 1 (x) defines a distribution on Q) (R"). But K 1 (x) has com­
pact support, hence is convolvable with any other distribution.

IK2(x)I~Constant Ixl-k for Ixl>!. Hence K 2(x)ELQ for l<q~oo,

and K 2(x) is convolvable with LP functions for l~P<oo. Hence K(x) is
convolvable with LP functions. Q. E. D.

3.4 THEOREM. If two distributions f and g are convolvable, then for any
multi-index a, the derivative f Ca) is eonvolvable with g; furthermore

jCa)*g=(f*g)Ca) f*gCa\

Proof. This result belongs more properly to the theory of n-fold convolu­
tions (ef. [21]), but because of its importance we give a separate proof



32 Heekyung Kang Youn and !an Richards

here.
There is no loss of generality in assuming that the differentiation operation

is a/ox!> and for convenience we shall write, for example, q/ in place of
O([J/OXI. We need to show that, for every test function ([JE0(Rk),
([J(x+y)f'(x)g(y) E£'(R2k), and that

<([J(x+y)f'(x)g(y), 1)=<-ql(x+y)f(x)g(y), 1).

Now we know, sincef and g are convolvable, that ([J(x+y)f(x)g(y) E£' (R2k),
and then Proposition 2. 6 implies that

[([J(x+y)f(x)g(y) J'
=([J' (x+y)f(x)g(y) +cp(x+y)!' (x)g(y) E£' (R2k).

(Note that the "," operation involves only the x variables.) But q/ is also
a test function, and so q/(x+y)f(x)g(y) also lies in £'(R2k);hencesodoes
([J (x+y)f' (x)g(y).

To prove the required identity, we simply observe that by Proposition 2. 6,
<[([J(x+y)f(x)g(y)J', 1) =<([J(x+y)f(x)g(y), -1')=0

since l' =0. Q. E. D.

The following situation comes up in the study of time-series. It is related
to the Poisson summation formula. [A further development would require
bringing in Fourier transforms and products. We plan to study these ques­
tions in a subsequent paper. J

3.5 THEOREM. Let fE£' (RI) be any integrable distribution on RI, and let
g be the "periodic a-distribution" g(x) = I::~-ooa(x-n). Then the convolu­
tion f*g exists.

ProOf. By the structure theorem (A. 4), proved in the Appendix, f is a
finite sum of derivatives of bounded compex measures. Such measures have
a measure-theoretic convolution with g, and thus Theorem 3.1 c combined
with Theorem 3. 4 gives us what we want.

3. 6 CoUNTEREXAMPLE. Convolution is not a closed operator in terms of
either the weak-* or the strong topology on 0' (Rk) X0' (Rk). Furthermore,
even if one of the variables, say g, is held fixed, the convolution f*g is not
closed as a function of the other variable.

Thus let g be the distribution on RI correspondintg to the constant 1,
and let fn(x) =a(x-n), n=O, 1,2, ... Then fn-loO in either the weak or the
strong topology, but fn*g=g for all n. [To see that fn-"O in the strong
topology, we use the fact (cf. Yosida [20J) that every bounded subset
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of Q) (Rk) consists of functions with uniformly bounded supports J
33

IV. Multiplication

Here we will give only the barest outline of a theory. Other approaches
to this question have been given by Konig [9, 10J and Rosinger [12].

Our definition of multiplication is formally the dual, under the Fourier
transform, of the definition of convolution given in Section ll. The duality
is only formal, however, since there is no good characterization of the spa­
ce £' (Rk) 1\ of Fourier transforms of distributions in £' (Rk). Probably our
definition of convolvability will have to be modified in order to bring in
Fourier transforms. This modification would at the same time be more ge­
neral, since the space £' (Rk) 1\ is smaller than the space we would use to
replace it (see below). On the other hand, in treating convolutions by the­
mselves, as in this paper, £' (Rk) seems to be the natural space to use,
and additional generality is not always desirable when it entails at the same
time additional complications.

In Section II we said that two distributions f, gE Q)' (Rk) are convolvable
if the tensor product <p(x+y)f(x)g(y) EJl,' (R2k) for all <pE Q)(Rk). Under
the Fourier transform, tensor products go over into the corresponding tensor
products, while ordinary multiplication corresponds to convolution. Furthe­
rmore, the inverse Fourier transform of the function <p(x+y) on R2k is the
distribution p[(x+y) /2Jo(x-y). [Note: the <pe - (x+y) /2J could be repla­
ced by either cjJ(-x) or cjJ( -y), since o(x-y) concentrates the mass along
the subspace {x=y}. J

Thus we are led to:

4. 1 DEFINITION. Two distributions f, gE Q)' (Rk) are multiplicable if, for
every test function <p E Q) (Rk) , the distribution

[f(x)g(y) ]*[<p (-x)o(x-y) ]

can be represented by a continuous function. If so, we define <fg, <p) to be
the value of that function at x=O.

Notes. Since <p(-x)o(x-y) is a distribution with compact support, the
convolution in the preceding definition exists. (Of course, it mayor may
not be a continuous function.) For the reasons mentioned above, <pe -x)
could be replaced by <p(-y) or <pe - (x+y) /2]. In treating Fourier trans­
forms, it would probably be better to alter the definition, replacing "con­
tinuous" by "continuous and slowly increasing" (and of course replacing
Q) (Rk) by d (Rk) ). We plan to work out these ideas in a subsequent paper.
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Appendix.

The objective of this section is to describe £' (Rk). (For a slightly diffe­
rent approach to this question, see Horvath [7].)

DEFINITION. £0 (Rk) is the space of functions in £ (Rk) which vanish at
infinity together with all of their mixed partial derivatives, endowed with
topology given by the following family of semi-norms;

I/<Pllm = max SUPk I<p(a) (x) I,
Os: I al S:m "eR

where m is a positive integer and a is a multi-index.

Immediately, we notice that £0 (Rk) is a Frechet space and is dense in
£(Rk) in the topology of £(Rk). Also if qJE£o(Rk), then qJ(a)E£o(Rk) for
any multi-index a.

A.1 LEMMA. Let f=p(a), where f.l is a bounded complex measure and a is
a multi-index. Then fE £' (Rk) and hence any finite sum ~p(a) belongs to
£'(Rk).

Proof. Let Km be compact sets such that
(l) 1f.lI(Kmc)<l/4m, m=1,2, ...

(2) UKm=Rk with {p} =KocK1cK2c· ..
m=O

Construct a continuous function p(x) as follows;
min Ip(x) 1>l/2m, m=O, 1, 2, ...

'xEKm+l/Km

and o(x)-+O as Ixl-+oo• Then for all <pE£(Rk),

I<I, <p> I= IIRk<P(x)dp(a) (x) I~ IRk I<p(a) (x) Id If.ll (x)

~fJ"~~/K~<p(a)(x)ltm+l/Kmdlpl (x»)

~fl"e~..~~.. I<p(a)(x) 1'l/4m+~~I<p(a)(x) ISK1d/pl (x)

""
-:;;~ max I<p(a) (x)p(x) \·l/2m+maxl<p(a)(x) I lpl (Rk)

m=1.xe:KIll+1/Km .:teKl

~ (~~I qJ(a) (x) p(x) I) (fll/2m+ Ipl (Rk») =Constant 1I<Pl!p,a'

Hence fEIs' (Rk). Q. E. D.
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A. 2 LEMMA. Let X be a Banach space and Xk= {(XI> ••. , Xk) : x;EX} with

11 (XI> •.. , Xk) 11 = L:f=ll1x;ll.
Then if f is a bounded linear functional on Xk, there are bounded linear

functionals fI> .••, h on X such that f(xI> ... , Xk) = L::=1 f; (x;).

Proof. Define f; : X~C by f;(x) f(x;) , where xEX, and x;EXk has
its ilk component equal to X and all other components zero. Then it is clear
that ffs are bounded linear functionals on X andf(xI> ..., Xk) = L:~=1 f;(x;).
Q.E.D.

With the above lemma and some well known theorems from analysis, we
can prove the following.

A. 3 LEMMA. Let fEJ1,o' (Rk). Then there are a finite number of bounded
complex measures Jla such that f= L:J.la Ca), where a's are multi-indices.

Proof. Without loss of generality, we assume that k= 1, because the proof
for k>1 goes exactly the same way, with a slight modification in the nota­
tion.

Let fE J1,0' (R). Then there is a constant C and an integer N>O such that

1(f, <p) I~CL:~=o 11<Pllm' for all <pEJ1,o(R).

We. build some Banach spaces:
Let Co= {the space of continuous functions on R vanishing at infinity, en­
dowed with the sup norm}. Let CON = {(Oo, ... , ON) : OjECo} with 11 (00, ... ,
ON) 11 = L:f.,o 110;11, and take the subspace A = {(<p, <p', ..., <pCN» : <p E J1,0}. Define
] on A by ](<p, ... , <pCN» =<f, <p). Then since fEJ1,o' (R), ] is a continuous
linear functional on A. Hence by the Hahn-Banach Theorem, ] can be ex­
tended to CON. We will still call the extended function]. Now by Lemma
A.2, there are bounded linear functionals fo,lI> "'I> ...,IN on Co such that
](<Po, ..•, <PN) = L:f.,o f; (<p;).

The Riesz-Representation Theorem gives f;(<pj) = f<P;dv; for some bounded

complex measure V;. Hence

<I )-f-( , CN» - "N f ( (;»,<p - <p, <p , ... <p - 4.J;=0 j <p

= L:~=J<p(i)dv;= L:f.,o( -1) J<Pdvj(i).

Hence f = L:f.,oJ.l/i), where Jlj= ( -1) jv; with IJ.l; I (R) = IV; I (R) <00. Q. E. D.

By putting Lemma A. 1 and Lemma A. 3 together with a remark that
dSo' (Rk) 2 J1,Rk) , we have the following theorem.
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A. 4 THEOREM. The space tf!,' (Rk) coincides with the set of all finite sums
of derivatives of bounded complex measures. Furthermore tf!,' (Rk) =tf!,o' (Rk).

Another thing that we want to know is that fEtf!,' (Rk) if and only if
<f, (/In> - 0 whenever (/JnEQJ(Rk) and (/In-O in the topology of tf!,(Rk). The
proof is not difficult to see, because tf!,o' (Rk) =tf!,' (Rk) , and tSo(Rk) IS a
Frechet space in which Q) (Rk) is a dense subset.

Our last theorem characterizes convolvable pairs of distributions in terms
of their structure. First recall that a distribution fE Q)' (Rk) can be restricted
to an open subset Q f;; Rk by applying f only to those test functions whose
supports are in Q. A set is called "precompact" if its closure is compact.
Finally we define a diagonal strip in R2k=Rk(-J)Rk to be a subset of the form

L1K= {(x,y) ER2k: (x+y) EK},

where K is a preassigned subset of Rk.

A. 5 THEOREM. Two distributions f, gE r;J), (Rk) are convolvable if and only
if the following condition holds: For every precompact open subset Kf;;Rk, the
restriction of the tensor product f(x)g(y) to the diagonal strip L1K is represe­
ntable as a finite sum of derivatives of bounded complex measures.

Proof. Recall that after Definition 2. 8, f and g are convolvable when,
for every test function (/JEQ)(Rk), the product (/J(x+y)f(x)g(y) E£'(R2k).
Now if K f;; Rk contains the support of (/J, then the support of q:J (x+ y) lies
in the strip L1K in R2k. Hence the sufficiency follows from Lemma A. 1 abo­
ve. For the necessity, given any precompact set Kf;; Rk, choose a "mesa
function" (/JEQ)(Rk) such that q:J(x) =1 for xEK. Then applying Theorem
A.4 to the product q:J(x+y)f(x)g(y) gives the desired result. Q. E. D.

EXAMPLES. Most of the theorems of Section III ("Applications") could also
be proved using Theorem A. 5. Thus for Theorem 3. la: if f and g are
distributions, g has compact support, and K is a precompact set in Rk, then
the restriction of f(x)g(y) to the strip L1K has compact support. By a well
known representation theorem, all distributions with compact support are
given by derivatives of measures, as required. Or take Theorem 3. 1 c :
if J-t and l) are complex measures such that IJ-t I and I)) I have a locally finite
convolution, then the tensor product J-t(x)lJ(Y) gives a finite measure on
each strip L1K for which K is precompact.
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