INFINITESIMAL VARIATIONS OF GENERIC SUBMANIFOLDS OF A KAEHLERIAN MANIFOLD

By U-HANG KI AND YOUNG HO KIM

§ 0. Introduction

As is well known, a unit sphere S^{2m+1} of dimension 2m+1 is a principal circle bundle over a complex projective space CP^m and Riemannian structure on CP^m is given by the submersion $\tilde{\pi}: S^{2m+1} \to CP^m$. This notation gives that fundamental properties of a submanifold would be applied to the study of real submanifolds of a complex projective space. Lawson [2], Maeda [3], Okumura [4] etc. have studied necessary or necessary and sufficient conditions for real hypersurfaces to be one of the model spaces $M_p, {}^{C}_q(a, b) = \tilde{\pi}(S^{2p+1}(a) \times S^{2q+1}(b))$, where (p, q) is some portion of m-1 and $a^2+b^2=1$.

On the other hand, Okumura [5] introduced the notion of generic submanifolds (anti-holomorphic submanifolds) in studying real submanifolds of codimension>1 in $\mathbb{C}P^m$ using the Hopf-fibration. In this paper, we consider a generic submanifold of codimension p of a Kaehlerian manifold and study infinitesimal variations which carry a generic submanifold into a generic submanifold. Such an infinitesimal variation will be called a generic variation.

The purpose of the present paper is to characterize a generic submanifold M in $\mathbb{C}P^m$ by taking account of the theory of Riemannian submersion when the generic variation preserves structure tensors. In determining a generic submanifold M in $\mathbb{C}P^m$, we shall use the following theorems;

THEOREM A (Okumura [4]). M_p , $C_q(a, b)$ is the only hypersurface of a complex projective space in which the second fundamental tensor H commutes with the fundamental tensor F of the submersion.

THEOREM B (Pak [6]) Let M be a complete n-dimensional anti-holomorphic minimal submanifold of a complex projective space \mathbb{CP}^m whose normal connection is flat. If the second fundamental tensor h_{cb}^x of M satisfies

$$h_{ce}{}^{x}f_{b}{}^{e}+h_{ce}{}^{x}f_{b}{}^{e}=0,$$

then M is

$$\tilde{\pi}(S^{m_1}(r_1)\times\cdots\times S^{m_k}(r_k)),$$

where $m_1, ..., m_k$ are odd numbers such that $m_1, ..., m_k \ge 1$, $r_t = \sqrt{m_t/n+1}$ $(t=1, ..., k), n+1 = \sum_{i=1}^k m_i, 2m-n=k-1.$

Manifolds, submanifolds, geometric objects and mappings which are discussed in this paper are assumed to be differentiable and of C^{∞} . We use in the present paper the system of indices as follows;

$$h, i, j, k=1, 2, ..., 2m;$$
 $a, b, c, d, e=1, 2, ..., n;$ $w, x, y, z=1, 2, ..., p;$ $n+p=2m.$

§ 1. Generic submanifolds of a Kaehlerian manifold

Let \tilde{M} be a real 2m-dimensional Kaehlerian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$, F_i^h the almost complex structure tensor and g_{ii} the Hermitian metric tensor.

Then we have

$$(1.1) F_i^t F_t^h = -\delta_i^h, F_j^t F_i^s g_{ts} = g_{ji},$$

where V_j denotes the operator of covariant differentiation with sespect to the Christoffel symbolr Γ_{ji}^h formed with g_{ji}

Let M be an n-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; y^a\}$ and with metric tensor g_{cb} . We assume that M is isometrically immersed in \tilde{M} by the immersion $i: M \to \tilde{M}$ and we identify i(M) with M itself. We represent the immersion $i: M \to \tilde{M}$ locally by $x^h = x^h(y^a)$ and put $B_b{}^h = \partial_b x^h(\partial_b = \partial/\partial y^b)$, which are n linearly independent vectors of \tilde{M} tangent to M. Then we have

$$g_{cb} = g_{ji}B_c{}^jB_b{}^i$$

since the immersion is isometric.

We denote by C_y^h 2m-n mutually orthogonal unit normals to M. Then the equations of Gauss are given by

$$(1.4) V_c B_b{}^h = h_{cb}{}^x C_x{}^h,$$

where V_c denotes the operator of van der Waerden-Bortolotti covariant differentiation along M and h_{cb}^x are the second fundamental tensors of M with respect to the normal vectors C_x^h , and those of Weingarten by

$$(1.5) V_c C_y^{\ h} = -h_c^{\ a}{}_y B_a^{\ h},$$

where $h_c{}^a{}_y = h_{cby}g^{ba} = h_{cb}{}^zg^{ba}g_{yz}$, g^{ba} being contravariant components of the metric tensor g_{cb} of M and g_{yx} the metric tensor of the normal bundle of M

defined by $g_{yx} = g_{ji}C_y{}^jC_x{}^i$. Thus equations of Gauss, Codazzi and Ricci are respectively given by

$$(1.6) K_{dcb}{}^{a} = K_{kji}{}^{h}B_{d}{}^{k}B_{c}{}^{j}B_{b}{}^{i}B^{a}{}_{h} + h_{d}{}^{a}{}_{r}h_{cb}{}^{x} - h_{c}{}^{a}{}_{r}h_{db}{}^{x},$$

(1.7)
$$K_{kji}{}^{h}B_{d}{}^{k}B_{c}{}^{j}B_{b}{}^{i}C^{x}{}_{h} = \nabla_{d}h_{cb}{}^{x} - \nabla_{c}h_{db}{}^{x},$$

(1.8)
$$K_{dcy}^{x} = K_{kji}^{h} B_{d}^{k} B_{c}^{j} C_{y}^{i} C^{x}_{h} + h_{de}^{x} h_{c}^{e}_{y} - h_{ce}^{x} h_{d}^{e}_{y},$$

where $B^a{}_h = B_b{}^j g^{ba} g_{jh}$, $C^x{}_h = C_y{}^j g^{yx} g_{jh}$, $K_{kji}{}^h$ is the curvature tensor of the ambient manifold \tilde{M} , $K_{dcb}{}^a$ and $K_{dcy}{}^x$ are those of the submanifold M and the normal bundle of M respectively.

If the transform by F of any normal vector to M is always tangent to M, that is, if there exists a tensor field f_v^a of mixed type such that

$$(1.9) F_i{}^h C_v{}^i = f_v{}^a B_a{}^h,$$

we say that M is generic (anti-holomorphic) in \widetilde{M} (cf. [5], [6]).

For the transform by F of tangent vectors $B_b{}^h$, we have equations of the form

$$(1.10) F_i{}^h B_h{}^i = f_h{}^a B_a{}^h - f_h{}^x C_r{}^h,$$

where $f_b{}^a$ is a tensor field of type (1,1) defined on M and we have put $f_b{}^x = f_v{}^a g_{ba} g^{yx}$.

Putting $f_{ba}=f_b{}^cg_{ca}, f_{ya}=f_y{}^bg_{ba}$ and $f_{ay}=f_a{}^xg_{xy}$, we can easily find

(1.11)
$$f_{ba} = -f_{ab}, \ f_{ay} = f_{ya}.$$

Applying F to (1.9) and (1.10) respectively and using (1.1) and these equations, we can easily verify

$$(1.12) f_b{}^e f_e{}^a = -\delta_b{}^a + f_b{}^x f_r{}^a,$$

(1.13)
$$f_a^e f_e^x = 0, \ f_e^x f_b^e = 0,$$

$$(1. 14) f_a x f_v^a = \delta_v^x.$$

(1.12) and (1.13) show that M admits the so-called f-structure satisfying $f^3+f=0$.

Differentiating (1.9) and (1.10) covariantly along M respectively and using (1.2), (1.4) (1.5), and these equations, we find

$$(1.15) V_c f_b{}^a = h_{cb}{}^x f_x{}^a - h_{cx}{}^a f_b{}^x,$$

$$(1.16) V_c f_b{}^x = h_{ce}{}^x f_b{}^e,$$

$$(1. 17) f_x^e h_{ce}^y = h_c^e f_e^y.$$

We now assume that the ambient manifold \tilde{M} is of constant holomorphic

sectional curvature c. Then it is well known that its curvature tensor K_{kji}^h has the form

$$(1.18) K_{kji}^{h} = \frac{c}{4} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki} + F_{k}^{h} F_{ji} - F_{j}^{h} F_{ki} - 2F_{kj} F_{i}^{h}).$$

Therefore, substituting (1.18) into (1.6), (1.7) and (1.8), we obtain that the equations of Gauss, Codazzi and Ricci are respectively given by

$$(1.19) K_{dcb}{}^{a} = \frac{c}{4} (\delta_{d}{}^{a}g_{cb} - \delta_{c}{}^{a}g_{db} + f_{d}{}^{a}f_{cb} - 2f_{dc}f_{b}{}^{a}) + h_{d}{}^{a}{}_{x}h_{cb}{}^{x} - h_{c}{}^{a}{}_{x}h_{db}{}^{x},$$

(1.20)
$$V_{d}h_{cb}^{x} - V_{c}h_{db}^{x} = \frac{c}{4} \left(-f_{d}^{x}f_{cb} + f_{c}^{x}f_{db} + 2f_{dc}f_{b}^{x} \right),$$

(1.21)
$$K_{dcy}^{x} = \frac{c}{4} (f_{d}^{x} f_{cy} - f_{c}^{x} f_{dy}) + h_{de}^{x} h_{c}^{e}_{y} - h_{ce}^{x} h_{d}^{e}_{y}.$$

§ 2. Infinitesimal variations of generic submanifolds in a Kaehlerian manifold

We consider an infinitesimal variation of a generic submanifold M of a Kaehlerian manifold \tilde{M} given by

(2.1)
$$\bar{x}^h = x^h(y) + v^h(y)\varepsilon,$$

where $v^h(y)$ is a vector field of \tilde{M} defined along M and ε is an infinitesimal. Then we have

$$(2.2) \overline{B}_b{}^h = B_b{}^h + (\partial_b v^h) \varepsilon,$$

where $\overline{B}_b{}^h = \partial_b \overline{x}^h$ are linearly independent vectors tangent to the varied submanifold.

We displace $\overline{B}_b{}^h$ parallelly from the varied point (\bar{x}^h) to the original point (x^h) . We then obtain the vectors

$$\widetilde{B}_b{}^h = \overline{B}_b{}^h + \Gamma_{ji}{}^h (x + v\varepsilon) v^j \overline{B}_b{}^i \varepsilon$$

at the point (x^h) , or

$$(2.3) \widetilde{B}_b{}^h = B_b{}^h + (\nabla_b v^h) \varepsilon,$$

neglecting the terms of order higher than one with respect to ε , where

$$(2.4) V_b v^h = \partial_b v^h + \Gamma_{ii}{}^h B_b{}^j v^i.$$

In the sequel we always neglect terms of order higher than one with respect to ε . Thus putting

$$\delta B_b{}^h = \tilde{B}_b{}^h - B_b{}^h,$$

which and (2.3) imply

$$\delta B_b{}^h = (\nabla_b v^h) \varepsilon.$$

Putting

$$(2.7) v^h = v^a B_a{}^h + v^x C_x{}^h,$$

we have

$$(2.8) V_b v^b = (V_b v^a - h_b{}^a{}_x v^x) B_a{}^b + (V_b v^x + h_b{}_a{}^x v^a) C_x{}^b$$

because of (1.4) and (1.5).

Now we denote by \overline{C}_{y}^{h} 2m-n mutually orthogonal unit normal vectors to the varied submanifold and \widetilde{C}_{y}^{h} the vectors obtained from \overline{C}_{y}^{h} by parallel displacement from the point (\bar{x}^{h}) to (x^{h}) . Then we have

(2.9)
$$\widetilde{C}_{y}^{h} = \overline{C}_{y}^{h} + \Gamma_{ii}^{h}(x + v\varepsilon)v^{j}\overline{C}_{y}^{i}\varepsilon.$$

We put

$$\delta C_{y}^{h} = \tilde{C}_{y}^{h} - C_{y}^{h}$$

and assume that δC_y^h is of the form

(2.11)
$$\delta C_{\nu}^{h} = \eta_{\nu}^{h} \varepsilon = (\eta_{\nu}^{a} B_{a}^{h} + \eta_{\nu}^{x} C_{x}^{h}) \varepsilon.$$

Then, from (2.9), (2.10) and (2.11), we have

$$(2. 12) \overline{C}_{y}^{h} = C_{y}^{h} - \Gamma_{ji}^{h} v^{j} C_{y}^{i} \varepsilon + (\eta_{y}^{a} B_{a}^{h} + \eta_{y}^{x} C_{x}^{h}) \varepsilon.$$

Applying the operator δ to $B_b{}^j C_y{}^i g_{ji} = 0$ and using (2.6), (2.8), (2.11) and $\delta g_{ji} = 0$, we find

$$(V_b v_y + h_{bay} v_a) + \eta_{yb} = 0,$$

where $v_y = v^z g_{yz}$ and $\eta_{yb} = \eta_y^c g_{cb}$, or

(2.13)
$$\eta_{y}^{a} = -(\nabla^{a}v_{y} + h_{b}^{a}_{y}v^{b}),$$

 ∇^a being defined to be $\nabla^a = g^{ac} \nabla_c$. Applying also the operator δ to $C_y{}^j C_z{}^i g_{ji} = g_{yz}$, and using (2.11) and $\delta g_{ji} = 0$, we find

(2. 14)
$$\eta_{yx} + \eta_{xy} = 0$$
,

where $\eta_{yx} = \eta_y^z g_{zx}$.

We now assume that the infinitesimal variation (2.1) carries a generic submanifold into a generic submanifold, that is,

(2. 15)
$$F_i{}^h(x+v\varepsilon)\overline{C}_x{}^i$$
 are linear combinations of $\overline{B}_b{}^h$.

Then, using $V_j F_i^h = 0$ and (1.6), we see that

$$\begin{split} F_i{}^h(x+v\varepsilon)\,\overline{C}_y{}^i &= (F_i{}^h+v^j\partial_jF_i{}^h\varepsilon)\,\,\{C_y{}^i-\varGamma_{kt}{}^iv^kC_y{}^t\varepsilon + (\eta_y{}^aB_a{}^i+\eta_y{}^xC_x{}^i)\varepsilon\}\\ &= \{F_i{}^h-v^j(\varGamma_{jt}{}^hF_i{}^t-\varGamma_{jt}{}^tF_t{}^h)\varepsilon\}\,\,\{C_y{}^i-\varGamma_{ks}{}^iv^kC_y{}^s\varepsilon + (\eta_y{}^aB_a{}^i+\eta_y{}^xC_x{}^i)\varepsilon\} \end{split}$$

$$= F_{i}{}^{h}C_{v}{}^{i} + \{F_{i}{}^{h}(\eta_{v}{}^{a}B_{a}{}^{i} + \eta_{v}{}^{x}C_{x}{}^{i}) - f_{v}{}^{a}F_{ii}{}^{h}v^{j}B_{a}{}^{t}\} \varepsilon,$$

that is, by (2.2) and (2.8),

$$(2. 16) \quad F_{i}^{h}(x+v\varepsilon)\overline{C}_{y}^{i} = f_{y}^{a}\overline{B}_{a}^{h} - \{f_{y}^{e}(\overline{V}_{e}v^{a} - h_{e}^{a}_{x}v^{x}) + (\eta_{y}^{e}f_{e}^{a} + \eta_{y}^{x}f_{x}^{a})\}\overline{B}_{a}^{h}\varepsilon \\ - \{f_{y}^{a}(\overline{V}_{a}v^{x} + h_{ae}^{x}v^{e}) + \eta_{y}^{a}f_{a}^{x}\}\overline{C}_{x}^{h}\varepsilon.$$

Thus (2.15) is equivalent to

(2.17)
$$f_{y}^{a}(\nabla_{a}v^{x} + h_{ae}^{x}v^{e}) + \eta_{y}^{a}f_{a}^{x} = 0,$$

or, by (1.15) and (2.13), eqivalent to

$$(2.18) f_y^a \nabla_a v^x = f_a^x \nabla^a v_y.$$

An infinitesimal variation given by (2.1) is called a generic variation if it carries a generic submanifold into a generic submanifold. Thus we have

THEOREM 2.1. In order for an infinitesimal variation to be generic, it is necessary and sufficient that the variation vector v^h satisfies

$$f_{\mathbf{y}}^{a}\nabla_{a}v^{x}=f_{a}^{x}\nabla^{a}v_{\mathbf{y}}.$$

COROLLARY 2.2. If a vector field v^h defines a generic variation, then another vector field v'^h which has the same normal part as v^h has the same property.

For an infinitesimal variation given by (2.1), when $v^x=0$, that is, when the variation vector v^h is tangent to the submanifold, we say that the variation is *tangential* and when $v^a=0$, that is, when the variation vector v^h is normal to the submanifold, we say that the variation is *normal*.

Then we have

THEOREM 2.3. A tangential variation is generic.

Suppose that a generic variation given by (2.1) carries a submanifold $x^h = x^h(y)$ into another submanifold $\bar{x}^h = \bar{x}^h(y)$ and the tangent space of the original submanifold at (x^h) and that of the varied submanifold at the corresponding point (\bar{x}^h) are parallel. Then we say that the variation is *parallel*.

Since we have from (2.5), (2.6) and (2.8),

(2.19)
$$\tilde{B}_b{}^h = \{ \delta_b{}^a + (\nabla_b v^a - h_b{}^a{}_x v^x) \varepsilon \} B_a{}^h + (\nabla_b v^x + h_b{}_a{}^x v^a) C_x{}^h \varepsilon,$$

Thus we have

PROPOSITION 2. 4. ([8]) In order for an infinitesimal variation to be parallel, it is necessary and sufficient that

$$(2.20) V_b v^x + h_{ba}^x v^a = 0.$$

If (2.20) is satisfied, then so is (2.18). Thus we have

THEOREM 2.5. A parallel variation is a generic variation.

§ 3. Variations of structure tensors

Suppose that an infinitesimal variation $\bar{x}^h = x^h + v^h(y)\varepsilon$ carries a generic submanifold into a generic submanifold, that is, it is generic. Then, putting

(3.1)
$$F_i{}^h(x+v\varepsilon)\overline{C}_v{}^i = (f_v{}^a + \delta f_v{}^a)\overline{B}_a{}^h,$$

from which and (2.16), we find

$$(3.2) \delta f_y^a = \{ \eta_y^x f_x^a - f_y^e (\nabla_e v^a - h_e^a x^{vx}) - f_e^a (\nabla^e v_y + h_b^e y^b) \} \varepsilon.$$

Thus we have

PROPOSITION 3.1. If an infinitesimal variation is generic, then the variation of f_{v}^{a} is given by (3.2).

PROPOSITION 3.2. A generic variation preserves f_v^a if and only if

$$(3.3) f_{v}^{e}(\nabla_{e}v^{a} - h_{e}^{a}x^{v}) + f_{e}^{a}(\nabla^{e}v_{v} + h_{b}^{e}v^{b}) - f_{x}^{a}\eta_{v}^{x} = 0.$$

We apply the operator δ to (1.10), and use $\delta F_i{}^h=0$, (2.6) and (2.11). Then we get

$$F_i{}^h \nabla_b v^i \varepsilon = (\delta f_b{}^a) B_a{}^h + f_b{}^a \nabla_a v^h \varepsilon - (\delta f_b{}^x) C_x{}^h - f_b{}^x (\eta_x{}^a B_a{}^h + \eta_x{}^y C_y{}^h) \varepsilon.$$

If we substitute (2.8) into this equation, then we have

$$\begin{split} &\{f_e{}^a(\nabla_b v^e - h_b{}^e{}_x v^x) + (\nabla_b v^x + h_b{}_e{}^x v^e)f_x{}^a\}\,B_a{}^h\varepsilon - f_e{}^x(\nabla_b v^e - h_b{}^e{}_y v^y)\,C_x{}^h\varepsilon \\ &= (\delta f_b{}^a)\,B_a{}^h + \{f_b{}^e(\nabla_e v^a - h_e{}^a{}_x v^x) - f_b{}^x\eta_x{}^a\}\,B_a{}^h\varepsilon - (\delta f_b{}^x)\,C_x{}^h \\ &\quad + \{f_b{}^e(\nabla_e v^x + h_{ea}{}^x v^a) - f_b{}^y\eta_y{}^x\}\,C_x{}^h\varepsilon. \end{split}$$

Comparing the tangential part and normal part of this, we have

(3.4)
$$\delta f_b{}^x = \{f_b{}^a (\nabla_a v^x + h_{ae}{}^x v^e) + f_a{}^x (\nabla_b v^a - h_b{}^a{}_v v^y) - f_b{}^y \eta_v{}^x\} \varepsilon,$$

$$(3.5) \quad \delta f_b{}^a = \{ f_e{}^a (\nabla_b v^e - h_b{}^e{}_x v^x) - f_b{}^e (\nabla_e v^a - h_e{}^a{}_x v^y) + f_x{}^a (\nabla_b v^x + h_{be}{}^x v^e) \\ - f_b{}^x (\nabla^a v_x + h_e{}^a{}_x v^e) \} \, \varepsilon.$$

We denote by \mathcal{L} the Lie derivative with respect to v^a . Then (3.5) can be written as follows

(3.6)
$$\delta f_b{}^a = \{ \mathcal{L} f_b{}^a - (f_e{}^a h_b{}^e{}_x - h_e{}^a{}_x f_b{}^e) v^x + f_x{}^a \overline{V}_b v^x - f_b{}^x \overline{V}^a v_x) \} \varepsilon.$$

PROPOSITION 3.3. If an infinitesimal variation is generic, then the variation of f_b^a is given by (3.5) or (3.6).

PROPOSITION 3.4. A generic variation preserves the f-structure f_b^a if and only if

(3.7)
$$\mathcal{L}f_b{}^a - (f_e{}^a h_b{}^e{}_x - h_e{}^a{}_x f_b{}^e) v^x + f_x{}^a \nabla_b v^x - f_b{}^x \nabla^a v_x = 0.$$

Applying the operator δ to (1.3) and using (2.6), (2.8) and $\delta g_{ji}=0$, we find

(3.8)
$$\delta g_{cb} = (\nabla_c v_b + \nabla_b v_c - 2h_{cb}^x v_x) \varepsilon,$$

from which,

(3.9)
$$\delta g^{cb} = -(\nabla^c v^b + \nabla^b v^c - 2h^{cb}_x v^x) \varepsilon.$$

A variation of a submanifold for which $\delta g_{cb} = 0$ is said to be *isometric* and that for which δg_{cb} is proportional to g_{cb} is said to be *conformal*. Thus we have

PROPOSITION 3. 5. ([8]) In order for an infinitesimal variation to be isometric or conformal, it is necessary and sufficient that

$$(3. 10) V_c v_b + V_b v_c - 2h_{chx} v^x = 0,$$

or

$$(3.11) V_c v_b + V_b v_c - 2h_{cbx} v^x = 2\lambda g_{cb},$$

respectively, λ being a certain function given by

(3.12)
$$\lambda = \frac{1}{n} (\nabla_a v^a - h_a{}^a{}_x v^x).$$

Now we assume that a generic variation preserves f_y^a , that is, $\delta f_y^a = 0$. Transvecting (3.3) with f_a^z and using (1.11) and (1.12), we find

(3.13)
$$\eta_{yz} = (\nabla_b v_a - h_{bax} v^x) f_y{}^b f_z{}^a.$$

Substituting (3.13) into (2.14), we get

$$(\nabla_b v_a + \nabla_a v_b - 2h_{bax}v^x)f_v{}^b f_z{}^a = 0.$$

If the variation is conformal, then we have $\lambda g_{yz}=0$ with the help of (3.11), that is, $\lambda=0$. Thus we have

THEOREM 3.6. If a generic conformal variation preserves f_y^a , then it is isometric.

Now we denote by g the determinant formed with g_{cb} . Then the volume element dV of M is given by

$$(3. 14) dV = \sqrt{g} dy^1_{\Lambda} \dots_{\Lambda} dy^n.$$

Since we have from (3.9) and (3.10)

$$\delta \sqrt{g} = \sqrt{g} (V_e v^e - h_e^e_x v^x) \varepsilon,$$

from which, we get

(3. 15)
$$\delta dV = (\nabla_{e}v^{e} - h_{e}^{e}v^{x}) dV \varepsilon.$$

Thus we have

PROPOSITION 3.7. ([8]) In order for a variation of a submanifold to be volume-preserving, it is necessary and sufficient that

$$\nabla_{e}v^{e}-h_{e}{}^{e}_{x}v^{x}=0.$$

PROPOSITION 3.8. ([8]) In order for a normal variation of a submanifold to be volume-preserving, it is necessar and sufficient that

$$(3. 16) h_{e^{\alpha}x}v^{x}y = 0.$$

§ 4. Some characterizations of a generic submanifold of a complex projective space

In this section we assume that the ambient manifold of the submanifold is a complex projective space.

Suppose that the generic variation is normal and preserves the structure tensors $f_b{}^a$ and $f_y{}^a$. Then we have from (3.7)

$$(4.1) (f_{ae}h_b^e{}_x + f_{be}h_a^e{}_x)v^x - (f_b{}^x\nabla_a v_x - f_a{}^x\nabla_b v_x) = 0,$$

from which, taking the symmetric part with respect to a and b,

$$(4.2) (f_{ae}h_b{}^e_x + f_{be}h_a{}^e_x)v^x = 0,$$

and consequently

$$(4.3) f_b^x \nabla_a v_x = f_a^x \nabla_a v_x.$$

Transvecting (4.3) with f_c^b , we find

$$(4.4) f_a x f_c e \nabla_e v_x = 0$$

with the help of (1.11).

If we transvect (4.4) with f_{y}^{a} and use (1.14), then we have

$$(4.5) f_c^e \nabla_e v_x = 0.$$

Substituting (4.5) into (3.3), we obtain

(4.6)
$$f_{y}^{e} h_{e}^{a} v^{x} + f_{x}^{a} n_{y}^{x} = 0,$$

from which, transvecting with f_a^z and using (1.14) and (2.14), we have

$$(4.7) (h_e^a_x f_v^e) v^x = 0.$$

We now assume that the generic variation admits 2m-n linearly independent normal variations. Consequently, we can see that (4.2) and (4.7) reduce respectively to

$$(4.8) h_{ae}{}^{x}f_{a}{}^{e} + h_{ae}{}^{x}f_{b}{}^{e} = 0,$$

$$(4.9) h_{ae}{}^{x}f_{y}{}^{e}=0.$$

We now prove the following theorem by taking account of Theorem A in § 0.

THEOREM 4.1. Let M be an n-dimensional complete generic submanifold of CP^m . If the connection in the normal bundle of M is flat, and if 2m-n linearly independent generic normal variations preserve the structure tensors, then M is a real hypersurface of CP^m of the form

$$M=M_b, C_a(a,b),$$

where (p,q) is some portion of m-1 and $a^2+b^2=1$.

Proof. Transvecting (1.21) with $f_w^d f_e^w$ and using (4.9), we find

$$f_b^x f_{cy} - f_c^x f_{by} = 0$$

because of $K_{dcy}^{x}=0$ and c=4. Transvection f_z^{b} yields

$$\delta_z f_{cy} - f_c g_{zy} = 0$$

with the help of (1.14). We can see from this equation that the codimension p=1, that is, M is a real hypersurface of CP^m . Therefore, combining (4.8) with Theorem A in $\S 0$, it follows that $M=M_p,^c{}_q(a,b)$, (p,q) being some portion of m-1 and $a^2+b^2=1$. Thus this theorem is proved.

On the other hand, by making use of Theorem B in § 0 and (3.16), we obtain

THEOREM 4.2. Let M be a complete n-dimensional generic submanifold of a complex projective space $\mathbb{C}P^m$ with flat normal connection. If 2m-n linearly independent generic normal variations preserve the f-structure and volume element of M, then M is of the form

$$\tilde{\pi}(S^{m_1}(r_1)\times\cdots\times S^{m_k}(r_k)),$$

where $m_1, ..., m_k$ are odd numbers ≥ 1 , $r_t = \sqrt{m_t/n+1}$ (t=1, ..., k), $m_1 + \cdots + m_k = n+1$, 2m-n=k-1.

COROLLARY 4.3. Let M be the same submanifold as that stated in Theorem 4.2. If 2m-n linearly independent parallel normal variations preserve the f-structure and volume element of M, then we have the same conclusion of Theorem 4.2.

Proof. The variation is evidently generic by means of Theorem 2.5. But, differentiating (2.20) with $v^a=0$ covariantly along M and taking account of the Ricci dientity, it must be that the connection in the normal bundle of M is flat. Thus, all assumptions in Theorem 4.2 are satisfied and consequently we have the same conclusion of Theorem 4.2.

References

- 1. Chen, B.Y., and K. Yano, On the theory of normal variations, to appear.
- Lawson, H.B., Jr., Rigidity theorems in rank 1 symmetric spaces, J. Diff. Geo., 4(1970), 349-357.
- 3. Maeda, Y., On real hypersurfaces of a comples projective space, J. Math. Soc. Japan, 28(1976), 529-540.
- 4. Okumura, M., On some real hypersurfaces of a complex projective space, Transactions of AMS., 212(1975), 355-364.
- 5. Okumura, M., Submanifolds of real codimension of a compex projective space, Atti della Accade mia Nazionale die Lincei, 4(1975), 544-555.
- 6. Pak, J.S., Note on anti-holomorphic submanifolds of real codimension of a complex projective space, to appear in Kyungpok Math. J.
- 7. Yano, K., Sur la théorie des déformations infinitésimales, J. of Fac. of Publ. Co., Amsterdam (1957).
- 8. Yano, K., Infinitesimal variations of submanifolds, Kodai Math. J., 1(1978), 30-44.
- 9. Yano, K., and M. Kon, Generic submanifolds, to appear in Annali di Mat.

Kyungpook University