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§ O. Introduction

As is well known, a unit sphere S2m+l of dimension 2m+ 1 is a principal
circle bundle over a complex projective space Cpm and Riemannian structure
on Cpm is given by the submersion it:S2m+L~Cpm. This notation gives that
fundamental properties of a submanifold would be applied to the study of
real submanifolds of a complex projective space. Lawson [2J, Maeda [3J,
Okumura [4J etc. have studied necessary or necessary and sufficient conditions
for real hypersurfaces to be one of the model spaces Mp,Cq(a, b) =it(S2P+l(a)
XS 2q+1(b», where (p, q) is some portion of m-I and a2+b2=1.

On the other hand, Okumura [5J introduced the notion of generic subma­
nifolds (anti-holomorphic submanifolds) in studying real submanifolds of
codimension>1 in Cpm using the Hopf-fibration. In this paper, we consider
a generic submanifold of codimension p of a Kaehlerian manifold and study
infinitesimal variations which carry a generic submanifold into a generic
submanifold. Such an infinitesimal variation will be called a generic varia­
tion.

The purpose of the present paper is to characterize a generic submanifold
M in Cpm by taking account of the theory of Riemannian submersion when
the generic variation preserves structure tensors. In determining a generic su­
bmanifold M in Cpm, we shall use the following theorems;

THEOREM A (Okumura [4J). Mp,Cq(a, b) is the only hypersurface of a com­
plex projective space in which the second fundamental tensor H commutes with
the fundamental tensor F of the submersion.

THEOREM B (Pak [6J) Let M be a complete n-dimensional anti-holomorphic
minimal submanifold of a complex projective space Cpm whose normal connection
is flat. If the second fundamental tensor hcbx of M satisfies

hcexfbe+hcexfbe= 0,

then M is
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where mh •.• , mk are odd numbers such that mh ••• , mkGl, rt = v'mtln+l
k

(t= 1, ..., k), n+1= ~mi' 2m - n=k-l.
i=l

Manifolds, submanifolds, geometric objects and mappings which are discu­
ssed in this paper are assumed to be differentiable and of C=. We use in the
present paper the system of indices as follows;

h, i, j, k= 1,2, , 2m;
w, x, y, z=l, 2, , p;

a, b, c, d, e=l, 2, ... , n;
n+p=2m.

§ 1. Generic submanifolds of a Kaehlerian manifold

Let M be a real 2m-dimensional Kaehlerian manifold covered by a system
of coordinate neighborhoods {U; x h}, Fih the almost comst complex structure
tensor and gji the Hermitian metric tensor.

Then we have

(1.1) F/Fth= -al, F/F/gts=gji,

(1. 2) VjFl=O,

where Vj denotes the operator of covariant differentiation with sespect to the
Christoffel symbolr Fjjh formed with gji

Let M be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V; ya} and with metric tensor g cb. We assume that
M is isometrically immersed in M by the immersion i : M~M and we ide­
ntify i (M) with M itself. We represent the immersion i : M~M locally by
xh=xh(ya) and put Bbh=ObXh(Ob=ojoyb), which are n linearly independent
vectors of M tangent to M. Then we have

(1. 3) gcb=gjiBiBbi

since the immersion is isometric.
We denote by Cyh 2m-n mutually orthogonal unit normals to M. Then

the equations of Gauss are given by

(1. 4)

where Vc denotes the operator of van der W aerden-Bortolotti covariant differ­
entiation along M and hcbx are the second fundamental tensors of M with
respect to the normal vectors Ci, and those of Weingarten by

(1. 5) VcC/, = - h/,Bi,
where h/y= hcbygba= hcbzgbagyz, gba being contravariant components of the
metric tensor gcb of M and gyx the metric tensor of the normal bundle of M



(1.6)

(1. 7)

(1. 8)
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defined by gyx=gj;C/Cx;' Thus equations of Gauss, Codazzi and Ricci are
respectively given by

Kdcba=Kkj/'BiB/Bb;Bah+hdaxhcbx - hcap;hdbx,

Kkj;hBiBcjBb;cxh=Vdhcbx-Vchdbx,

K x-K hB kB jC ;Cx +h xh e -h xh edcy - kj; d c y h de c y ce d y'

where Bah=Bigbagjh, CXh=C/gYxgjh, Kkj;h is the curvature tensor of the
ambient manifold if, Kdcba and Kdcyx are those of the submanifold M and
the normal bundle of M respectively.

If the transform by F of any normal vector to M is always tangent to M,
that is, if there exists a tensor field fya of mi.;;:ed type such that

(1. 9)

we say that M is generic (anti-holomorphic) in if (cf. [5J, [6J).
For the transform by F of tangent vectors Bbh, we have equations of the

form

(1.10)

where Iba is a tensor field of type (1, 1) defined on M and we have put
fbx=f/gb~Yx.

Putting lba=fbCgca,fya=f,bgba and fay faXgxy, we can easily find

(1. 11)

Applying F to (1. 9) and (1. 10) respectively and using (1. 1) and these
equations, we can easily verify

(1. 12) Ib"f/= -Oba+ Ibxfxa,

(1. 13) faefex=O, fexfbe=O,

(1. 14) faxf/=oyx.

(1. 12) and (1. 13) show that M admits the so-called f-structure satisfying
J3+f=O.

Differentiating (1. 9) and (1. 10) covariantly along M respectively and
using (1. 2), (1. 4) (1. 5) , and these equations, we find

(1.15) 17ciba=hcbx!:xa-hcxalbx,

(1.16) Vcfbx=hcexibe,

(1. 17) fxehceY=hcexfeY'

We now assume that the ambient manifold if is of constant holomorphic
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sectional curvature c. Then it is well known that its curvature tensor Kkjih
has the form

(1.18) Kkjih= ~ (Okhgji-O/gki+FiFji-FlFki-2FkjFih).

Therefore, substituting (1. 18) into (1. 6), (1. 7) and (1. 8), we obtain that
the equations of Gauss, Codazzi and Ricci are respectively given by

(1.19) Kdeba= ~ (Odagcb-O/gdb+!aa!cb-2!dciba) +hdaxhcbx-h/xhdbx,

(1. 20)

(1. 21)

fldhcbX-flehdbX= ~ (-!aX!cb+!cx!ab+ 2/dcibx),

Kdeyx= ~ (fdXfcy-feX!dY) +hdexh/y-hceXhdey.

§ 2. Infinitesimal variations of generic submanifolds in a Kaehlerian
manifold·

We consider an infinitesimal variation of a generic submanifold M of a
Kaehlerian manifold M given by

(2.1) xh=xh(y) +vh(y)e,

where vh(y) is a vector field of M defined along M and e is an infinitesimal.
Then we have

(2.2) Bbh=Bbh+ (obvh)e,

where Bbh=O~h are linearly independent vectors tangent to the varied subm­
anifold.

We displace Bbh parallelly from the varied point (xh) to the original point
(xh). We then obtain the vectors

fhh= Bbh+ Fiih (x+ve)viBbie

at the point (xh) , or

(2.3)

neglecting the terms of order higher than one with respect to e, where

(2.4) fl bVh = Obvh+FjihBbjvi.

In the sequel we always neglect terms of order higher than one with res­
pect to e. Thus putting

(2.5)

which and (2. 3) imply
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(2.6)

Putting

(2.7)

we have

(2.8)

because of (1. 4) and (1. 5).
Now we denote by Cyh 2m-n mutually orthogonal unit normal vectors to

the varied submanifold and Ci the vectors obtained from Ci by parallel
displacement from the point (xh) to (xk). Then we have

(2.9) C h=C k+r··k(x+vs)vjC;sy y ~ , •

We put

(2. 10) oCi=C,k-Ci

and assume that 0 Cl is of the form

(2.11) oC,h=r;,he= (r;/Bak+r;,xCxh)s.

Then, from (2. 9), (2. 10) and (2. 11), we have

(2.12) C k=C k-F··kviC ;s+ (r! aB h+r! xC k)sy Y J' Y ',y a ',y x •

Applying the operator 0 to BbjC/gj;=O and using (2.6), (2.8), (2.11)
and Ogji=O, we find

(VbVy+ hbayva) +r;yb=O,

where vy=VZgyz and 1]yb=r;/gcb, or

(2.13) r;ya= - (VaVy+hbayVb) ,

Va being defined to be Va=gacVc' Applying also the operator 0 to CyiCzigj;
=gyz, and using (2.11) and Ogji=O, we find

(2.14)

where r;yz=1]/gzx.
We now assume that the infinitesimal VarIatIOn (2. 1) carries a generic

submanifold into a generic submanifold, that is,

(2.15) F;k(x+vs)Cxi are linear combinations of Bbk.

Then, using VjF;k=O and (1.6), we see that

F;k (x+ vs) C/= (F;k+vjajFiks) {C/- rk/VkC/S+ (1]/Bi+1]y:rCx;)e}
= {F;k_vj(rjtkF/-rj/Ftk)e} {C/-Fk/VkC/S+ (1]/Bai+1]yxC,.i)e}
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=F·hC i+ {Poh(r; aB i+r; xC i) -f ar· hviB t} e,y 'y a y x y Jt a'

that is, by (2. 2) and (2. 8),

(2.16) Fl(x+ve)C/--f/Bah- {J/(fi'eva-heaxv"') + (r;ye.Jea+r;yXfxa)} Bahe
- {fya(f7av"'+ha.xve) +r;/fax} Cxhe.

Thus (2. 15) is equivalent to

(2.17) fya(f7av"'+haexve) +r;/fax=O,

or, by (1.15) and (2.13), eqivalent to

(2.18) f/fi'avx=faxfi'avyo

An infinitesimal variation given by (2. 1) is called a generic variation if it
carries a generic submanifold into a generic submanifold. Thus we have

THEOREM 2. 1. In order for an infinitesimal variation to be generic, it is
necessary and sufficient that the variation vector vh satisfies

f/fi'avx=faxravy.

CoROLLARY 2. 2. If a vector field vb defines a generic variation, then ano­
ther vector field v'b which has the same normal part as vh has the same pro­
perty.

For an infinitesimal variation given by (2. 1), when vX=O, that is, when
the variation vector vh is tangent to the submanifold, we say that the vari­
ation is tangential and when va=O, that is, when the variation vector vh is
normal to the submanifold, we say that the variation is normal.

Then we have

THEOREM 2. 3. A tangential variation is generic.

Suppose that a generic variation given by (2. 1) carries a submanifold xk
=xh(y) into another submanifold xh=xh(y) and the· tangent space of the
original submanifold at (xh) and that of the varied submanifold at the corr
esponding point (xh) are parallel. Then we say that the variation is parallel.

Since we have from (2. 5), (2. 6) and (2. 8),

(2.19)

Thus we have

PROPOSITION 2.4. ([8J) In order for an infinitesimal variation to be parallel,
it is necessary and sufficient that

(2.20) rw'&+ hbaxva =0.



Infinitesimal variations of generic subman!folds of a Kaeh1erian manifold 7

If (2. 20) is satisfied, then so is (2. 18). Thus we have

THEOREM 2. 5. A parallel variation is a generic variation.

§ 3. Variations of structure tensors

Suppose that an infinitesimal variation xh=xh+vh(y)e carries a generic
submanifold into a generic submanifold, that is, it is generic. Then, putting

(3.1) Fl(x+ve)C/= (fya+ofya) Bah,

from which and (2. 16), we find

(3.2) of/= {1]/'fxa-f/(f7eva-h/xvx) -f/(f7evy+hbeyVb)} e.

Thus we have

PROPOSITION 3. 1. If an infinitesimal variation is generic, then the variation
of f ya is given by (3.2).

PROPOSITION 3. 2. A generic variation preserves f/ if and only if

(3.3) f/(V'eva-heaxvx) +fea(V'evy+hbeyVb) -fxa1]yx=O.

We apply the operator 0 to (1. 10), and use oFl=O, (2.6) and (2. 11).
Then we get

FN'bvie= (olba) Bah+lbaVavhe- (olbx) Cxh-Ibx(1]xaBah+1}xYC/') t.

If we substitute (2. 8) into this equation, then we have

{fea(Vbve-hbexvx) + (f7bVx+ hbexVe)fxa} Bahe-fex (f7bVe- hbeyvY) Cxhe
= (Ofba) Bah+ {lbeCVeva-h/xvx) -Ibx1)xa}Baht - (olbx)Cl

+ {lbe (f7eVX+ heaXva) -fbY1)yx}Cxhe.

Comparing the tangential part and normal part of this, we have

(3.4) Ofbx= {fba(f7avx+haexve) +fax(V'bVa-hbayVY) -IbY1}yx} e,

(3.5) olba= {fea(Vbve-hbexvx) -Ibe(17eva-h/xvY) +f:ra(f7bVx+hbexVe)
-Ibx(Vavx+h/xve)} t.

We denote by £, the Lie derivative with respect to va• Then (3. 5) can be
written as follows

(3.6) olba= {£'/ba- Cfeahbex-h/:xfbe)Vx+fxa17bvx-fbxVaVx)} t.

PROPOSITION 3. 3. If an infinitesimal variation is generic, then the variation
of Iba is given by (3. 5) or (3. 6).
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PROPOSITION 3. 4. A generic variation preserves the f-structure ha if and
only if

(3.7) £fba- (feahbex-h/xfbe)vx+fxaVbvx-hxVavx=O.

Applying the operator 0 to (1. 3) and using (2. 6), (2. 8) and ogjj=O,
we find

(3.8)

from which,

(3.9) ogcb= - (VcVb+ Vbvc-2hcbxvx) e.

A variation of a submanifold for which Ogcb=O is said to be isometric and
that for which ogcb is proportional to gcb is said to be conformal. Thus we
have

PROPOSITION 3. 5. ([8J) In order for an infinitesimal variation to be isometric
or conformal, it is necessary and sufficient that

(3.10)

or

(3.11)

respectively, A being a certain function given by

(3.12) A=.lCVava-haaxvx).
n

Now we assume that a generic variation preserves f/, that is, of/=O.
Transvecting (3. 3) with fa'" and using (1. 11) and (1. 12), we find

(3.13)

Substituting (3. 13) into (2. 14), we get

(Vbva+Vavb-2hbaxvx)f/fza=0.

If the variation is conformal, then we have Agyz=O with the help of (3.11),
that is, ;(=0. Thus we have

THEOREM 3.6. If a generic conformal variation preserves f/, then it is
isometric.

Now we denote by g the determinant formed with gcb. Then the volume
element dV of M is given by

(3. 14) dV= -vgdy1A".Ady".
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Since we have from (3.9) and (3. 10)

oVg = Vg CVeve - h/xvx)c,

from which, we get

(3.15)

Thus we have

PROPOSITION 3. 7. ([8J) In order for a variation of a submanifold to be
volume-preserving, it is necessary and sufficient that

f7eve-he"xvx=O.

PROPOSITION 3.8. ([8J) In order for a normal variation of a submanifold
to be volume-preserving, it is necessar and sufficient that

(3.16)

§ 4. Some characterizations of a generic submanifold of a complex
projective space

In this section we assume that the ambient manifold of the submanifold is
a complex projective space.

Suppose that the generic variation is normal and preserves the structure
tensors fba and f/. Then we have from (3.7)

(4.1) (faehbex+!behaex)vx- (fbxflavx-faxflbVx) =0,

from which, taking the symmetric part with respect to a and b,

(4.2)

and consequently

(4.3)

Transvecting (4.3) with f.b, we find

(4.4)

with the help of (1. 11).
If we transvect (4.4) with f y

a and use (1.14), then we have

(4.5)

Substituting (4.5) into (3.3), we obtain

(4.6)
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from which, transvecting with fa'" and using (1. 14) and (2. 14), we have

(4.7) (heaxf!)vx=O.

We now assume that the generic variation admits 2m-n linearly indepen­
dent normal variations. Consequently, we can see that (4.2) and (4.7)
reduce respectively to

(4.8)

(4.9)

haexfae+haexfbe=O,

haeXf!=O.

We now prove the following theorem by taking account of Theorem A
in § O.

THEOREM 4. 1. Let M be an n-dimensional complete generic submanifold of
Cpm. If the connection in the normal bundle of M is flat, and if 2m-n line­
arly independent generic normal variations preserve the structure tensors, then
M is a real hypersurface of Cpm of the form

M=Mp,Cq(a, b),

where (p, q) is some portion of m-I and a2+b2= 1.

Proof. Transvecting (1. 21) with fwdfew and using (4.9), we find

fbXfcy-fcXfby=O

because of Kdcyx=O and c=4. Transvection fzb yields

ozXfcy-fcXg",y=O

with the help of (1. 14). We can see from this equation that the codimen­
sion p=1, that is, M is a real hypersurface of Cpm. Therefore, combining
(4.8) with Theorem A in § 0, it follows that M=Mp,cq(a, b), (p, q) being
some portion of m-I and a2+b2=1. Thus this theorem is proved.

On the other hand, by making use of Theorem B in § 0 and (3. 16), we
obtain

THEOREM 4. 2. Let M be a complete n-dimensional generic submanifold of
a complex projective space Cpm with flat normal connection. If 2m - n linearly
independent generic normal variations preserve the f-structure and volume ele­
ment of M, then M is of the form

ft(Sml (rI) x··· XSmk (r,.)) ,

where mb ...,m,. are odd numbers ~1, rt=v"mt/n+l
mI+···+m,.=n+l, 2m-n=k-l.

(t=l, ..., k),
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CoROLLARY 4.3. Let M be the same submanifold as that stated in Theorem
4. 2. If 2m - n linearly independent parallel normal variations preserve the f­
structure and volume element of M, then we have the same conclusion of
Theorem 4. 2.

Proof. The vanatIOn is evidently generic by means of Theorem 2. 5. But,
differentiating (2. 20) with v 4 =0 covariantly along M and taking account of
the Ricci dientity, it must be that the connection in the normal bundle of
M is flat. Thus, all assumptions in Theorem 4.2 are satisfied and consequen­
tly we have the same conclusion of Theorem 4. 2.
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