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§0. Introduction

As is well known, a unit sphere S2#+1 of dimension 2m-1 is a principal
circle bundle over a complex projective space CP™ and Riemannian structure
on CP™ is given by the submersion #:82»+*1>CPm, This notation gives that
fundamental properties of a submanifold would be applied to the study of
real submanifolds of a complex projective space. Lawson [2], Maeda [3],
Okumura [4] etc. have studied necessary or necessary and sufficient conditions
for real hypersurfaces to be one of the model spaces M,,C,(a, b) =% (82#+1(a)
X 82¢+1(p)), where (p,q) is some portion of m—1 and a®+H=1.

On the other hand, Okumura [5] introduced the notion of generic subma-
nifolds (anti-holomorphic submanifolds) in studying real submanifolds of
codimension>>1 in CP™ using the Hopf-fibration. In this paper, we consider
a generic submanifold of codimension p of a Kaehlerian manifold and study
infinitesimal variations which carry a generic submanifold into a generic
submanifold. Such an infinitesimal variation will be called a generic varia-
tion.

The purpose of the present paper is to characterize a generic submanifold
M in CP™ by taking account of the theory of Riemannian submersion when
the generic variation preserves structure tensors. In determining a generic su-
bmanifold M in CP=, we shall use the following theorems;

THEOREM A (Okumura [47). M,,%,(a, b) is the only hypersurface of a com-
plex projective space in which the second fundamental tensor H commutes with
the fundamental tensor F of the submersion.

THEOREM B (Pak [61) Let M be a complete n~dimensiona] anti~holomorphic
minimal submanifold of a complex projective space CP™ whose normal connection
is flat. If the second fundamental temsor hg* of M satisfies

h“sze_i_ huxfbe_—__o,
then M is
Z(S™1(ry) XX 8™ (ry)),
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where my, ...,m; are odd numbers such that my, ...,m;=1, 1= vm/n+1
k
(=1, ... 8), ntl=2m; 2m-n=k—1

Manifolds, submanifolds, geometric objects and mappings which are discu-
ssed in this paper are assumed to be differentiable and of C”. We use in the
present paper the system of indices as follows;

}l, i’jr k=17 21 seny Zm; a,b, c, d,e:l’ 2’ vers n;
w,x,y,z=1, 2,...,?; ﬂ+P=2m.

§1. Generic submanifolds of a Kaehlerian manifold

Let M be a real 2m-dimensional Kaehlerian manifold covered by a system
of coordinate neighborhoods {U; %, F/ the almost comst complex structure
tensor and gj; the Hermitian metric tensor.

Then we have

(1 1) Fithh:' _5311’ thFisgtszgjiv
(1. 2) VjFih:O’

where 7; denotes the operator of covariant differentiation with sespect to the
Christoffel symbolr I';* formed with g

Let M be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V;y%4 and with metric tensor g, We assume that
M is isometrically immersed in M by the immersion i : M—M and we ide-
ntify (M) with M itself. We represent the immersion i : M—M locally by
zh=z*(y*) and put Byt=0,2"(0,=03/0y?), which are n linearly independent
vectors of M tangent to M. Then we have

1.3) ga=g;iBI By’

since the immersion is isometric.
We denote by C,* 2m-n mutually orthogonal unit normals to M. Then
the equations of Gauss are given by

(1- 4) 4 B bh = hcbIthy

where ¥, denotes the operator of van der Waerden~Bortolotti covariant differ-
entiation along M and k.* are the second fundamental temsors of M with
respect to the normal vectors C.;*, and those of Weingarten by

(1- 5) 4 cCyb = _hcayBah’

where k2,=h;,g%=h,*g%g,., g* being contravariant components of the
metric tensor g of M and g,. the metric tensor of the normal bundle of M
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defined by g,,=g;,C,/C,f. Thus equations of Gauss, Codazzi and Ricci are
respectively given by

(1.6) K40°=K3;;*B* B By B*,+ hy® ch* — h 2 ohas®s
an K;;i*B#BByiC= =V jhoy*—V chyy”,
(1- 8) chyx = KkjithchjCinzh + hdexhcey - htezhdey:

where B%,=Bjigbeg;, C%,=C,ig* gy, Ky is the curvature tensor of the
ambient manifold M, K;;* and K,.,* are those of the submanifold M and
the normal bundle of M respectively.

If the transform by F of any normal vector to M is always tangent to M,
that is, if there exists a tensor field f,* of mixed type such that

(1' 9) Fihcyi =fyaBah7
we say that M is generic (anti-holomorphic) in M (cf. [5],[6]).

For the transform by F of tangent vectors B;*, we have equations of the
form

(1- 10) Fithi:fbaBah _fbxcxh’

where f3* is a tensor field of type (1,1) defined on M and we have put
J6*=15"8t8""
Putting foa=r1°8car fya=F4*85a and foy=Ffs"gzy, We can easily find
(1. 11) Jta= —fab’ fay:fya-

Applying F to (1.9) and (1.10) respectively and using (1.1) and these
equations, we can easily verify

(1- 12) fbe.fea= - 5ba +fbxfza’
(1' 13) faefezzo’ fexfbe=07
(1.14) SEfy =0y

(1.12) and (1.13) show that M admits the so-called f-structure satisfying
F34f=0.

Differentiating (1.9) and (1.10) covariantly along M respectively and
using (1.2), (1.4) (1.5), and these equations, we find

(1' 15) 4 St =h*f " —h ",
(1 16) Vo fs*=hfs",
(1 17) f xehceyz hce:tf &

We now assume that the ambient manifold M is of constant holomorphic
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sectional curvature c. Then it is well known that its curvature tensor Kj;*
has the form

(1.18) Kyjit= 746:- (0ztg;i— 0gpi+ FyhFj;— FihFp;— 2F; F 7).

Therefore, substituting (1.18) into (1.6), (1.7) and (1.8), we obtain that
the equations of Gauss, Codazzi and Ricci are respectively given by

(1' 19) chba = ’gf (5dagcb - Bcagdb +fdafcb - Zfdrfba) + hdaxhcbz_ ht‘axhdbxs

(1. 20) Vahs*—V hay*= % (—fiSf o HF v+ 2F ac o5,
c

(1- 21) chy1= 'Z' (fdxfcy —fczfdy) + hdezhcey'— hcexhdey'

§ 2. Infinitesimal variations of generic submanifolds in a Kaehlerian
manifold

We consider an infinitesimal variation of a generic submanifold M of a
Kaehlerian manifold M given by

2.1 rh=zt(y) +v* (¥)e,

where v*(y) is a vector field of M defined along M and ¢ is an infinitesimal.
Then we have

2.2) Byt= Bkt (9pvh)e,

where By*=0d,%* are linearly independent vectors tangent to the varied subm-
anifold.

We displace Byt parallelly from the varied point (Z*) to the original point
(z*). We then obtain the vectors

Byt=Byk+I';t (x+ve) viByie
at the point (%), or

(2.3) Byh=Byh+ (7 yoh)e,
neglecting the terms of order higher than one with respect to &, where
(2. 4) vah=abv"+['j,-thfvi.

In the sequel we always neglect terms of order higher than one with res-
pect to & Thus putting

(2 5) 5Bbh=gbh——Bbh,
which and (2.3) imply
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(2.6) OBh= (Vyvh)e.
Putting
2.7 vh=v2B, i+ vCh,
we have
(2.8) Vot = (Vy* — b2 0%) B+ (Vyo™+ hp70v?) C2

because of (1.4) and (1.5).

Now we denote by C,* 2m—n mutually orthogonal unit normal vectors to
the varied submanifold and C,* the vectors obtained from C,* by parallel
displacement from the point (#*) to (z*). Then we have

2.9 Cp=Cr+ It (z+ve) viCye.
We put
(2.10) Cr=Cr—C,}t
and assume that § Cy* is of the form
(2.1 oC,t=1,te= (9,°B,t+7,%C,*)e.
Then, from (2.9), (2.10) and (2.11), we have
(2.12) T p=Ct— I hoiC,ie+ (1,2B.h+7,2C,P)e.

Applying the operator § to By/C,’g;;=0 and using (2.6), (2.8), (2.11)
and dg;;=0, we find

(7 syt hpayva) +7y=0,
where v,=v%g,, and 7,,=17,°gc> OF
(2.13) 72 =— (V0,4 hs®yv?),
Ve being defined to be F2=g*V, Applying also the operator ¢ to C,/C,igj;
=g,., and using (2.11) and dg;;=0, we find
(2.14) NyzFNzy=0,

where 7,,=17,°g.z-
We now assume that the infinitesimal variation (2.1) carries a generic

submanifold into a generic submanifold, that is,
(2.15) F#(z+ve)C,i are linear combinations of B,
Then, using V;F;#=0 and (1.6), we see that

F (z4e) i = (F 4030, F i) {Cyi— Miio*Cle+ (0,2Boi+1,°C,0) e}
= {FA—o0i ([;AF— T FR) & {Cyf— Iy o*Cye+ (2B, +1,7C.) el
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=F ihcyi+ {F ih (UyaBai"*' ﬂyzcxi) _f yaP jthvaat} =
that is, by (2.2) and (2.8),

(2 16) Fz'h (x+ 7}8) Eyi: yaﬁah - {fye (Veva - kea.z'(/z> + <Ey7ea+ ﬁyxfxa)} Eahs
— {12V 0%+ ko, ®v) + 1,5} Cle.

Thus (2.15) is equivalent to

(2~ 17) fya (Vavx_{_haexve) +77ya =0,
or, by (1.15) and (2.13), egivalent to
2.18) IV o= =fV v,

An infinitesimal variation given by (2.1) is called a generic variation if it
carries a generic submanifold into a generic submanifold. Thus we have

THEOREM 2.1. In order for an infinitesimal wariation to be generic, it is
necessary and sufficient that the variation vector v* satisfies

5V qor =1,V *v,.

COROLLARY 2.2. If a vector field v* defines a gemeric variation, then ano-
ther vector field v'* which has the same normal part as vt has the same pro-
perty. ’

For an infinitesimal variation given by (2.1), when v*=0, that is, when
the variation vector v* is tangent to the submanifold, we say that the vari-
ation is tangential and when v?=0, that is, when the variation vector v* is

normal to the submanifold, we say that the variation is normal.
Then we have

THEOREM 2. 3. A tangential variation is generic.

Suppose that a generic variation given by (2.1) carries a submanifold z*
=z"(y) into another submanifold #*=z*(y) and the tangent space of the
original submanifold at (z*) and that of the varied submanifold at the corr
esponding point (z*) are parallel. Then we say that the variation is parallel.

Since we have from (2.5), (2.6) and (2. 8),
(2.19 Byt= {052+ (V yv*— hy?,v7) €} B+ (V v+ by #0%) C e,
Thus we have

PROPOSITION 2. 4. ([8]) In order for an infinitesimal variation to be parallel,
it is mecessary and sufficient that

(2.20) V yo*+ hpF0*=0.
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If (2.20) is satisfied, then so is (2.18). Thus we have

THEOREM 2.5. A parallel variation is a generic variation.

§ 3. Variations of structure tensors

Suppose that an infinitesimal variation Z#*=a*4-v*(y)e carries a generic
submanifold into a generic submanifold, that is, it is generic. Then, putting

(3.1) F(z+ve) Cyi= (f,+0fy%) B,
from which and (2.16), we find
(3 2) 5f ya= {vyzf P —f. ¥ (Ve'v“ - keaxvz) —f (V evy+ hbeyvb)} €.

Thus we have

PROPOSITION 3.1. If an infinitesimal variation is generic, then the variation
of f,* is given by (3.2).

PROPOSITION 3.2. A generic variation preserves f,* if and only if
3.3 V0t —h207) +f 2 (Voo + hyyo?) —fo9,7=0.
We apply the operator d to (1.10), and use dF2=0, (2.6) and (2.11).
Then we get
FAV yvie= (0f3*) B +11V sote— (0f3%) C—f1* (0,2Blt+9,°C,2) €.
If we substitute (2.8) into this equation, then we have
(F2 7ot — by 0°) + (g0t 7o) £, Bhe—f(V 50— hyty?) Cole

= (5f ba) Bah+ {f 5 (V eva—keax'vr) _f bxﬂxa} Bahe—' (5f bz) Czh
+ {f 8¢ (V U5 heaz'va) _f bynyx} Czhs-

Comparing the tangential part and normal part of this, we have
(8.4 ofy= {fi* W o™+t hoe™®) + 1o (Vsv* — hy®y07) —f59,% &,

(3' 5) 5fba= {fea (vae_hbezvx) —'fbe (Veva_heaxvy) __’_fza (Vb'vz+ hbexve)
“sz (Vavz+ heaa:'ve)} £

We denote by .L the Lie derivative with respect to »2. Then (3.5) can be
written as follows

(3 6) ofy= {"Cf 5 (f Phy s — R be) v+ 12V s —fp*V a.vz) } E.

PROPOSITION 3.3. If an infinitesimal variation is gemeric, then the variation
of fi® is given by (3.5) or (3.6).
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PROPOSITION 3. 4. A genmeric variation preserves the f-structure f3* if and
only if
(3° 7) Lfba - (feahbe:z*heaxfbe) vx+fzavax —szVa'UzZO'

Applying the operator d to (1.3) and using (2.6), (2.8) and 0Jg;;=0,
we find

(3- 8) Bgcb = (chb+ vac - thbx'vz) &
from which,
(3.9 0geh=— (Fev?+ by —2he p7)e,

A variation of a submanifold for which dg.,;=0 is said to be isometric and
that for which dg, is proportional to g, is said to be conformal. Thus we
have

ProposITION 3. 5. ([81) In order for an infinitesimal variation to be isometric
or conformal, it is necessary and sufficient that

(3.10) V oy V v, —2hep,v7=0,
or

(3.-11) V oyt Vyo.—2h p,0"=2Ag 5
respectively, A being a certain function given by
(3.12) 2=~71L~(Vav“-—ha“1vf).

Now we assume that a generic variation preserves f,%, that is, df,*=0.
Transvecting (3.3) with f,* and using (1.11) and (1.12), we find

(3~ 13) Nyz= (V bva—hbazvz)f ybf 2
Substituting (3. 13) into (2.14), we get
VyvatV gvp— 2hbazvz)fybfza=0v

If the variation is conformal, then we have Ag,.,—0 with the help of (3.11),
that is, 2=0. Thus we have

THEOREM 3.6. If a generic conformal variation preserves f,°, then it is
isometric.

Now we denote by g the determinant formed with g Then the volume
element 4V of M is given by

(3. 14) dV=+/ g dy's...sdy".
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Since we have from (3.9) and (3. 10)
0vVg=+vgFrr—hsaoe,
from which, we get
(3.15) 0dV=W¥ v°—h,tv*)dVe.

Thus we have

ProrosITION 3.7. ([8]) In order for a variation of a submanifold to be
volume—preserving, it is necessary and sufficient that

Vot —h,? v7=0.

PrROPOSITION 3.8. ([8]) In order for a normal variation of a submanifold
to be volume—preserving, it is necessar and sufficient that

(3.16) k. v7y=0.

§$4. Some characterizations of a generic submanifold of a complex
projective space

In this section we assume that the ambient manifold of the submanifold is
a complex projective space.

Suppose that the generic variation is normal and preserves the structure
tensors f3* and f,%. Then we have from (3.7)

4.1 (faehs? 2t Freha®2) 05— (s o002 — oV 4v2) =0,

from which, taking the symmetric part with respect to a and b5,
(4.2) (fachs?otfrchats) v5=0,

and consequently

(4.3) S5V 0:=1oV vz

Transvecting (4.3) with f£.%, we find

4.4 SV 0:=0

with the help of (1.11).
If we transvect (4.4) with £,% and use (1.14), then we have

(4 5) fceVevxzo-
Substituting (4.5) into (3.3), we obtain
(4- 6) S y‘heazvx'{_f zaﬂyxzoy
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from which, transvecting with £, and using (1.14) and (2.14), we have
4.7 (k22 fy%) v==0.

We now assume that the generic variation admits 2m-» linearly indepen-
dent normal variations. Consequently, we can see that (4.2) and (4.7)
reduce respectively to

(4' 8) ho™fat+ haezf 3*=0,
(4.9) hastfyr=0.
We now prove the following theorem by taking account of Theorem A

in §0.

THEOREM 4.1. Let M be an n-dimensional complete generic submanifold of
CP™, If the connection in the normal bundle of M is flat, and if 2m-n line-
arly independent generic normal variations preserve the structure tensors, then

M is a real hypersurface of CP™ of the form
M:Mpacq(a) b)’

where (p,q) is some portion of m~1 and a*+b2=1.

Proof. Transvecting (1.21) with f,49f.* and using (4.9), we find
S ey—FFoy=0
because of K;,*=0 and ¢=4. Transvection f,’ yields
0: S oy =S *82y=0
with the help of (1.14). We can see from this equation that the codimen-
sion p=1, that is, M is a real hypersurface of CPm. Therefore, combining

(4.8) with Theorem A in §0, it follows that M=M, . (a, b), (p,q) being
some portion of m-1 and a?+#*=1. Thus this theorem is proved.

On the other hand, by making use of Theorem B in §0 and (3. 16), we
obtain

‘THEOREM 4. 2. Let M be a complete n—dimensional generic submanifold of
a complex projective space CP™ with flat normal connection. If 2m - n linearly
independent genmeric normal variations preserve the f-structure and volume ele-
ment of M, then M is of the form

Z(S™1(ry) X+ XS™(rp),

where my, ...,m; are odd numbers =1, r=+vm,ja+1 (@=1,...,k),
mi+-tmp=n+1, 2m—n=~k—1.
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COROLLARY 4.3. Let M be the same submanifold as that stated in Theorem

4.2. If 2m—n linearly independent parallel normal variations preserve the f—

structure and volume element of M, then we have the same conclusion of
Theorem 4. 2.

Proof. The variation is evidently generic by means of Theorem 2. 5. But,

differentiating (2. 20) with v*=0 covariantly along M and taking account of
the Ricci dientity, it must be that the connection in the normal bundle of
M is flat. Thus, all assumptions in Theorem 4. 2 are satisfied and consequen-
tly we have the same conclusion of Theorem 4. 2.

© ®
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