A CERTAIN POLYNOMIAL STRUCTURE

By YONG BAI BAIK*

0. Introduction

K. Matsumoto [8] has introduced the pseudo-f-structure defined by a tensor field f of type (1,1) satisfying $f^3-f=0$ and investigated the integrability conditions of the pseudo-f-structure. On the other hand, I. Sato [11] has studied an almost paracontact structure (f, ξ, η) of the pseudo-f-structure of rank n-1. The purpose of the present paper is to introduce a pseudo-framed structure and to obtain the results analogous to the properties of a framed structure. In § 1 we introduce a pseudo-framed structure of rank r and give an example of a manifold with such a structure. This structure is a generalization of an almost product structure and almost paracontact structure.

In § 2 we study structures induced on a product manifold of two pseudo-framed manifolds and prove the manifold $M \times R^{n-r}$ has an almost product structure. In § 3 we define the normal pseudo-framed structure and prove that the product manifold of two normal pseudo-framed manifolds has a normal pseudo-framed structure.

1. Pseudo-framed structure

Let M be an n-dimensional differentiable manifold of class C^{∞} . If there exists a tensor field f of type (1,1) of constant rank r satisfying the polynomial equation:

$$(1.1) f^3 - f = 0,$$

then we call the structure a pseudo-f-structure of rank r and the manifold M pseudo-f-manifold of rank r ([8]). This structure is a generalization of an almost product structure (r=n) and almost paracontact structure (r=n-1) ([11]).

If we put

(1.2)
$$s=f^2$$
, $t=-f^2+I$,

where I is the identity transformation field, then we get

(1.3)
$$s+t=I, \quad s^2=s, \quad t^2=t, \\ fs=f, \quad ft=0, \quad st=0.$$

Received Jan. 7, 1980

^{*}This research was supported by the Korea Science and Engineering Foundation.

The operators s and t acting in the tangent space at each point of M are therefore complementary projection operators and there exist complementary distributions S and T corresponding to the operators s and t, respectively. Then the distribution S is r-dimensional and distribution T is (n-r)-dimensional.

Let M be a manifold with pseudo-f-structure of rank r. There exist n-r vector fields ξ_x spanning the distribution T and its dual 1-forms η_x , where the indicies x, y, z run over the range $\{1, 2, ..., n-r\}$. Then we can put

$$(1.4) t = \eta_x \otimes \xi_x, \eta_x(\xi_y) = \delta_{xy}$$

where δ_{xy} is the Kronecker's delta, the summation convention being employed here and in the sequel. Therefore, for any vector field X we have

$$sX=f^2X, tX=\eta_x(X)\xi_x,$$

from which

$$(1.6) f^2 = I - \eta_x \otimes \xi_x.$$

From (1.3) and (1.5) we easily see that

$$(1.7) f\xi_x=0, \eta_x\circ f=0.$$

If there exist on M vector fields ξ_x and 1-forms η_x satisfying (1.4), (1.6) and (1.7), then the set (f, ξ_x, η_x) is called a pseudo-f-structure with comple mentary frame, or simply, a pseudo-framed structure and the manifold M a pseudo-framed manifold.

Let M be a manifold with pseudo-framed structure of rank r. Then there exists on M a Riemannian metric g such that

$$(1.8) g(X,\xi_x) = \eta_x(X),$$

(1.9)
$$g(fX, fY) = g(X, Y) - \eta_x(X)\eta_x(Y).$$

for any vector fields X and Y on M.

If we put

$$(1.10) F(X, Y) = g(X, f Y),$$

then we get

(1. 11)
$$F(X, Y) = F(Y, X),$$

which shows that F is a symmetric tensor.

Now, as an example, we consider a submanifold N of codimension r of an n-dimensional almost product manifold M with structure tensor (J, G). If B denotes the differential of imbedding $i: N \to M$ and X and Y are any vector fields of N, then the induced metric g on N is defined by

(1.12)
$$g(X, Y) = G(BX, BY).$$

We assume that the normal bundle of N is orientable. Then we choose mutually orthogonal unit vector fields C_x normal to N.

The transformations JBX and JC_x can be expressed as

$$(1.13) JBX = BfX + \eta_x(X)C_x,$$

$$(1.14) JC_x = B\xi_x + \lambda_x C_x,$$

where f is a tensor field of type (1.1), η_x are 1-forms, ξ_x are vector fields and λ_x are scalar fields defined on N.

We are interested in the antinormal submanifold, that is, $\lambda_x=0$ in (1.14). Then computing J^2BX , we get

$$BX=Bf^2X+\eta_x(fX)C_c+\eta_x(X)B\xi_x$$
,

from which, comparing tangential part and normal part,

$$f^2X=X-\eta_x(X)\xi_x$$
, $\eta_x(fX)=0$.

Similarly, computing J^2C_x we get

$$f\xi_x=0, \qquad \eta_y(\xi_x)=\delta_{yx}.$$

Therefore the antinormal submanifold N has a pseudo-framed structure of rank r.

2. Products of pseudo-framed manifolds

Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_\alpha, \overline{\eta}_\alpha)$ be two pseudo-framed manifolds of ranks r and \bar{r} , respectively, where the index x runs over the range $\{1, ...,$ n-r and the index α , runs over the range $\{1, ..., \bar{n}-\bar{r}\}$. Now, we introduce a pseudo-framed structure on a product manifold $M \times M$ as follows.

For a vector field $(X_p, \overline{X}_{\bar{p}})$ of the product manifold $M \times \overline{M}$ at a point (p, \bar{p}) , we shall denote $X_p + \bar{X}_{\bar{p}}$. We identify $X \in TM$ with $\tilde{X} \in T(M \times \overline{M})$ by

$$(2.1) \tilde{X}_{(a_1\bar{b})} = (X_{a_2} 0_{\bar{b}}) = X_{a_1} + 0_{\bar{b}},$$

(2.1) $\widetilde{X}_{(p,\overline{p})} = (X_p, 0_{\overline{p}}) = X_p + 0_{\overline{p}},$ where $0_{\overline{p}}$ is the zero vector of M at \overline{p} . If $\pi: M \times \overline{M} \to M$ and $\overline{\pi}: M \times \overline{M} \to \overline{M}$ are projections $\pi(p, \bar{p}) = p$ and $\bar{\pi}(p, \bar{p}) = \bar{p}$, respectively, then $\pi_* \tilde{X} \in T(M \times \overline{M})$ by

$$(2.2) \widetilde{X}_{(p,\bar{p})} = (0_p, \overline{X}_{\bar{p}}) = 0_p + \overline{X}_{\bar{p}}.$$

Differentiable 1-forms on M and \overline{M} are identified with 1-forms on $M\times M$ in the same way. If w and \bar{w} are 1-forms on M and M, respectively, then a 1-form \tilde{w} is defined on $M \times \overline{M}$ by

$$(2.3) \widetilde{w}_{(p,\bar{p})} (X_p, \overline{X}_{\bar{p}}) = w_p(X_p) + \overline{w}_{\bar{p}}(\overline{X}_{\bar{p}}).$$

Now, for any vector fields $X \in TM_p$ and $\overline{X} \in T\overline{M}_{\overline{p}}$, if we put

(2.4)
$$F(X, \overline{X}) = (fX, f\overline{X}),$$

then F defines a linear map of tangent space $T(M \times \overline{M})$ onto itself. From the last equation, we get

$$(2.5) F^2 = (I, \overline{I}) - (\eta_x \otimes \xi_x, 0) - (0, \overline{\eta}_a \otimes \overline{\xi}_a),$$

where I and \overline{I} are identity tensor fields of M and \overline{M} , respectively. (2.5) we get

$$(2. 6) F3 - F = 0,$$

and F has rank $r+\bar{r}$. If we put

$$E_x = (\xi_x, 0)$$
 $E_{n-r+\alpha} = (0, \bar{\xi}_\alpha),$ $w_x = (\eta_x, 0),$ $w_{n-r+\beta} = (0, \bar{\eta}_\beta),$

from which

$$w_x(E_y) = (\eta_x(\xi_y), 0), \quad w_{n-r+\alpha}(E_{n-r+\beta}) = (0, \bar{\xi}_\alpha(\bar{\eta}_\beta)).$$

Then (2.5) can be written by

$$(2.7) F^2 = \tilde{I} - w_A \otimes E_A,$$

where $\tilde{I}=(I,\bar{I})$ and $A,B=1,2,...,n+\bar{n}-r-\bar{r}$.

Moreover we get

(2.8)
$$FE_A=0, \quad w_A \circ F=0, \quad w_A(E_B)=\delta_{AB}.$$

Thus we have

THEOREM 2.1. Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_\alpha, \overline{\eta}_\alpha)$ be pseudo-framed manifolds of ranks r and \overline{r} , respectively. Then the product manifold $M \times \overline{M}$ carries a pseudo-framed structure (F, E_A, w_A) of rank $r + \overline{r}$.

Let R^m be an *m*-dimensional Euclidean space. Then R^m has a trivial pseudo-framed structure $(0, d/dt^a, dt^a)$. Hence by Theorem 2.1 we can introduce a pseudo-framed structure on $M \times R^m$ given by

$$(2.9) F(X, \lambda^{\alpha} d/dt^{\alpha}) = (fX, 0),$$

where λ^{α} are real valued functions on R^{m} . Then we have

$$F^2 = (I, \bar{I}) - (\eta_x \otimes \xi_x, 0) - (0, dt^\alpha \otimes d/dt^\alpha).$$

Thus we have

COROLLARY 2.2. Let $M(f, \xi_x, \eta_x)$ be a pseudo-framed manifold of rank r and R^m an m-dimensional Euclidean space with trivial pseudo-framed structure $(0, d/dt^a, dt^a)$. Then the product manifold $M \times R^m$ has a pseudo-framed structure $(F, \xi_x, d/dt^a, \eta_x, dt^a)$ of rank r given by (2.9).

Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_x, \overline{\eta}_x)$ be two pseudo-framed manifolds of dimensions n, \overline{n} and ranks r, \overline{r} , respectively, where we assume that $n-r=\overline{n}-\overline{r}$. For any vector fields $X_p \in TM_p$ and $\overline{X}_{\overline{p}} \in T\overline{M}_{\overline{p}}$, we define a linear map J of tangent space $T(M \times \overline{M})_{(p,\overline{p})}$ onto itself by

(2. 10)
$$J(X, \overline{X}) = (fX + \overline{\eta}_x(\overline{X})\xi_x, \overline{f}\overline{X} + \eta_x(X)\overline{\xi}_x).$$

Then we have

(2. 11)
$$J^2 = (I, \bar{I}),$$

which shows that J is an almost product structure.

Thus we have

THEOREM 2.3. Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_x, \overline{\eta}_x)$ be two pseudo-framed manifolds. Then the product manifold $M \times \overline{M}$ has an almost product structure J defined by (2.10).

Now, since R^{n-r} has a trivial pseudo-framed structure $(0, d/dt^x, dt^x)$, (t^x) being the coordinate in R^{n-r} , we can introduce an almost product structure J on a product manifold $M \times R^{n-r}$. If we put

(2. 12)
$$J(X, \lambda^x d/dt^x) = (fX + \lambda^x \xi_x, \eta_x(X) d/dt^x),$$

then we have $J^2 = (I, \bar{I})$.

Thus we have

THEOREM 2.4. Let $M(f, \xi_x, \eta_x)$ be a pseudo-framed manifold of rank r. Then the product manifold $M \times R^{n-r}$ has an almost product structure J defined by (2.12).

Finally, we prove the following:

THEOREM 2.5. Let $M(f, \xi_x, \eta_x)$ be a pseudo-framed manifold of rank r. If the induced almost product structure J on $M \times M$ is integrable, then the pseudo-framed structure f is integrable.

Proof. For any vector fields X and Y on $M \times M$, we define an induced almost product structure J on $M \times M$ as follows:

(2.13)
$$J(X, Y) = (fX + \eta_x(Y)\xi_x, fY + \eta_x(X)\xi_x).$$

Then the integrability condition of the induced almost product structure J on $M \times M$ is given by

$$\begin{bmatrix} J(X_1+X_2), J(Y_1+Y_2) \end{bmatrix} - J \begin{bmatrix} J(X_1+X_2), Y_1+Y_2 \end{bmatrix} \\
-J \begin{bmatrix} X_1+X_2, J(Y_1+Y_2) \end{bmatrix} + \begin{bmatrix} X_1+X_2, Y_1+Y_2 \end{bmatrix} = \mathbf{0},$$

for any vector fields $X=X_1+X_2$ and $Y=Y_1+Y_2$ on $M\times M$. By a direct computation we see that the above condition is equivalent to the following:

$$(2. 14) \begin{bmatrix} f, f \end{bmatrix} (X_1, Y_1) + \begin{bmatrix} fX_1, \eta_x(Y_2)\xi_x \end{bmatrix} - f[X_1, \eta_x(Y_2)\xi_x] \\ + \begin{bmatrix} \eta_x(X_2)\xi_x, fY_1 \end{bmatrix} - f[\eta_x(X_2)\xi_x, Y_1] - \eta_x(\begin{bmatrix} fX_2, Y_2 \end{bmatrix} + \begin{bmatrix} X_2, fY_2 \end{bmatrix})\xi_x \\ - \eta_x([\eta_y(X_1)\xi_y, Y_2] + [X_2, \eta_y(Y_1)\xi_y])\xi_x + [\eta_x(X_2)\xi_x, \eta_y(Y_2)\xi_y] = 0,$$

$$(2. 15) \begin{bmatrix} f, f \end{bmatrix} (X_2, Y_2) + \begin{bmatrix} f X_2, \eta_x(Y_1) \xi_x \end{bmatrix} - f \begin{bmatrix} X_2, \eta_x(Y_1) \xi_x \end{bmatrix} \\ + \begin{bmatrix} \eta_x(X_1) \xi_x, f Y_2 \end{bmatrix} - f \begin{bmatrix} \eta_x(X_1) \xi_x, Y_2 \end{bmatrix} - \eta_x(\begin{bmatrix} f X_1, Y_1 \end{bmatrix} + \begin{bmatrix} X_1, f Y_1 \end{bmatrix}) \xi_x \\ - \eta_x(\begin{bmatrix} \eta_y(X_2) \xi_y, Y_1 \end{bmatrix} + \begin{bmatrix} X_1, \eta_y(Y_2) \xi_y \end{bmatrix}) + \begin{bmatrix} \eta_x(X_1) \xi_x, \eta_y(Y_1) \xi_y \end{bmatrix} = 0.$$

Now, putting $X_2 = Y_2 = 0$ in (2.14) and (2.15) we obtain

(2.16)
$$[f, f](X_1, Y_1) = 0,$$

(2.17)
$$\eta_x([fX_1, Y_1] + [X_1, fY_1]) \dot{\xi}_{\bar{x}}, -[\eta_x(X_1) \dot{\xi}_x, \eta_y(Y_1) \dot{\xi}_y] = 0.$$

Again putting $X_1 = \xi_y$ and $Y_1 = \xi_z$ in (2.17), we get

(2. 18)
$$[\xi_y, \xi_z] = 0.$$

Putting $Y_1 = \xi_x$ in (2.16), we get

$$(2.19) f[X_1, \xi_x] = [fX_1, \xi_x].$$

Taking account of (2.18), (2.17) can be written by

(2. 20)
$$\eta_x([fX_1, Y_1] + [X_1, fY_1]) = 0.$$

Using (2.18), (2.19) and (2.20), the integrability conditions (2.14) and (2.15) are expressed as follows:

(2.21)
$$[f, f](X_1, Y_1) - \eta_x([\eta_y(X_1)\hat{\xi}_y, Y_2] + [X_2, \eta_y(Y_1)\hat{\xi}_y])\hat{\xi}_x = 0,$$

(2. 22)
$$[f, f](X_2, Y_2) - \eta_x([\eta_y(X_2)\xi_y, Y_1] + [X_1, \eta_y(Y_2)\xi_y])\xi_x = 0.$$
 Again putting $X_1 = \xi_x$ and $Y_1 = \xi_y$ in (2. 21), we get

$$(2.23) \eta_x(\lceil \xi_z, Y_2 \rceil + \lceil X_2, \xi_u \rceil) = 0.$$

Similarly we obtain

Then (2.21) and (2.22) are written by

$$[f, f](X_1, Y_1) = 0,$$
 $[f, f](X_2, Y_2) = 0,$

which shows that the pseudo-framed structure f is integrable.

3. Normal pseudo-framed structure

In the previous section, we have seen that the induced almost product structure J on $M \times R^{n-r}$ is defined by

(3.1)
$$J(X, \lambda^x d/dt^x) = (fX + \lambda^x \xi_x, \ \eta_x(X) d/dt^x)$$

for any vector field X on M and real-valued functions λ^x on R^{n-r} . We shall consider the case that the induced almost product structure J is integrable.

DEFINITION. If the induced almost product structure J on $M \times R^{n-r}$ is integrable, we say that the pseudo-framed structure f on M is normal.

Denoting by N^{A}_{BC} the components of the Nijenhuis tensor [J, J] (X, Y), N^{A}_{BC} is given by

$$N^{A}_{BC} = J^{E}_{B}\partial_{E}J_{C}^{A} - J^{E}_{C}\partial_{E}J_{B}^{A} - J_{E}^{A}(\partial_{B}J^{E}_{C} - \partial_{C}J^{E}_{B})$$
,

where the indicies A, B, C, \dots , run over the range $\{1, 2, \dots, 2n-r\}$.

Considering the Nijenhuis tensor [J, J] of J, they computed

$$[J, J](X+O, Y+O), [J, J](X+O, O+d/dt^x)$$

and

$$[J,J](O+d/dt^x,O+d/dt^y)$$

which rise to five tensors given by

$$N^{1}(X, Y) = N^{i}_{jk} = [f, f](X, Y) + d\eta_{x}(X, Y)\xi_{x},$$

 $N^{2}(X, Y) = N^{x}_{jk} = (L_{fX}\eta_{x})(Y) - (L_{fY}\eta_{x})(X),$

(3. 2)
$$N^{3}(X, U) = N^{i}_{jx} = (L_{\xi_{x}}f)X,$$

$$N^{4}(X, U) = N^{x}_{jy} = -(L_{\xi_{x}}\eta_{y})(X),$$

$$N^{5}(U, V) = N^{i}_{xy} = L_{\xi_{x}}\xi_{y},$$

for any vector fields X and Y on M and U, V on R^{n-r} , where L_X denotes the Lie derivative with respect to X. The pseudo-framed structure (f, ξ_x, η_x) is normal if and only if $N^1=0$, that is,

(3.3)
$$N^1(X, Y) = [f, f](X, Y) + d\eta_x(X, Y)\xi_x = 0.$$

We see that the trivial pseudo-framed structure $(O, d/dt^x, dt^x)$ is normal. Now, we prove the following.

THEOREM 3.1. Let M and \overline{M} be manifolds with normal pseudo-framed

structures. Then the pseudo-framed structure of the product manifold $M \times \overline{M}$ is normal.

Proof. Let $M(f, \xi_x, \eta_x)$ and $\overline{M}(\overline{f}, \overline{\xi}_\alpha, \overline{\eta}_\alpha)$ be pseudo-framed manifolds of ranks r and \overline{r} , respectively. By Theorem 2.1 $M \times \overline{M}$ carries a pseudo-framed structure of rank $r + \overline{r}$ given by (2.4.). Then we compute

from which

$$[F, F] = ([f, f], [\bar{f}, \bar{f}]).$$

Moreover

$$\begin{split} dw_A(X+\overline{X},\,Y+\overline{Y})\,E_A&=\{(X+\overline{X})\,w_A(Y+\overline{Y})-(Y+\overline{Y})\,w_A(X+\overline{X})\\ &-w_A([X+\overline{X},\,Y+\overline{Y}\,])\}\,E_A\\ &=(X\eta_x(Y)-Y\eta_x(X)-\eta_x([X,\,Y\,])\xi_x\\ &+(\overline{X}\overline{\eta}_x(\overline{Y})-\overline{Y}\,\overline{\eta}_x(\overline{X})-\overline{\eta}_x([\overline{X},\,\overline{Y}\,])\,\bar{\xi}_x, \end{split}$$

from which

$$(3.5) dw_A \otimes E_A = (d\eta_x \otimes \xi_x, d\bar{\eta}_\alpha \otimes \bar{\xi}_\alpha).$$

From (3.4) and (3.5) we get

$$(3.6) N^{1}(F) = (N^{1}(f), N^{1}(\bar{f})),$$

which shows that $M \times \overline{M}$ has a normal pseudo-framed strucutre.

LEMMA 3.2. If a pseudo-framed structure (f, ξ_x, η_x) is normal on M, then we have

- $(1) d\eta_x(X, \xi_y) = 0,$
- (2) $[\xi_x, \xi_y] = 0$,
- (3) $f[X, \xi_x] = [fX, \xi_x],$
- (4) $d\eta_x(fX, Y) d\eta_x(X, fY) = 0$.

Proof. Putting $Y=\xi_y$ in (3.3), we get

$$(3.7) -f\lceil fX,\xi_{\nu}\rceil + f^{2}[X,\xi_{\nu}] + d\eta_{z}(X,\xi_{\nu})\xi_{z} = 0.$$

Taking the inner product of the left hand side of the equation by ξ_x , we obtain

(3.8)
$$d\eta_x(X, \xi_y) = 0.$$

Secondly, Putting $X = \xi_x$ and $Y = \xi_y$ in (3.3), and using (3.8) we get (3.9) $[\xi_x, \xi_y] = 0$.

Thirdly, from (3.7) and (3.8) we get

(3. 10)
$$f[X,\xi_y] = f^2[fX,\xi_y] = [fX,\xi_y] - \eta_x([fX,\xi_y])\xi_x = [fX,\xi_y],$$
 with the help of (3. 8). Fourthly, Putting $Y = fY$ in (3. 3), we get
$$[fX,f^2Y] - f[fX,fY] - f[X,f^2Y] + f^2[X,fY] + d\eta_y(X,fZ)\xi_y = 0,$$
 from which, taking the inner product of the last equation by ξ_x

$$\eta_x([fX, f^2Y]) + d\eta_x(X, fY) = 0,$$

or

(3.11)
$$\eta_x([fX, Y]) - fX(\eta_x(Y)) + d\eta_x(X, fY) = 0.$$

On the other hand, by the definition of $d\eta_x$ we get

(3.12)
$$fX(\eta_x(Y)) - Y(\eta_x(fX)) - \eta_x([fX, Y]) - d\eta_x(fX, Y) = 0.$$

Adding the last two equations we have

(3.13)
$$d\eta_x(X, fY) - d\eta_x(fX, Y) = 0.$$

By the definition of Lie derivative, (1), (2), (3) and (4) are equivalent to $N^2=0$, $N^5=0$, $N^3=0$ and $N^2=0$, respectively.

Thus we have also the following (cf. [11]): If a pseudo-framed structure is normal, that is, $N^1=0$, then we have

$$N^2 = N^3 = N^4 = N^5 = 0$$
.

Finally, we prove the following.

THEOREM 3.3. Let $M(f, \hat{\xi}_x, \eta_x)$ be a manifold with normal pseudo-framed structure of rank r. If f and η are Killing tensors, the structure tensors f, $\hat{\xi}_x$ and η_x are covariantly constant, that is,

$$V_x f = 0$$
, $V_x \xi_x = 0$, $V_x \eta_x = 0$.

Proof. Since η_x are Killing forms we get

$$(V_X\eta_x)(Y)+(V_Y\eta_x)(X)=0,$$

from which

(3.14)
$$d\eta_x(X, Y) = -2(V_Y\eta_x)(X).$$

By the normality N^3 vanishes identically, that is, $L_{\xi x} f = 0$, and hence we get $(L_{\xi x} F)(X, Y) = (L_{\xi x} g)(X, fY) = 0$,

from which

$$(\nabla_{\xi_x} F)(X, Y) = (\nabla_X F)(Y, \xi_x) + (\nabla_Y F)(X, \xi_x).$$

Since F is a Killing tensor, we get

(3.15)
$$(\nabla_{\xi_x} F)(X, Y) = 0.$$

Since f is a Killing tensor, by the normality $N^3=0$, we get

$$0 = (\nabla_{\xi_x} f) X = -(\nabla_X f) \xi_x = f(\nabla_X \xi_x).$$

Hence if X is orthogonal to ξ_x , then we can put X=fZ for some Z and we obtain

$$d\eta_x(X, Y) = -2g(X, V_Y \xi_x) = -2g(fZ, V_Y \xi_x) = -2g(Z, f(V_Y \xi_x)) = 0.$$

Thus, from (3.8) we have

$$(3.16) d\eta_x = 0.$$

From (3.14) we get

$$\nabla_X \eta_x = 0$$

from which

$$\nabla_X \xi_x = 0.$$

On the other hand, by the normality and (3.16) we get $(\nabla_{fX}f) Y - (\nabla_{fY}f) X - f(\nabla_{X}f) Y + f(\nabla_{Y}f) X = 0$.

Since
$$f$$
 is a Killing tensor, we get

$$-(\nabla_{\mathbf{Y}}f)fX+(\nabla_{\mathbf{X}}f)fY-2f(\nabla_{\mathbf{X}}f)Y$$

$$= -(\nabla_{\mathbf{Y}}f^2)X + f(\nabla_{\mathbf{Y}}f)X + (\nabla_{\mathbf{X}}f^2)Y - f(\nabla_{\mathbf{X}}f)Y - 2f(\nabla_{\mathbf{X}}f)Y = 0,$$

from which $f(\nabla_X f) Y = 0$.

Applying f to the last equation, we get

$$(\nabla_X f) Y - \eta_x ((\nabla_X f) Y) \xi_x = 0,$$

from which we have

$$V_X f = 0$$
.

References

- 1. D. E. Blair, The theory of quasi-Sasakian structures, J. Diff. Geom., 1(1967), 331-345.
- 2. D. E. Blair, Geometry of manifolds with structure group $U(n) \times O(s)$, J. Diff. Geom., 2(1970), 155-167.
- 3. D. F. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. of Math., 2(1971), 285-292.
- D. E. Blair and K. Yano, Affine almost contact manifolds and f-manifolds with affine Killing structure tensors, Kôdai Math. Sem. Rep., 23(1971), 473-479.
- S. I. Goldberg, Framed manifolds, Differential Geometry, in honor of K. Yano, 1972, 121-132.
- 6. S. I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tôhoku Math. J., 22(1970), 363-370.
- 7. H. Nakagawa, On framed f-strucutre induced on submanifolds in space, almost Hermitian or Kaehlerian, Kôdai Math. Sem. Rep., 18(1966), 161-183.
- 8. K. Matsumoto, On a structure defined by a tensor field f of type (1.1) satisfying $f^3-f=0$, Bull. Yamagata Univ., 1(1976), 33-47.
- 9. S. Sasaki, On differentiable manifolds with certain structure which are closely related to almost contact structure, Tôhoku Math. J., 12(1960), 459-476.
- S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14(1962), 249-272.
- 11. I. Sato, On a structure similar to almost contact structures, Tensor, N. S., 30(1976), 219-224

Busan National University