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A CERTAIN POLYNOMIAL STRUCTURE

By YONG BAl BAlK*

O. Introduction

K. Matsumoto[8] has introduced the pseudo-f-structure defined by a tensor
field f of type (1,1) satisfying j3-f=O and investigated the integrability
conditions of the pseudo-j-structure. On the other hand, L Sato [l1J has
studied an almost. paracontact structure (f,~, 7) of the pseudo-f-structure
of rank n-l. The purpose of the present paper is to introduce a pseudo-framed
structure and to obtain the results analogous to the properties of a framed
structure. In § 1 we introduce a pseudo-framed structure of rank. r and give
an example of a manifold with such a structure. This structure is a genera­
lization of an almost product structure and almost paracontact structure.

In § 2 we study structures induced on a product manifold of two pseudo-

framed manifolds and prove the manifold MX Rn
-

r has an almost product
structure. In § 3 we define the normal pseudo-framed structure and prove
that the product manifold of two normal pseudo-framed manifolds has a normal
pseudo-framed structure.

1. Pseudo-framed structure

Let M be an n-dimensional differentiable manifold of class c;. If there
exists a tensor field f of type (1, 1) of constant rank r satisfying the
polynomial equation:
(1.1) f3_f=0,
then we call the structure a pseudo-j-structure of rank T and the manifold
M pseudo-f-manifold of rank T ([8J). This structure is a generalization of
an almost product structure (r=n) and almost paracontact structure (r=n-l)
([l1J).

If we put
(1. 2) s=f2, t= - f2+ 1,
where 1 is the identity transformation field, then we get
(1. 3) s+t=1, S2=S, t2=t,

js=j, ft=O, st=O.
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The operators sand t acting in the tangent space at each point of Mare
therefore complementary projection operators and there exist complementary
distributions Sand T corresponding to the operators sand t, respectively.
Then the distribution S is r-dimensional and distribution T is (n-r)-dimen­
sional

Let M be a manifold with pseudo-I-structure of rank r. There exist n-r
vector fields t;z spanning the distribution T and its dual I-forms 7)z, where
the indicies x, y, z run over the range {l, 2, ..., n-r}. Then we can put
(1.4) t=7)z®t;z' 7Jz(t;y) =ozy
where Ozy is the Kronecker's delta, the summation convention being employed
here and in the sequel Therefore, for any vector field X we have
:eL 5) sX=J2X, tX=7)z (X) t;x ,
from which
(1. 6) 1 2= I -TJz®t;z •
From (1. 3) and (1. 5) we easily see that
(1. 7) It;z=O, TJzo/=O.
If there exist on M vector fields t;z and I-forms TJz satisfying (1. 4), (1.6)
and (1. 7), then the set (I, t;z, TJz) is called a pseudo-I-structure with comple
mentary frame, or simply, a pseudo-framed structure and the manifold M
a pseudo-framed manifold.

Let M be a manifold with pseudo-framed structure of rank r. Then there
exists on M a Riemannian metric g such that
(1. 8) g(X, t;z) =TJAX),
(1.9) g(/X,IY)=g(X, Y)-TJz(X)TJz(Y).
for any vector fields X and Y on M.

If we put
(1.10) F(X, Y) =g(X, IY),
then we get
(1.11) F(X, Y) =F(Y, X),
which shows that F is a symmetric tensor.

Now, as an example, we consider a submanifold N of codimension r of an
n-dimensional almost product manifold M with structure tensor (J, G). If B
denotes the differential of imbedding i : N ~ M and X and Yare any \Tector
fields of N, then the induced metric g on N is defined by
(1. 12) g (X, Y) =G (BX, BY).
We assume that the normal bundle of N is orientable. Then we choose
mutually orthogonal unit vector fields ez normal to N.

The transformations JBX and JCz can be expressed as
(1.13) JBX=BIX+7Jz(X)Cz ,
(1.14) JCz=Bt;z+ AzCz ,
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where f is a tensor field of type (1. 1), 1Jx are I-forms, ~x are vector fields
and Ax are scalar fields defined on N.

We are interested in the antinormal submanifold, that is, Ax=O in (1.14).
Then computing J2BX, we get

BX=Bj2X+1Jx(fX)Cc+1Jx(X)Bf;x,
from which, comparing tangential part and normal part,

j2X=X-1Jx(X)~x, 1Jx(fX) =0.
Similarly, computing J2Cx we get

f~x=O, 1Jy (f;x) =Oyx •
Therefore the antinormal submanifold N has a pseudo-.:framed structure of
rank r.

2. Products of pseudo-framed manifolds

Let M(f, t;x, 1Jx) and M(!, ~a, 1ja) be two pseudo-framed manifolds of
ranks rand f, respectively, where the index x runs over the range {I, ...,
n - r} and the index a, runs over the range {I, ..., ii-f }. Now, we intro­
duce a pseudo-framed structure on a product manifold MXM as follows.

For a vector field (Xl>' Xp) of the product manifold MXM at a point
(p,p), we shall denote Xp+Xp• We identify XETM with XET(MXM)
by
(2.1) X(P.p> = (Xl>' Op) =Xp+Op,
where Op is the zero vector of M at p. If 71: : MXM-M and 1t : MXM-M
are projections 7I:(p,p) =p and 7i(p,p) =p, respectively, then 7I:*XET(MXM)
by
(2.2) XcP•p>= (Op, Xp) =Op+Xp•

Differentiable I-forms on M and M are identified with I-forms on MXM
in the same way. If wand w are I-forms on M and M, respectively, then
a I-form w is defined on MXM by
(2.3) wcp,p> (Xp. Xp) =wp(Xp) +wp(Xp).

Now, for any vector fields XE TMp and XE T M p, if we put
(2.4) F(X, X) = (fX,fX),
then F defines a linear map of tangent space T(MXM) onto itself. From
the last equation, we get
(2.5) F2= (1,1) - (1Jx0~x, 0) - (0, 'ij,,0~a),

where I and 1 are identity tensor fields of M and M, respectively. From
(2.5) we get
(2.6) F3_F=0,
and F has rank r+ f . If we put

Ex= (t;x, 0) En-r+,,= (0, ~a),
W x= (1Jx, 0), Wn-r+fJ· (0, 1jfJ),
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wAEy) = (TJz(~y), 0), w,,-r+a(E,,-,.-tp) = (0, ~a('ijp».
Then (2. 5) can be written by
(2.7) F2=1-wA@EA,
where 1= (1, 1) and A, B=I, 2, ..., n+n-r-r.
Moreover we get
(2.8) FEA=O, wAoF=O, WA (EB) =OAB.

Thus we have

THEOREM 2.1. Let M(f, ~n 7}z) and M(], ~a, 'ija) be pseudo-framed mani­
folds of ranks rand r, respectively. Then the product manifold M XM carries
a pseudo-framed structure (F, EA, w~ of rank r+r.

Let Rm be an m-dimensional- Euclidean space. Then Rm has a trivial
pseudo-framed structure (0, d/tIea, dta). Hence by Theorem 2.1 we can intro·
duce a pseudo-framed structure on MXRm given by
(2.9) F(X, ).ad/dea) = (fX, 0),
where ).a are real valued functions on Rm. Then we have

p2= (I, I) - (7}z~n 0) - (0, dr@d/dta) .
. Thus we have

COROLLARY 2. 2. Let M(f, ~z, 7}z) be a pseudo-framed manifold of rank r
and Rm an m-dimensional Euclidean space with trivial pseudo-framed structure
((), d/dea,tIea). Then the product manifold M XRm has a pseudo-framed
stru::ture (F, ~n d/dea, 7}z, dea) of rank r given by (2.9).

Let M(f, ~n 7}z) and M(], ~n 'iiz) be two pseudo-framed manifolds of
dimensions n, n and ranks r, r, respectively, where we assume that n-r=
n-f. For any vector fields XpE TMp and X~ETMp, we define a linear
map J of tangent space T(MXM) (p,P> onto itself by
(2.10) J(X, X) = (fX+'ii:rCX)~n ]X+7}zCX)~z).

Then we have
(2. 11) J2= (I, I),
which shows that J is an almost product structure.

Thus we have

THEOREM 2. 3. Let M(f, ~z, 7}z) and M (], ~n 'iiz) be two pseudo-framed
manifolds. Then the product manifold M XM has an almost product structure
J defined by (2.10).

Now, since R"-r has a trivial pseudo-framed structure (0, d/de:r, de:r), (e:r)

being the coordinate in R"-r, we can introduce an almost product structure

J on a product manifold M xR"-r. H we put
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x x
(2.12) J(X, A d/dtx) = (jX+). ~n 1Jx(X)d/dtx),
then we have J2= (1,1).

Thus we have

THEoREM 2. 4. Let M(j, ~x, 1Jx) be a .pseudo-framed manifold of rank r.
Then the product manifold MX Rn-r has an almost product structure J defined
by (2.12).

Finally, we prove the following:

THEoREM 2. 5. Let M (f, ~.x.1Jx) be a pseudo-framed manifold of rank r.
If the induced almost product structure J on MXM is integrable, then the
pseudo-framed. structure f is integrable.

Proof. For any vector fields X and Y on M X M, we define an induced
almost product structure Jon M XM as follows:
(2.13) J(X, Y) = (jX+7JAY)ex ,fY+1Jz(X)~z).

Then the integrability condition of the induced almost product structure J on
..MX M is given by

[J(Xl+X2), J(Yl+ Y2)]-J[J(Xl+X0, YI+ YJ
-J[XI+X2> J(YI+ Y0]+[XI+X2, YI+ YJ=o,

for any vector fields X = Xl+ X2 and Y= YI+ Y2 on M X M. By a. direct
computation we see that the above condition is equivalent to the following:

(2.14) U,f] (Xh YI ) +[fXb 1Jx(y2)ez]- f[Xh 1JAY0ez]
+[7JzCX0~nfYI]- f[7Jz(X2)~n YI]-1JzC[fX2> YJ+[X2>fy2])ez
-1Jx([7J,(XI)ey> YJ+[X2, 7J,(YI){y])~x+[7J.x<x0en 7J,(Yz)~,]=O,

(2. 15) [f, I] (X2, Y0 +[IX2, 7Jz(YI)ex] - I[X2, 7Jx (YJ ez]

+[7Jx(XI)en IY2]-f[7JzCxJez, Y2]-7Jz([fXh YI]+[Xh IYJ)ex
-7Jz([7J,(x2)ey , YI]+[Xh 7Jy (y2)ey]) +[7JzCxl)ez, 7Jy(YJe,]=O.

Now, putting X 2= Y2=0 in (2. 14) and (2. 15) we obtain
(2.16) [f,/](Xh YI)=O,
(2.17) 7Jx([/Xh YI]+[Xh IYI])~.x, -[7J.xCXl)~Z' 7Jy(YI)~y]=O.

Again putting XI=~y and YI=~% in (2.17), we get
(2. 18) Ley, ~::J=o.
Putting Y l =~x in (2. 16), we get
(2.19) I[Xh ~x]=[fX h ~z] .
Taking account of (2.18), (2.17) can he written by
(2.20) 7JxC[fXh Yl]+[Xl> fYl]) =0.
Using (2. 18), (2. 19) and (2. 20), the integrabilitY conditions (2. 14) and
(2.15) are expressed as follows:
(2.21) [f, I] (Xl> Yl) -1JxC[7Jy (Xl) {", Y2]+[X2, 1JY(Yl)~y])~x=O,
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(2.22) [I, I] (X2, Y2) -1)x([1)'y(X2)~.l" Y1]+[Xh 1),Y(Y2)~,Y])~x=0.

Again putting Xl =~'" and Y1=~u in (2.21), we get
(2. 23) 1)xC[~"" Y 2]+[X2, ~u]) =0.
Similarly we obtain
(2. 24) 1)x([~"" Y I ] +[Xh ~u]) =0.
Theil (2. 21) and (2. 22) are written by

[I, 1](Xh Y1) =0, [I, I] (X2, Y 2) =0,
which shows that the pseudo-framed structure 1 is integrable.

3. Normal pseudo-framed structure
In the previous section, we have seen that the induced almost prcduct,,-r

structure J on M X R is defined by
x· x

(3.1) J(X,Ad/dtx)=(jX+).~x, 1)x(X)d/dtx)
. x

for any vector field X on M and real-valued functions it on R,,-r. We shall
consider the case that the induced almost product structure J is integrable.

,,-r
DEFINITION~ If the induced almost product structure J on MX R is inte~

grable, we say that the pseudo-framed structure 1 on M is normal. -

Denoting by NABC the components of the Nijenhuis tensor [J, J] (X, Y),
NABC is given by

. NABC=JEdJEJCA_JECOEJBA_JEA(OBJEC-OCJEB) ,
where .the indicies A, B, C, "', run over the range {I, 2, "', 2n-r}.

Considering the Nijenhuis tensor [J, J] of J, they computed
[J, J](X+O, Y+O), [J, J](X+O, O+d/dF)

and
[J, J](O+d/dtX, O+d/dt,Y)

which rise to five tensors given by ,
Nl(X, Y) = Nijk= [f,/] (X, Y) +d1)x(X, Y)~x>
N2(X, Y)' NXjk= (L/;1)x) (Y) - (L/y1)z) (X),

(3.2) N3(X, U) = Nijx= (Le,J) X,
N4(X, U) =Nxjy=- (Le",1),Y) (X),
N5(U, V) =Nixy=Le%~,Y,

for any vector fields X and Y on M and U, Von R,,-r, where Lx denotes
the Lie derivative with respect to X. The pseudo-framed structure (I, ~z, 1)z)
is normal if and only if N 1= 0, that is,
(3.3) Nl(X, Y) =[f,/J (X, Y) +d1)xCX, Y)~x=O.

We see that the trivial pseudo-framed structure (0, d/dtX
, dtz) is normal

Now, we prove the following.

THEOREM 3. 1. Let ill and M be manifolds with normal pseudq-Iramed
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structures. .Then the pseudo-framed structure of the product manifold MX M
is normal.

Proof. Let M(f, ~:x, 1J:x) and M(], ~a, fja) be pseudo-fr~med manifolds of

ranks rand f, respectively. By Theorem 2.1 MXM carries a pseudo-framed
structure of rank r+f given by (2.4.). Then we compute

[F, F](X+X, Y+Y) =[F(X+X) , F(Y+Y)]-F[F(X+X), Y+Y]
-F[X+X, F(Y+Y)]+F2[X+X, Y+Y]

=[(fX+ ]X,fY+ ]Y]-F[fx+lx, Y+Y]
-F[X+X, fY+ ]Y]+F2[X+X, Y+Y]

= ([fX, fYJ, [IX, !YJ):.- (f[fX, YJ, ![!X, YJ)
- (f[X, fY], lex, ]YJ) + (f2[X, YJ, !2[X, Y]),

=([f,f](X, Y), [!,!J(X,Y))
from which
(3. 4) [F, F] .([f, f], [I, !J).
Moreover

dWA(X+X, Y+Y)EA= {(X+X)WA(Y+Y) - (Y+Y)WA(X+X)
-WA([X+X, Y+Y])}E...

= (X1J:x(Y) - Y1JxCX) -1jxC[X, y]}e..,
+ (X1ja(Y) - Y 1j.., (X) -fj:x([X, Y])~a,

from which
(3.5) dWA®EA= (d1J..,®~.." dfja®~a)'

From (3.4) and (3.5) we get
(3. 6) Nt (F) = (Nt (f), Nt (1) ),
which shows that MXM has a normal pseudo-framed strucutre.

LEMMA 3.2. If a pseudo-framed structure (f,~:xt 1J:x) is normal on M, then
we have

(1) d1jxCX, ~y) =0,
(2) [~.." ~y]=O,

(3) f[X, e:x] = [fX, ~:x],

(4) d1j:x(fX, Y) -d1j..,(X, fY) =0.

and using (3.8) we get

by ~:x, we

d1J..,(X, ~y) =0.
Putting X=~:& and Y=~y in (3.3),

[~:&, ~y]=O.

and (3.8) we get

Proof. Putting Y =~y in (3. 3), we get
(3. 7) - f[fX, ~y]+P[X, ~yJ+d1j%(X,{y)~%=O.
Taking the inner product of the left hand side of the equation
obtain
(3.8)
Secondly,
(3.9)
Thirdly, from (3.7)
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(3.10) f[X, ';3/J=f2[fX, ';3/J= [fX, ';3/J-1]zC[JX, ';3/J)';z=[fX, ';3/J,
with the help of (3. 8). Fourthly, Putting Y fY in (3. 3), we get

[fX, j2YJ- f[fX, fYJ- f[X, j2YJ+ f2[X, fYJ+d1],,(X, f Z )';3/=O,
from which, taking the inner product of the last equation by ';z

1]zC[fX, f2YJ) +d1]zCX,fY) =0,
or
(3.11) 1]zC[fX, YJ) -fX(1]zCY» +d1]z(X, fY) =0.

On the other hand, by the definition of d1]z we get
(3.12) fX(7}z(Y» - Y(7}zCfX» -7}z([fX, YJ) -d7}:r;(fX, Y) =0.
Adding the last two equations we have
(3.13) d7}zCX,fY) -d1]z<fX, Y) =0.

By the definition of Lie derivative, (1), (2), (3) and (4) are equivalent
to N2=O, N5=0, N3=0 and N2=O, respectively.

Thus we have also the following (cf. [l1J): If a pseudo-framed structure
is normal, that is, Nl=O, then we have

N2=N3=N4=N5=0.

Finally, we prove the following.
THEOREM 3. 3. Let M (f, eZ, 1]z) be a manifold with normal pseudo-framed

structure of rank r. If f and 1] are Killing tensors, the structure tensors j,
';z and 7}z are covariantly constant, that is,

P'xf=O, P'~z=O, P'x1]z=O.

Proof. Since TJz are Killing forms we get
(P'x1]:J (Y) + (P'y1]z) (X) =0,

from which
(3.14) d1]zCX, Y) =-2(P'y1]z)(X).
By the normality N3 vanishes identically, that is, Le,rf=O, and hence we get

(LezF) (X, Y) = (Le$) (X,jY) =0,
from which

(P'e:r;F) (X, Y) = (P'x F ) (Y, ';,r) + (P'yF) eX, ';:r;).
Since F is a Killing tensor, we get
(3. 15) (P'ezF) (X, Y) =0.
Since f is a Killing tensor, by the normality N3=0, we get

0= (VeJ) X = - (P'xf)';z f (V~z).
Hence if X is orthogonal to';:I:> then we can put X fZ for some Z and we
obtain

dTJAX, Y) = - 2g (X, P'~z) = - 2g(fZ, P'~z) = - 2g(Z,f (V~z» =0.
Thus, from (3.8) we have
(3. 16) d1]z=O.
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From (3. 14) we get
(3.17) Ji'x1Jx=O,
from which
(3. 18) Ji'x~x=O.

On the other hand, by the normality and (3. 16) we get
(Ji'jxf) Y- (Ji'jyf)X-!Wxf) Y+f(17yf)X=o.

Since f is a Killing tensor, we get
- (Ji'yf)fX+ (17xf)fY-2f(17x f) Y

=- (Ji'yf2)X+f(yyf)X+ (yxf 2) Y-f(17xf) Y-2fCfTxf) Y=O,
from which f(17xf) Y=o. .
Applying f to the last equation, we get

CfTxf) Y-1JxCCfTxf) Y)~x=O,
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from which we have
(3.19) 17x f=O.

References

1. D. E. Blair, The theory of quasi-Sasakian structures, J. Diff. Geom., 1(1967), 331­
345.

2. D. E. Blair, Geometry of manifolds with structure group U(n) xO(s), J. Diff.
Geom., 2(1970), 155-167.

3. D. F. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. of
Math., 2 (1971), 285-292.

4. D. E. Blair and K. Yano, Affine almost contact manifolds and f-manifolds with affine
Killing structure tensors, K6dai Math. Sem. Rep., 23(1971), 473-479.

5. S. I. Goldberg, Framed manifolds, Differential Geometry, in honor of K. Yano,
1972, 121-132.

6. S. I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tahoku Math.
J., 22(1970), 363-370.

7. H. Nakagawa, On framed f-strucutre induced on submanifolds in space, almost
Hermitian or Kaehlerian, K6dai Math. Sem. Rep., 18(1966), 161-183.

8. K. Matsumoto, On a structure defined by a tensor field f of type (1. 1) satisfying
J3-f=O, Bull. Yamagata Univ., 1(1976), 33-47.

9. S. Sasaki, On differentiable manifolds with certain structure which are closely related
to almost contact structure, Tahoku Math. J, 12(1960), 459-476-

10. S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric struc­
tures, J. Math. Soc. Japan, 14(1962), 249-272.

11. I. Sato, On a structure similar to almost contact structures, Tensor, N. S., 30(1976),
219-224

Busan National University




