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A CERTAIN POLYNOMIAL STRUCTURE

By YonNG BAr Baik*

0. Introduction

K. Matsumoto[ 8] has introduced the pseudc-f-structure defined by a tensor
field f of type (1,1) satisfying f3—f=0 and investigated the integrability
conditions of the pseudo—f—structure. On the other hand, I Sato [11] has
studied an almost paracontact structure (f,§,7) of the pseudo—f-structure
of rank n-1. The purpose of the present paper is to introduce a pseudo—framed
structure and to obtain the results analogous to the properties of a framed
structure. In § 1 we introduce a pseudo—framed structure of rank r and give
an example of a manifold with such a structure. This structure is a genera-
lization of an almost product structure and almost paracontact structure.

In § 2 we study structures induced on a product manifold of two pseudo-
framed manifolds and prove the manifold MXR*" has an almost product
structure. In 8 3 we define the normal pseudo—framed structure and prove
that the product manifold of two normal pseudo-framed manifolds has a normal
pseudo-framed structure.

1. Pseudo-framed structure

Let M be an n—dimensional differentiable manifold of class C*. If there
exists a tensor field f of type (1,1) of constant rank r satisfying the
polynomial equation:

(1- 1) f3 —f=0,

then we call the structure a pseudo-f-structure of rank r and the manifold
M pseudo-f-manifold of rank r ([8]). This structure is a generalization of
an almost product structure (r=7) and almost paracontact structure (r=n—1)

(C11).

If we put
1.2 - s=f2, =—f2+1
where I is the identity transformation field, then we get
(1.3) s+ti=1, s=s, t2=t¢,

fs=fa ft——"O, Stzo.
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The operators s and ¢ acting in the tangent space at each point of M are
therefore complementary projection operators and there exist complementary
distributions S and T corresponding to the operators s and ¢, respectively.
Then the distribution S is r—dimensional and distribution T is (z—r)-dimen-
sional. '

Let M be a manifold with pseudo—f-structure of rank r. There exist n—r
vector fields &, spanning the distribution 7T and its dual 1-forms %,, where
the indicies z, y, z run over the range {1,2,...,z—r}. Then we can put
(1- 4) £ =771‘®$.‘t H Nz (Ey) =5zy
where 0., is the Kronecker’s delta, the summation convention being employed
here and in the sequel. Therefore, for any vector field X we have

(1. 5) sX=f2X, tX=n.(X)¢;,
from which

(1.6) Fi=I1-1,R%;.

From (1.3) and (1.5) we easily see that

(1. 7) - f Exz‘)a Nzof=0.

If there exist on M vector fields &, and 1-forms 7%, satisfying (1.4), (1.6)
and (1.7), then the set (£,§,,7,) is called a pseudo-f-structure with comple
mentary frame, or simply, a pseudo-framed structure and the manifold M
a pseudo—framed manifold.

Let M be a manifold with pseudo-framed structure of rank r. Then there
exists on M a Riemannian metric g such that

(1- 8) g(Xa E.t) =Tz (X),
(1.9) g(fX:fY)=g(X’ Y) "ﬂz(X)ﬂr(Y)-
for any vector fields X and Y on M.
If we put
(1.10) FX,Y)=2(X, FY),
then we get
(1.11) F(X, Y)=F(Y,X),

which shows that F is a symmetric tensor.

Now, as an example, we consider a submanifold N of codimension r of an
n—dimensional almost product manifold M with structure tensor (J,G). If B
denotes the differential of imbedding i : N— M and X and Y are any vector
fields of N, then the induced metric g on N is defined by
(1.12) 2(X, Y) =G(BX, BY).

We assume that the normal bundle of N is orientable. Then we choose
mutually orthogonal unit vector fields C, normal to N.

The transformations JBX and JC, can be expressed as
(1.13) JBX=BfX+7n.(X)C,,

(1- 14) Ji Cz=B§x+ ZICI ’
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where f is a tensor field of type (1.1), 7, are 1-forms, &, are vector fields
and A, are scalar fields defined on N.
We are interested in the antinormal submanifold, that is, 1,=0 in (1. 14).

Then computing J2BX, we get

from which, comparing tangential part and normal part,
fiX=X—-7.(X)&,, 7:(fX) =0.

Similarly, computing J2C, we get
f E.z::Os Ny (Ez) =5y:p .

Therefore the antinormal submanifold N has a pseudo—framed structure of

rank r.
2. Products of pseudo-framed manifolds

Let M(f,&.,7,) and M(f, &,,%.) be two pseudoframed manifolds of
ranks r and 7, respectively, where the index z runs over the range {1, ...,
n—r} and the index a, runs over the range {1,...,7—7}. Now, we intro-
duce a pseudo—framed structure on a product manifold M XM as follows.

For a vector field (X, Xj; p) of the product manifold MXM at a point
(#,3), we shall denote X,+X; We identify X&TM with Xe T(MXM)
by
21 X(p,f)_'(X 05) =X,+0z
where 0; is the zero vector of M at 3. If 7: MXM—M and 7 : MXM—M
are projections 7 (p, ) =p and Z(p, p) =5, respectively, then z,X & T (M X M)
by
(2' 2) X(p,f)_ (Ops X}) OP+X5

Differentiable 1-forms on M and M are identified with 1-forms on MXM
in the same way. If w and @ are 1-forms on M and M, respectively, then
a 1-form @ is defined on M XM by

(2. 3) . Z?)(i,,f) (XP’ X;) =wi,()£1,) +17}£(X;).
Now, for any vector fields X TM, and X&T Mj, if we put
(2.4) F(X, X)=(fX, fX),

then F defines a linear map of tangent space T(MXM) onto itself. From
the last equation, we get
(2- 5) Fi= (Iy I) - (v.:@s.z" O) - (0, ﬁu@éa),
where I and I are identity tensor fields of M and M, respectively. From
(2.5) we get
(2.6) F3—F=0,
and F has rank r+7. If we put
E,= (Ez’ 0) Eprie=(0, Ea):
W= (77.1:’ 0) s wn—r+ﬁ_ (0 7]48) s
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from which
Wr (Ey) = (773: (Ey) B O) y Wa—rtq (En~r+ ﬁ) = (07 ga (7_7,8)) .
Then (2.5) can be written by
2.7 F2=]—w,QF,,
where I=(,I) and A, B=1,2, ..., nti—r—F7.
Moreover we get
(2. 8) I"EA:’O, wA0F=0, wA(EB) =5AB-
Thus we have

THEOREM 2.1. Let M(f,&.,0,) and M(f,E,,7.) be pseudo—framed mani-
folds of ranks r and 7, respectively. Then the product manifold M X M carries
a pseudo—framed structure (F,E,, w,) of rank r-+v.

Let R be an m-dimensional Euclidean space. Then R™ has a trivial
pseudo-framed structure (0, d/dt*, dt*). Hence by Theorem 2.1 we can intro-
duce a pseudo-framed structure on MXR™ given by
2.9 F(X, 2d/dt*)=(fX, 0),
where A¢ are real valued functions on R™. Then we have

F2= (1, I)— 1, 0) — (0, de@d/ dt=).

. Thus we have

COROLLARY 2.2. Let M(f,5., 1) be a pseudo—framed manifold of rank r
and R™ an m—-dimensional Euclidean space with trivial pseudo—framed structure
(0, d/dee, dt*). Then the product manifold M XR™ has a pseudo—framed
strucsture (F,&,, d[dt, 1., dt*) of rank r given by (2.9).

Let M(f,&»7.) and M(f,E,,7.) be two pseudo-framed manifolds of
dimensions #, 7 and ranks r, 7, respectively, where we assume that »—r=
#i—7. For any vector fields X,& TM, and X;= TMy, we define' a linear
map J of tangent space T(MXM) ,, » onto itself by

(2. 10) J(X, X)=(fX+7.(X)én FX+10,(X)E2).
Then we have
2.11) J2=(I,I),
which shows that J is an almost product structure.
Thus we have

THEOREM 2.3. Let M(f,&.,1) and M (F,E,7.) be two -pseudo——framéd
manifolds. Then the product manifold M XM has an almost product structure
J defined by (2.10).

Now, since R*™ has a trivial pseudo~framed structure (0, d/ds*, dez), (%)
being the coordinate in R*”’, we can introduce an almost product structure
J on a product manifold M XR*". If we put
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(2.12) J(X, A°d/dt?) = (FX+ A Ep 1o (X)d/dr5),
then we have J2=(I,1I).
Thus we have

THEOREM 2.4. Let M(f,&: 1) be a pseudo—framed manifold of rank r. |
Then the product manifold M X R*" has an almost product structure J defined i

by (2.12).
Finally, we prove the following:

THEOREM 2.5. Let M (f,$.,7.) be a pseudo—framed manifold of rank r. -
If the induced almost product structure J on MXM is integrable, then the
pseudo—framed. structure f is integrable.

Proof. For any vector fields X and Y on M XM, we define an induced
almost product structure J on M XM as follows:
(2- 13) J(X, Y) = (fX+7]z(Y)§z 9fY+7]z(X)E.:)~
Then the integrability condition of the induced almost product structure J on
MXM is given by

[J(X1+ X)), (M+ YY) 1—J LI (X1 4+ X)), Y+ Y5
—J X1+ X, J(N+H Y 1+ [ X+ X, Yi+ Yo =0,

for any vector fields X=X;+X, and Y=Y;+ Y, on M XM. By a .direct
computation we see that the above condition is equivalent to the following:

(2~ 14) Us f:‘ (Xla Yl) +[lea 77.:( YZ) E:c]_f[xl’ 77.1:( YZ)EI]
0. (X2) & fY ] fL0: (XD €y Y- 0(LF X, Yol+[ X, fY2 )6,
/2 (E’]y (Xl) Eya YZ] + EX2, 77y ( Yl) Ey]) Ez"’ [77:: (XZ) E:p ﬂy( Yz) S,] =09
(2.15) Lf,f] (Xa Yo) +[f Xo 0. (Y1)E:1— FL X 0.(YD)E,]
+ Eﬂz (Xl) E:n f Yz]“‘ f[ﬂz (Xl) s:m Y2] — Yz ([th Yl]+ [X]s f Y].:D Ez
— ([, (X2)E, , Yol+[ Xy, 0, (Y&, D) +[0:(X1) € 3, (YD €,]=0.
Now, putting Xo=Y,=0 in (2.14) and (2.15) we obtain

(2- 16) [f, f] (Xls Yl) =0’

(2- 17) Nz (Ef Xla Y1]+£Xb f Yl]) EE: _[77.: (Xl) Ezs ﬂy(Yl) Ey]'_"O-
Again putting X;=¢§, and Y,=£; in (2.17), we get

(2.18) [¢,, £1=0.

Putting Y;=¢; in (2.16), we get

(2. 19) f[le Ezjzl:be Ex] -

Taking account of (2.18), (2.17) can be written by

(2. 20) 1. (LF Xy, Y 14+-[Xy, FY1 D) =0.

Using (2.18), (2.19) and (2.20), the integrability conditions (2.14) and
(2.15) are expressed as follows:
(2- 21) [fa f] (Xh Yl) /2 ([ﬂy (Xl) Ey, Y2]+ [XZ’ ﬂy(Yl)Ey]) é.t:Oa
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(2- 22) [:fv fj (XZ’ YZ) — Nz ([773: (XZ) Ey: Y1]+ I:Xh ﬂy ( Y2) gy:D Ex=0-
Again putting X;=§, and Y;=§, in (2.21), we get

(2- 23) Yz ([ézv Y2] + [XZa ’Su]) ={.
Similarly we obtain
¢ 24) Nz ([’Ez’ Yl] + [Xla Ea]) =0.

Then (2.21) and (2.22) are written by
[f, f:l (Xla )-"1) =0’ [f’ f:l (XZa YZ) =0,
which shows that the pseudo—framed structure f is integrable.

3. Normal pseudo-framed structure
" In the previous sect1on, we have seen that the 1nduced almost prcduct

structure J on M ><R " is defined by

(3.1 J(X, by d/de=) = (fX+2 ‘e, 7:(X)d/de=)

for any vector field X on M and real-valued functions A" on R"". We shall
consider the case that the induced almost product structure J is integrable.

DEFINITION, If the induced almost product structure J on MXR is inte-
grable, we say that the pseudo—framed structure f on M is normal.
Denoting by N4gc the components of the Nijenhuis tensor [J, J] (X, Y),
N4 is given by
- NAge=JEggJcA— JEOpJ g2 — J4 (0pJBc—0cJEp),
where the indicies A4, B, C, ---, run over the rangefl, 2, -+-, 2z—7r} .
Considering the Nijenhuis tensor [J, J] of J, they computed
[, JIX+0, Y+0), [J,JI(X+0,0+d/dt")
and
[J, J1(O+d/de=, O-+d/ds)
which rise to five tensors given by
NI(X Y) N' k"‘[f’f](X’ Y)+d771:(X9 Y)Exr
NZ(X Y) N= B (foﬂx) (Y) - (Lvar) (X)’
(3.2) N3(X, U) =Nij,= (L., )X,
N4(X’ U) =ijy=— (L«Exﬂy) (X)y
N3(U, V) =Nizy’—=ngEy,
for any vector fields X and Y on M and U, V on R*’, where Ly denotes
the Lie derivative with respect to X. The pseudo—framed structure (f,£,,7,)
is normal if and only if N1=(, that is,
(3.3 NUX, Y)=[fF] (X, Y)+dn.(X, Y)E,=0.
We see that the trivial pseudo—framed structure (O, d/di%, dt*) is normal.
Now, we prove the following. ' '

THEOREM 3.1. Let M and M be manifolds with normal pseudo—framed
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structures. Then the pseudo—framed structure of the product manifold M XM
is normal. ‘ -

Proof. Let M(f,&,,7,) and M(f,&., 7%, be pseudo—framed manifolds of

ranks r and 7, respectively. By Theorem 2.1 M XM carries a pseudo-framed
structure of rank r-+7 given by (2.4.). Then we compute
[F, FI(X+X,Y+Y)=[F(X+X), F(Y4+Y)1—-F[F(X+X), Y+ Y1
—F[X+X, F(Y+Y)]+FX+X,Y+Y ]
—F[X+X, fY+FY I+ FLX+X, Y+Y]
—CFX, £Y], [FX, JY D= (FLfX Y3, FLFX,¥D)

_ (f[X, fY]a f[X:_ {Y])__‘“_(fz[X’ Y:la f2[)—(! Y]);

from which

B.4 LF, F1=# F1.LA FD.
Moreover
dws(X+X, YAV E, = {(X+X)w, (Y+Y) — (Y+T)wa (X+X)
—w ((X4-X, Y+Y DIE,
= (X (V) — Y7.(X) —2. (X, Y])§,
+X7.()-Y7.X)-7.(X,YDE,
from which '

(3.5) dwsRE = (d1,R5, dT.QE.).
From (3.4) and (3.5) we get ~
(3.6) Ni(F)=(N1(f), N1 (f)),

which shows that M XM has a normal pseudo—framed strucutre.

LEMMA 3.2. If a pseudo—framed structure (f,&s7,) is normal on M, then
we have ,

(1) di. (X’ EJ’) =0,

2 [£,6,1=0, .

(3) f[X! E:c]:[sz Ez]:

(4) d"]x(fX’ Y)_dﬂx(X’ fY) ={.

Proof. Putting Y=¢, in (3.3), we get
(3- 7) “f[fx, Ey]‘*—fZEX’ Ey]_‘_dﬂz(x’ Ey)sz=0'
Taking the inner product of the left hand side of the equation by &,, we
obtain

(3- 8) dﬂz (X) Ey) =0-
Secondly, Putting X=§, and Y=¢&, in (3.3), and using (3.8) we get
3.9 (£ §,1=0.

Thirdly, from (3.7) and (3.8) we get
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(3.10) X EI=LrX.&1=0FX, &, 1—0.(LF X, §,DE=[rX, &,
with the help of (3.8). Fourthly, Putting Y=Y in (3.3), we get

CFX, 2Y1—FLFX, £ Y 1—FLX, £2Y 1+ FUX, fY J+dn, (X, fZ)E,=0,
from which, taking the inner product of the last equation by &,

ﬂx([fX, sz]) +dﬂx(X’fY) =0’

or

On the other hand, by the definition of d7. we get
(3.12) FX@ (Y)Y fX)) — 0 fX, YD —dn.(fX, Y)=0.
Adding the last two equations we have
(3.13) dn. (X, fY)—dy,(fX,Y)=0.

By the definition of Lie derivative, (1), (2), (3) and (4) are equivalent
to N2=0, N5=0, N3=0 and N2?=0, respectively.

Thus we have also the following (cf.[11]): If a pseudo-framed structure
is normal, that is, N!'=0, then we have

N2=N3=N*=N5=(.

Finally, we prove the following.

THEOREM 3.3. Let M (f,&.,7.) be a manifold with normal pseudo—framed
structure of rank r. If f and 0 are Killing tensors, the structure tensors f,
&, and 0, are covariantly constant, that is,

VXf":O’ VXE.1:=0’ VX7]1=0-

Proof. Since 7, are Killing forms we get
Vx12) (Y) + Py (X) =0,
from which
(3.14) dp. (X, Y)=—2yn.) (X).
By the normality N3 vanishes identically, that is, L., f ——0 and hence we get
(L FY (X, Y) = (Le,g) (X, fY) =0,
from which
Ve, F) (X, Y)=(FxF)(Y,&)+ FyF) (X, &)).
Since F is a Killing tensor, we get
(3.15) V. F)(X,Y)=0.
Since f is a Killing tensor, by the normality N3=0, we get
0= F)X=—Wxf)&:=f Fx.).
Hence if X is orthogonal to &,, then we can put X=fZ for some Z and we
obtain
Thus, from (3.8) we have
(3.16) dn.=0.
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From (3.14) we get

B.17) Vx%.=0,
from which
(3- 18) VXEI=0-

On the other hand, by the normality and (3.16) we get
W Y— W) X—FWxf) Y+f Wyf) X=0.

Since f is a Killing tensor, we get

— W) F X+ WxAHFY-2fFxf)Y
=— Wy fAX+HfWrHX+WxfIAY—fWxf)Y-2fFxf)Y=0,

from which fWWxf)Y=0.
Applying f to the last equation, we get

Fxf)Y=Fxf) Y)E,~=0,

from which we have

(3.19 Vxf=0.

7.

8.

9.

10.

11.
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