ON δ -CONTINUOUS FUNCTIONS

By Takashi Noiri

1. Introduction

The purpose of the present note is to introduce a new class of functions called δ -continuous and investigate the relationships between δ -continuity and near-compactness due to M. K. Singal and Asha Mathur [9]. The concepts of continuity and δ -continuity are independent of each other and both imply almost-continuity due to M. K. Singal and A. R. Singal [10]. However, an almost-continuous function need not be δ -continuous.

Throughout the present note spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated. A subset S of a space X is said to be regular open (resp. regular closed) if Int(Cl(S)) = S (resp. Cl(Int(S)) = S), where Cl(S) (resp. Int(S)) denotes the closure (resp. interior) of S. A point $x \in X$ is said to be δ -cluster point of S [12] if $S \cap U \neq \phi$ for every regular open set U containing x. The set of all δ -cluster points of S are called the δ -closure of S and denoted by $[S]_{\delta}$. If $[S]_{\delta} = S$, then S is called δ -closed. The complement of a δ -closed set is called δ -open. For basic properties of δ -closed sets, refer to [4] and [12].

2. Characterizations

DEFINITION 2.1. A function $f: X \rightarrow Y$ is said to be δ -continuous if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(\operatorname{Int}(\operatorname{Cl}(U))) \subset \operatorname{Int}(\operatorname{Cl}(V))$.

We denote the semi-regularization of a space X by X_s and define a function $f_s: X_s \to Y_s$ associated with a function $f: X \to Y$ as follows: $f_s(x) = f(x)$ for each $x \in X_s$. The following theorems are easy consequences of the above definition and the proofs are thus omitted.

THEOREM 2.2. For a function $f: X \rightarrow Y$, the following are equivalent:

- (1) f is δ -continuous.
- (2) For each $x \in X$ and each regular open set V containing f(x), there exists a regular open set U containing x such that $f(U) \subset V$.

- (3) $f([A]_{\delta}) \subset [f(A)]_{\delta}$ for every $A \subset X$.
- (4) $[f^{-1}(B)]_{\delta} \subset f^{-1}([B]_{\delta})$ for every $B \subset Y$.
- (5) For every regular closed set F of Y, $f^{-1}(F)$ is δ -closed in X.
- (6) For every δ -closed set F of Y, $f^{-1}(F)$ is δ -closed in X.
- (7) For every δ -open set V of Y, $f^{-1}(V)$ is δ -open in X.
- (8) For every regular open set V of Y, $f^{-1}(V)$ is δ -open in X.

THEOREM 2.3. A function $f: X \to Y$ is δ -continuous if and only if $f(\mathfrak{F})$ δ -converges to f(x) for each $x \in X$ and each filter base \mathfrak{F} δ -converging to x.

THEOREM 2.4. A function $f: X \to Y$ is δ -continuous if and only if $\{f(x_{\alpha})\}_{\alpha \in D}$ δ -converges to f(x) for each $x \in X$ and each net $\{x_{\alpha}\}_{\alpha \in D}$ δ -converging to x.

THEOREM 2.5. A function $f: X \rightarrow Y$ is δ -continuous if and only if $f_s: X_s \rightarrow Y_s$ is continuous.

3. Basic properties*)

The following properties are easily obtained and the proofs are thus omitted.

THEOREM 3.1. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are δ -continuous, then so is $g \circ f: X \rightarrow Z$.

THEOREM 3.2. For a function $f: X \rightarrow Y$, the following are true:

- (1) If f is δ -continuous and X_0 is open in X, then $f|_{X_0}: X_0 \rightarrow Y$ is δ -continuous.
- (2) If $\{U_{\alpha} | \alpha \in A\}$ is a cover of X by regular open sets and $f | U_{\alpha} : U_{\alpha} \to Y$ is δ -continuous for each $\alpha \in A$, then f is δ -continuous.

THEOREM 3.3. Let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a function for each $\alpha \in A$ and $f: T X_{\alpha} \to T Y_{\alpha}$ a function defined by $f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$ for each point $\{x_{\alpha}\} \in T X_{\alpha}$. Then, f is δ -continuous if and only if f_{α} is δ -continuous for each $\alpha \in A$.

THEOREM 3.4. A function $f: X \to \mathbb{T} X_{\alpha}$ is δ -continuous if and only if $p_{\beta} \circ f$ is δ -continuous for each $\beta \in \mathcal{A}$, where p_{β} is the projection of $\mathbb{T} X_{\alpha}$ onto X_{β} .

COROLLARY 3.5. Let $f: X \rightarrow Y$ be a function and let $g: X \rightarrow X \times Y$, given by g(x) = (x, f(x)), be its graph function. Then f is δ -continuous if and only if g is δ -continuous.

4. Comparisons

DEFINITION 4.1. A function $f: X \rightarrow Y$ is said to be almost-continuous [10] (resp. θ -continuous [2], strongly θ -continuous) if for each $x \in X$ and each

^{*)}The author is grateful to the referee for his valuable suggestions to improve the original form of this section.

open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(U) \subset Int(Cl(V))$ [resp. $f(Cl(U)) \subset Cl(V)$, $f(Cl(U)) \subset V$].

DEFINITION 4.2. A function $f: X \rightarrow Y$ is said to be almost-open [10] if for each regular open set U of X, f(U) is open in Y.

THEOREM 4.3. (1) If $f: X \to Y$ is strongly θ -continuous and $g: Y \to Z$ is almost-continuous, then $g \circ f: X \to Z$ is δ -continuous.

(2) The following implications hold: strongly θ -continuous $\Rightarrow \delta$ -continuous \Rightarrow almost-continuous.

Proof. These are immediate consequences of the definitions.

The following two examples show that the concepts of δ -continuity and continuity are independent of each other and that none of implications in (2) of Theorem 4.3 can be reversible.

EXAMPLE 4.4. Let X be the real numbers with the usual topology, Y the real numbers with the co-countable topology and $f: X \rightarrow Y$ be the identity function. Then f is δ -continuous but not continuous.

EXAMPLE 4.5. Let $X = Y = \{a, b, c\}$, $\mathfrak{F}_X = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, X\}$ and $\mathfrak{F}_Y = \{\phi, \{a\}, \{c\}, \{a, c\}, Y\}$. Let $f: (X, \mathfrak{F}_X) \to (Y, \mathfrak{F}_Y)$ be the identity function. Then f is continuous but not δ -continuous.

THEOREM 4.6. For a function $f: X \rightarrow Y$, the following are true:

- (1) If Y is semi-regular and f is δ -continuous, then f is continuous.
- (2) If X is semi-regular and f is almost-continuous, then f is δ -continuous.

Example 4.4 (resp. Example 4.5) shows that in (1) (resp. (2)) of Theorem 4.6, semi-regularity on Y (resp. X) can not be dropt.

COROLLARY 4.7. If X and Y are semi-regular spaces, then the following concepts on a function $f: X \rightarrow Y$: δ -continuity, continuity and almost-continuity are equivalent.

DEFINITION 4.8. A space X is said to be almost-regular [8] if for each regular closed set $F \subset X$ and each $x \in F$, there exist disjoint open sets U and V in X such that $x \in U$ and $F \subset V$.

In [8], it has been known that almost-regularity strictly weaker than regularity and is independent to semi-regularity, however, every almost-regular and semi-regular space is regular.

THEOREM 4.9. For a function $f: X \rightarrow Y$, the following are true:

- (1) If Y is almost-regular and f is θ -continuous, then f is δ -continuous.
- (2) If X is almost-regular, Y is semi-regular and f is δ -continuous, then f is strongly θ -continuous.
- *Proof.* (1) This follows easily from Theorem 2. 2 and the fact that a space Y is almost-regular if and only if for each $y \in Y$ and each regular open set V containing y there exists a regular open set V_0 such that $y \in V_0 \subset Cl(V_0) \subset V$ [8, Theorem 2. 2].
- (2) Let $x \in X$ and V be an open neighborhood of f(x). There exist regular open sets $V_0 \subset Y$ and $U_0 \subset X$ such that $x \in U_0$ and $f(U_0) \subset V_0 \subset V$. Moreover, there exists an open set $U \subset X$ such that $x \in U \subset Cl(U) \subset U_0$; hence $f(Cl(U)) \subset V$. This shows that f is strongly θ -continuous.
- Example 4.5 (resp. Example 4.4) shows that in (1) (resp. (2)) of Theorem 4.9, almost-regularity (resp. semi-regularity) on Y can not be dropt. Since every almost-continuous function is θ -continuous [5, Lemma 6], from Theorem 4.6 and Theorem 4.9 we have

COROLLARY 4.10. If X and Y are regular spaces, then the following concepts on a function $f: X \rightarrow Y$: θ -continuity, almost-continuity, δ -continuity, continuity and strongly θ -continuity are equivalent.

THEOREM 4.11. If a function $f: X \rightarrow Y$ is θ -continuous and almost-open, then it is δ -continuous.

Proof. Let $x \in X$ and V be an open neighborhood of f(x). There exists an open neighborhood U of x such that $f(Cl(U)) \subset Cl(V)$; therefore, $f(Int(Cl(U))) \subset Cl(V)$. Since f is almost-open, we have $f(Int(Cl(V))) \subset Int(Cl(V))$. This shows that f is δ -continuous.

5. Nearly-compact spaces

DEFINITION 5.1. The graph G(f) of a function $f: X \rightarrow Y$ is said to be δ -closed if G(f) is δ -closed in the product space $X \times Y$.

In [11], T. Thompson defined G(f) to be r-closed if for each $(x, y) \notin G(f)$, there exist regular open sets $U \subset X$ and $V \subset Y$ containing x and y, respectively, such that $f(U) \cap V = \phi$. By a straightforward calculation, we have

THEOREM 5.2. For a function $f: X \rightarrow Y$, the following are true:

- (1) G(f) is δ -closed if and only if G(f) is r-closed.
- (2) If f is δ -continuous and Y is Hausdorff, then G(f) is δ -closed.

DEFINITION 5.3. A subset K of a space X is said to be N-closed relative to X [1] if every cover of K by regular open sets in X has a finite subcover. A space X is said to be nearly-compact [9] if X is N-closed relative to X.

THEOREM 5. 4. Let $f: X \to Y$ be a function with a δ -closed graph. If K is N-closed relative to Y (resp. X), then $f^{-1}(K)$ (resp. f(K)) is δ -closed in X (resp. Y).

Proof. We prove only the first case, the proof of the second being analogous. Suppose that K is N-closed relative to Y. For each $x \notin f^{-1}(K)$ and each $y \in K$, $(x, y) \notin G(f)$ and hence, by Theorem 5.2, there exist regular open sets $U(y) \subset X$ and $V(y) \subset Y$ containing x and y, respectively, such that $f(U(y)) \cap V(y) = \phi$. Therefore, there exists a finite subset $K_0 \subset K$ such that $K \subset \bigcup \{V(y) \mid y \in K_0\}$. Put $U(x) = \bigcap \{U(y) \mid y \in K_0\}$, then U(x) is a regular open set containing x and $U(x) \cap f^{-1}(K) = \phi$. This shows that $x \notin [f^{-1}(K)]_{\delta}$ and hence $f^{-1}(K)$ is δ -closed.

THEOREM 5.5. If Y is a nearly-compact space and a function $f: X \rightarrow Y$ has a δ -closed graph, then f is δ -continuous.

Proof. Let F be any regular closed set of Y. Since Y is nearly-compact, F is N-closed relative to Y [1, Theorem 2.6] and hence $f^{-1}(F)$ is δ -closed in X by Theorem 5.4. This shows that f is δ -continuous.

COROLLARY 5.6 (Thompson [11]). Let $f: X \rightarrow Y$ be a function with an r-closed graph. If Y is nearly-compact, then f is almost-continuous.

Proof. This follows immediately from Theorem 5.2 and Theorem 5.5.

LEMMA 5.7. If $f: X \rightarrow Y$ is a δ -continuous function and K is N-closed relative to X, then f(K) is N-closed relative to Y.

Proof. This follows immediately from Theorem 2.5 and the following result: A subset K of a space X is N-closed relative to X if and only if K is compact in X_S [6, Theorem 3.1].

Theorem 5.8. Near-compactness is preserved under δ -continuous surjections.

COROLLARY 5.9 (Singal and Mathur [9]). Near-compactness is preserved under almost-continuous and almost-open surjections.

Proof. Every almost-continuous function is θ -continuous [5, Lemma 6]. Therefore, this is an immediate consequence of Theorem 4.11 and Theorem 5.8.

DEFINITION 5.10. A function $f: X \to Y$ is said to be δ -perfect [7] if for every filter base \mathcal{F} in f(X) δ -converging to $y \in Y$, $f^{-1}(\mathcal{F})$ is δ -directed toward $f^{-1}(y)$.

THEOREM 5. 11. Let X be a nearly-compact space and Y a Hausdorff space. If $f: X \rightarrow Y$ is a δ -continuous function, then it is δ -perfect.

Proof. By Theorem 4.1 of [1] and Theorem 2.5, f_s is a continuous function of a compact space X_s into a Hausdorff space Y_s . Therefore, f_s is a closed function with compact point inverses and hence f is δ -perfect [7, Corollary 3.6].

THEOREM 5.12. Let X be a Hausdorff space and Y a nearly-compact space. If $f: X \rightarrow Y$ is a δ -perfect function, then it is δ -continuous.

Proof. Let F be a regular set of Y. By Theorem 2.6 of [1], F is N-closed relative to Y and hence so is $f^{-1}(F)$ [7, Theorem 3.4]. Since X is Hausdorff, $f^{-1}(F)$ is δ -closed and hence f is δ -continuous by Theorem 2.2.

References

- 1. D. Carnahan, Locally nearly-compact spaces, Boll. Un. Mat. Ital. (4) 6(1972), 146 -153.
- 2. S. Fomin, Extensions of topological spaces, Ann. of Math. 44(1943), 471-480.
- 3. L. L. Herrington, *Properties of nearly-compact spaces*. Proc. Amer. Math. Soc. 45 (1974), 431-436.
- 4. J. E. Joseph, Characterizations of nearly-compact spaces, Boll. Un. Mat. Ital. (5) 13-B(1976), 311-321.
- 5. Hong Oh Kim, Notes on C-compact spaces and functionally compact spaces, Kyung-pook Math. J. 10(1970), 75-80.
- T. Noiri, Remarks on locally nearly-compact spaces, Boll. Un. Mat. Ital. (4) 10 (1974), 36-43.
- T. Noiri, A generalization of perfect functions, J. London Math. Soc. (2) 17(1978), 540-544.
- M. K. Singal and S. P. Arya, On almost-regular spaces, Glasnik Mat. 4(24) (1969), 89-99.
- 9. M. K. Singal and Asha Mathur, On nearly-compact spaces, Boll. Un. Mat. Ital. (4)2 (1969), 702-710.
- M. K. Singal and A. R. Singal, Almost-continuous mappings, Yokohama Math. J. 16(1968), 63-73.
- 11. T. Thompson, Characterizations of nearly compact spaces, Kyungpook Math. J. 17(1977), 37-41.
- 12. N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2) 78(1968). 103-118

Yatsushiro College of Technology, Japan