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ON o-CONTINUOUS FUNCTIONS

By TaAkAsHI NOIRI

1. Introduction

The purpose of the present note is to introduce a new class of functions
called d-continuous and investigate the relationships between d-continuity and
near-compactness due to M. K. Singal and Asha Mathur [9]. The concepts
of continuity and d-continuity are independent of each other and both imply
almost—continuity due to M. K. Singal and A.R.Singal [10]. However, an
almost—continuous function need not be d—continuous.

Throughout the present note spaces always mean topological spaces on
which no separation axioms are assumed unless explicitly stated. A subset S
of a space X is said to be regular open (resp. regular closed) if Int(CI(S))
=S (resp. Cl(Int(S))=S), where CI(S) (resp. Int (S)) denotes the closure
(resp. interior) of §. A point z€ X is said to be d—cluster point of S [12]
if SN U+¢ for every regular open set U containing x. The set of all o~
cluster points of S are called the d—closure of S and denoted by [S],. If
[87;=S, then § is called d-closed. The complement of a d-closed set is
called 0-open. For basic properties of d—closed sets, refer to [4] and [12].

2. Characterizations

DEFINITION 2.1. A function f : X—Y is said to be d—continuous if for each
z€X and each open neighborhood V of f(z), there exists an open neigh-
borhood Uof z sueh that £ (Int(CI{U))) <Int(CI(V)).

We denote the semi-regularization of a space X by X, and define a function
fs: X,—Y, associated with a function f: X—Y as follows: f,(z)=f(z) for
each r€X,. The following theorems are easy consequences of the above
definition and the proofs are thus omitted.

THEOREM 2. 2. For a function f: X—Y, the following are equivalent :

(1) f is O-continuous. -

(2) For each X and each regular open set V containing f(x), there exists
a regular open set U containing z such that f(U)C V.
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(3) fCAJ) <Lf (A for every ACX.

@ LB LBl for every BCY.

(5) For every regular closed set F of Y, f1(F) is 0-closed in X.

(6) For every 06—closed set F of Y, f~1(F) is d—closed in X.

(7) For every 0-open set V of Y, f1(V) is 0—open in X.

(8) For every regular open set V of Y, f1(V) is 0-open in X.

THEOREM 2.3. A function f: X—Y is 0-continuous if and only if f(F)
O-converges to f(x) for each x=X and each filter base & 0-converging to x.

THEOREM 2.4. A function f : X—Y is O—continuous if and only if {f(ze)} e=pD
d-converges to f(x) for each x€X and each net {z,} .ep O—converging to x.

THEOREM 2.5. A function f : X—Y is 0—continuous if and only if f; : X,—Y,
is continuous.

3. Basic properties®
The following properties are easily obtained and the proofs are thus omitted.

THEOREM 3.1. If f: X—Y and g: Y—Z are O-continuous, then so is
gof + X—Z.

THEOREM 3. 2. For a function f: X—Y, the following are true :

(1) If f is d-continuous and X, is open in X, then f| X, Xo—Y is O-con-
tinuous.

@ If {U.lass} is a cover of X by regular open sets and fly U, — Y
is O—continuous for each a4, then f is d—continuous.

THEOREM 3.3. Let f,: X,—Y, be a function for each a<pl and f: TX,
— T Y, a function defined by f({z.})={f.(x)} for eack point {z,} €T X,.
Then, f is O0—-continuous if and only if f, is 8—continuous for each a 4.

THEOREM 3.4. A function f: X—T X, is 0—continuous if and only if psof
is 0—continuous for each BEH, where ps is the projection of WX, onto X..

COROLLARY 3.5. Let f: X—Y be a function and let g: X—XXY, given
by g(zx)=(z, f(x)), be its graph function. Then f is O-continuous if and
only if g is O—continuous.

4. Comparisons

DEFINITION 4.1. A function f: X—Y is said to be aelmost—continuous [107]
(resp. O-continuous (2], strongly O-continuous) if for each x&X and each

*)The author is grateful to the referee for his valuable suggestions to improve the original form
of this section.
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open neighborhood V' of f(z), there exists an open neighborhoed U of z
such thet f(U) cInt(Cl1(V))[xresp. F(CI(U))=CI(V), FICI(U))cVL

DEFINITION 4.2. A function f: X—Y is said to be almost—open [107] if
for each regular open set U of X, f(U) is open in Y.

THEOREM 4.3. (1) If f: X — Y is strongly O-continuos and g:Y — Z is
almost—continuous, then gof : X—Z is G—continuous.
(2) The following implications hold:

strongly O-continuous => O—continuous => almost-continuous.

Proof. These are immediate consequences of the definitions.

The following two examples show that the concepts of J-continuity and
continuity are independent of each other and that none of implicaticns in (2)
of Theorem 4.3 can be reversible.

EXAMPLE 4.4. Let X be the real numbers with the usual topology, Y tke
real numbers with the co-countable topology and f: X —Y ke the identity
function. Then f is d—continuous but not continuous.

EXAMPLE 4.5. Let X=Y={a,b,¢}, 8x=1{¢, {a}, {c}, {a, b}, {a,c}, X} and
8Y= {¢7 {a} ] {C} ’ {aa C} ’ Y} - Iﬁt f: (X: SX)“‘)(Ya 8Y) be the identity fun(:tion‘
Then £ is continuous but not d—continuous.

THEOREM 4.6. For a function f: X—Y, the following are true:
(1) If Y is semi-regular and f is O—continuous, then f is continuous.
@) If X is semi-regular and f is almost—continuous, then fis 0—continuous.

Example 4. 4(resp. Example 4.5) shows that in (1) (resp. (2)) of Theorem
4.6, semi-regularity on Y (resp. X) can not be dropt.

COROLLARY 4.7. If X and Y are semi-regular spaces, then the following
concepts on a function f: X—Y: O-continuity, continuity and almost—continuity

are equivalent.

DEFINITION 4.8. A space X is said to be almost-regular [8] if for each
regular closed set FCX and each z&F, there exist disjoint open sets U
and V in X such that €U and FC V.

In [8], it has been known that almost-regularity strictly weaker than
regularity and is independent to semi-regularity, however, every almost-
regular and semi-regular space is regular.

THEOREM 4.9. For a function f : X—Y, the following are true:
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1) If Y is almost-regular and f is O-continuous, then f is 0—continuous.

(2) If X is almost-regular, Y is semi-regular and f is O-continuous, then
F is strongly O-continuous.

Proof. (1) This follows easily from Theorem 2.2 and the fact that a space
Y is almost-regular if and only if for each yY and each regular open set
V containing y there exists a regular open set Vj, such that y& V,cCl(Vp)

<V [8, Theorem 2.27.

(2) Let z€X and V be an open neighborhood of f(z). There exist re-
gular open sets VoY and UpcX such that z€ U, and f(Up) VoV,
Moreover, there exists an open set UC X such that z& UcCl(U) < Up; hence
F(CI{U))< V. This shows that f is strongly @-continuous.

Example 4.5 (resp. Example 4.4) shows that in (1) (resp.(2)) of
Theorem 4.9, almost-regularity (resp. semi-regularity) on Y can not be
dropt. Since every almost-continuous function is f-continuous [5, Lemma 6],
from Theorem 4.6 and Theorem 4.9 we have

COROLLARY 4.10. If X and Y are regular spaces, then the following concepts
on a function f: X—Y: O-continuity, almost-continuity, O—continuity, continuity
and strongly O-continuity are eguivalent.

THEOREM 4. 11. If a function f: X—Y is O-continuous and almost-open,
then it is O—continuous.

Proof.Let zeX and V be an open neighborhood of f(z). There exists
an open neighborhood U of z such that £(ClH(U))cCI(V); therefore,
FInt(CH(U)))<CI(V). Since f is almost-open, we have f(Int(Cl(V)))
cInt(Cl(V)). This shows that f is d-continuous.

5. Nearly-compact spaces

DEFINITION 5.1. The graph G(f) of a function f: X—Y is said to be
d—closed if G(f) is d—closed in the product space XX Y.

In [1173, T. Thompson defined G(f) to be r—closed if for each (z, ) 2G(f),
there exist regular open sets UcX and VCY containing z and y, respec-
tively, such that f(U) N V=¢. By a straightforward calculation, we have

THEOREM 5.2. For a function f: X—Y, the following are true:
(1) G(f) is d-closed if and only if G(f) is r—closed.
(2) If f is 0-continuous and Y is Hausdorff, then G(f) is d—closed.

DEFINITION 5.3. A subset K of a space X is said to be N-closed relative
to X [17] if every cover of K by regular open sets in X has a finite subcover.
A space X is said to be nearly-compact [9] if X is N—closed relative to X.
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THEOREM 5.4. Let f: X—Y be a function with a 6—closed graph. If K is
N-closed relative to Y (vesp. X), then f~1(K) (resp. f(K)) is 0-closed in
X (resp. Y).

Proof. We prove only the first case, the proof of the second being anal-
ogous. Suppose that K is N-closed relative to Y. For each z¢ f1(K) and
each yK, (z,y)&G(f) and hence, by Theorem 5.2, there exist regular
open sets U(y) ©X and V(y) CY containing = and y, respectively, such that
FUM)) N V(y) =¢. Therefore, there exists a finite subset Ky K such that
Kc Uy {V(y) |lyeKy. Put Ulx)=0N {U(y) |yeKy}, then U(z) is a regular
open set containing x and U(z) N f~1(K)=¢. This shows that z&[ f-1(K)7;
and hence f-1(K) is d-closed.

THEOREM 5.5. If Y is a nearly-compact space and a function f: X—Y has
a O—closed graph, then f is 0—continuous.

Proof. Let F be any regular closed set of Y. Since Y is nearly-compact,
F is N—closed relative to Y [1, Theorem 2.67] and hence f~1(F) is 6—closed
in X by Theorem 5.4. This shows that f is d-continuous.

COROLLARY 5.6 (Thompson [117]). Let f: X—Y be a function with an
r—closed graph. If Y is nearly—-compact, then f is almost-continuous.

Proof. This follows immediately from Theorem 5.2 and Theorem 5. 5.

LEMMA 5.7. If f: X—Y is a O-continuous function and K is N-closed
relative to X, then f(K) is N-closed relative to Y.

Proof. This follows immediately from Theorem 2. 5 and the following result:
A subset K of a space X is N-closed relative to X if and only if K is
compact in Xs [6, Theorem 3.1].

THEOREM 5. 8. Near-compactness is preserved under O—continuous surjections.

COROLLARY 5.9 (Singal and Mathur [97). Near—compactness is preserved

under almost—continuous and almost—-open surjections.

Proof. Every almost-continuous function is f-continuous [5, Lemma 6].
Therefore, this is an immediate consequence of Theorem 4.11 and Theorem
5. 8.

DEFINITION 5.10. A function f: X—Y is said to be o0—perfect [77] if for
every filter base &F in f(X) J-converging to y€Y, f1(F) is o-directed
toward f1(y).

THEOREM 5. 11. Let X be a nearly-compact space and Y a Hausdorff space.
If f: X—>Y is a O0-continuous function, then it is 0—perfect.
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Proof. By Theorem 4.1 of [1] and Theorem 2.5, f, is a continuous
function of a compact space X, into a Hausdorff space Y,. Therefore, f; is
a closed function with compact point inverses and hence f is d-perfect

[7, Corollary 3.6].

THEOREM 5.12. Let X be a Hausdorff space and Y a nearly-compact space.
If f: X—Y is a 0-perfect function, then it is O—continuous.

Proof. Let F be a regular set of Y. By Theorem 2.6 of [1], F is N-
closed relative to Y and hence so is f~1(F) [7, Theorem 3.4]1. Since X is
Hausdorff, f-1(F) is d-closed and hence f is d—continuous by Theorem 2.2.
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