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ON THE STRUCTURE OF HENSEL FIELDS

By KUKJIN KIM

O. Introduction

In this paper, we shall see the entire generalization of the results by Ax
and Kochen (DJ, [2J). The proof the author shall take in this paper is
closely modeled to Theorem 13, 14 and 15 in [2J, so to the model-comp­
leteness of algebraically closed fields with valuation by A. Robinson [5J.
But in the theory of Hensel fields, we have to see that the most essential
conception characterizing Hensel fields for both characteristics is algebraic
completeness(see p.182 in [3J by J. Ax). Furthermore, the extraction-pack­
ing method in [4J introduced by the author shall give similar results in
valued fields. In this paper, the author has restricted all arguments by
valuation theory, so if one is familiar with the arguments by Ax and
Kochen ([IJ, [2J) , the proof would be almost trivial.

The main results are the following:

(1) The theory Lv of Hensel fields V is model-complete if the theory
Lv of the residue class fields iT is model-complete in such sense that all quan­
tifiers range uoer V.

(2) All Hensel fields are elementarily equivalent if the residue class fields
are elementarily equivalent. Thus we also have that

(3) GF(p) «t)) is decidable.

NOTATIONS

K( (t)): formal power series fields over fields K.
K=:.K': two fields K and K' are elementarily equivalent.
Ch ( V): the characteristic of a valued field V.
K: the algebraic closure of a field K.

K[tJ= {~/iti IfiEK}.

K(t) = {ab-1 I a, bEK[tJ}.

K(tG) = {ab-1 I a, bEK[tGJ}, where K [tGJ= L~ fitg; I g;EG}.
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1. Hensel fields

Kukjin Kim

We fiirstly define Hensel fields in a countable set of elementary statements
for both characteristics but we have to descriminate the formulations according
to Ch( V) of valued fields V.

Case I, Ch ( V) =0.
A valued field V is called to be a Hensel field if

1. Hensel's lemma holds in V.
2. ord( V) =a Z-group G.
3. There is a prime element t such that ord(t) =1-

Case 2, Ch( V) :;to.
1. Hensel's lemma holds in V.
2. ord( V) =a Z-group G.
3. There is a prime element t in V such that ord(t) =1.
4. Vcc····Cp-l E V3y~ V[yP+ClyP-l+ ·········+Cp-l=OJ

and
Vy~ V3Cl······Cp-lE V[yP+ClyP-l+·········+Cp-l=O].

5. V:x~ Vex) ~V or ord(V(x» ~ord(V)J.

So all quantifiers range over Vpd V and we call the corresponding elements
to V in Vp to be a Hensel field.

THEOREM 1.1 Let the theories of V, V be Lv, Lv. If Lv is model-complete,
Lv is also model-complete. But when eh( V) :;to, all quantifiers range UlJer V.

Proof. We divide the proof into two cases for Ch (V) =0 and Ch ( V) *0.
But before going to make the proof, we have to keep a couple of basics
required in our mind.

1. The theory of Z-groups is model-complete by A. Robinson and E.
Zakon [6J.

2. For a pair of Hensel fields V, V' such that V~ V', if one takes any
element cE V' but V, c is always transcendental over V. Because suppose
that c is algebraic over V, by Proposition 15 in [3J, then we can say that
[V(c): VJ=p if c is not algebraically complete to V (see p.182 in [3J).
SO we can always assume that c is algebraically complete to V by the axioms
4, 5. Since Lv and the theory of Z-groups are model-complete, the algebraic
completeness gives a contradiction by the same arguments at Ax and Kochen
[lJ [2J [3J. Thus the relative algebraic closure V(C)H of V(c) in V' is a
Hensel field.

3. By A. Robinson [5J, to see that Lv is model-complete, the proof
suffices our aim that for any Hensel field V, V' such that V~ -V' and any
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existential statesment 3:xR(x) defined in V, V' I=3:xR(x)~ VI =3xR(x)
where R(x) may contain further existential quantifiers restricted to V'.

4. By the same arguments of the model-completeness of algebraically
closed fields with valuation by A. Robinson [5J (or Theorem 15 in [2J),
we can assume that the transcendental degree of V' over V is 1. Therefore,
there are three cases of V' whose transcendental degree over V is 1.

Case 1. V' = V and ord( V') =ord( V).
Case 2. V';:2V and ord(V')=ord(V).
Case 3. V'=V and ord(V') ;:2ord( V).

Case A. Ch(V)=O.
Case 1 and case 3 have already been proved in Theorem 15([2J).
Consider case 2, and define the next statements L 2* for only case 2.

1. V's diagram D(V).
2. Lv's axioIIlE.
3. c=l=ai where ai varies over V.
4. ord(c-ai) =bi holds in V' where ai varies over V.
5. e=l=iii where ai varies over V.

Let V2* be a model of L2*, then it is not diffcult to see that V2* .contains
an isomorphic copy of V'. Let the corresponding element to e in 1'2* be d.
Then by Theorem 13 in [2J, Vee) and V(J) (s V2*) are value isomorphicu

and the value isomorphism can be easily extended on the Henselizations V
(e)s and V(J) •. Again we have a value isomorphism from V(e)s(ei) onto
V(J).(Ji). Since V 2* contains V', V2* contains V' as a valued field. Then
by the Godel's completeness theorem, there exists a finite set of at. , all>

ak+t. , am of V and elements gj+t. , gk of ord( V) such that
e=l=iiil\"'l\e=l=iiml\ord(c-aj+l)
=gj+ll\'''l\ord(c-ak) =gk-3:xR(x)

is deducible from Lv UD( V).
Since case 2 only occurs when Lv is a theory of infinite models, the system

has a solution in V.

Case B. Ch( V) =1=0.
Consider the next statements L 1* for only case 1.

1. V's diagram D(V).
2. Lv=L(Vp, V).
3. c=1= ai where ai varies over V.
4. ord(c-ai) =bi holds in V' where ai varies over V.

1) Assuming a cross--section x---'>t\ V can be assumed to be a F(tG
), by Proposition 17 in [3]

where F=V, ord(V)=G. So V'=F'(tG),.

Furthermore Theorem 13 and case (i) are still the theorem to case 2.
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5. ord(e) EG and e EF where ord(V)=G and Y=F.
Since (V'1" V') is a model of L1*, L 1* is a consistent theory defined in the
first order language. Let (Vi>*, V*) be any model of L1* and d be the corr­
esponding element in V* to the constant e in L 1*.

Then d is transcendental over V~ V*. So it is trivial that Vee) and V
(d) ~ V* are isomorphic as fields. Then it is not difficult to see that V(e)
and V(d) are value isomorphic because if for any VEl', there exists aEY
such that ord(e-a) "2:.ord(e-v) for any vEl', by lemma 1 (see p.451 in
[2J) there exists vE V such that ord(H[vJ) =ord(H[eJ) for any H[XJE V
[XJ. Then we have the equality

ord(H[eJ) =max(eE V)min(ord(H[vJ), ord(H[e]-H[vJ»

So H[eJ- H[vJ= (e-v) H' [eJ with deg H[XJ>deg H'[XJ and it shows
that 4 in L 1* uniquely defines the valuation on V(c)=V(d). Therefore,
the proof suffices our aim that for any vEY, there exists aE V such that
ord(e-a) "2:.ord(e-v). By Proposition 17 in [3J, the proof suffices our aim
that V is algebraically complete. Thus we have shown that Vee) and V(d)
are value isomorphic.

By the Henselizations V(e) ... V(d)$ in Proposition 13([3J), we can define
a value isomorphism Fv from V(e)s' Then we can define (extend) a value
isomorphism F from V' onto F( V') ~ V* by V(e)s~V(d)s as valued fields
and V(e)$> V(d)s! Hensel :fields. Thus we have shown that for any model
(VP*, V*) of L 1*, there is a value isomorphism F from V' into V*. Since
:ixR(x) is an existential statement which holds in V', V* I=3xR(x). By
the Godel's completeness theorem, 3xE V'[R(x)J is deducible from L 1*. In
other words, there exists a finite set of elements ah······, aj> .•..•., a" of V
and element gj+b •••••• , g" of ord( V) such that

cEF" ord(e) EG"c*al"···"c*aj"ord(c-aj+l)
=gJ+l"···"ord(c-a,,) =g,,--.3xE V'[R(x)]

is deducible for L( Vi>' V) UD( V).
Since e is a C:lDstant not occured in L ( V1" V) UD( l') and l'= Y', ord (V) =

ord( V'),

3x(x*al"···"x*aJ"ord(x-aj+l)
=gj+l"···"ord(x-a,,)=g,,-3xE V'[R(x)J

is deducible from L( Vi>' V) UD( V).
Therefore, the Theorem for case 1 is satisfied by that the next system has

a solution in V under the condition, i. e., the system has a solution in V'
x*ai, i=l, 2, ...,j and ord(x-aj) =gi, i j+1, "', k.

By the sam~ argum~nts of the model-completeness of algebraically closed
:fi ~lds with valuation by A. Robinson [5J, the system can be reduced to a
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system y=O and y=Cj i=2, "', m to have a solution in V under the condition
that the system has a solution in V', we have shown the proof for case 1.

For the case 2, the proof is quite same to the proof in case A.
For the case 3, the proof is essentially same to the proof of Theorem 14,

15 in [2J. Q. E. D.

THEOREM 1. 2. Let V, V' be Hensel fields such that V -V' and eh( V) =
Ch(V'), then V V' as valued fields.

Proof. Any Hensel field V contains a Hensel field Vo: such that ord( Vo:) =
Z/ and Vo:=V as follows, take the prime element t iil V and then consider
a valued ring V[tJ contained in V. V[tJ is also extended to Vet) and by
the Henselization Vet). of Vet) in V, we have a Hensel field Vo:=V(t). if
Ch ( V) =0. Otherwise, taking the maximal immediate, algebraic extension
V(t)H (the relative algebraic closure) of Vet). in V, we have a Hensel
field Vo: desired. By Theorem 1.1, V Vo: V'==V:' as valued fields. Again
by Theorem 1.1 and the Cauchy completion, Vo:==V((t» and V/==V'((t))
as valued fields. By saturated models, we have nonprincipal ultrafilters D""
Dn over cardinals such that TrV/D",=TrV'/Dn• Since TrV/Dm((t» and
TrV' / Dn( (t» are Hensel fields, again by Theorem 1.1 we have

V TrV/D", ((t» =TrV'/Dn((t»==V'

as valued fields. Q. E. D.

THEOREM 1. 3 (without the Continuum Hypothesis)

{pEP/Qpl =C2 (d)} ED, where P is the set of all positive primes.

THEOREM 1. 4. If Lv is a complete theory, Lv is also a complete theory.

THEOREM 1. 5.
1. GF(p) ((t» is decidable.
2. GF(p)((t» is decidable.

REMARK
If the readers are familiar with [lJ, [2J, [3J and [4J, they may realize

that Theorem 1. 2 is making the end to the questions of the model theory
of local fields2l but the value group is a Z-group. The detailed arguments
omitted in Theorem 1. 1 and Theorem 1. 2 shall appear in the ~uthor's
papers "On the structure of algebraically complete fields" and "The
decidability of algebraically complete fields"

2) the conjectures by E. Artin, S. Lang, A. Robinson and R. Robinson.
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