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SUBMANIFOLDS OF CODIMENSION 3 OF A KAEHLERIAN
MANIFOLD (I)

By SANG-SEUP EUM, U-HANG KI, UN KyU KIM AND YOUNG Ho Kn.i*)

O. Introduction

It is well known that a submanifold of codimension 3 of an Hermitian
manifold admits an (/, g, u, v, w,)/, fl., v)-structure induced from the almost
Hermitian structure of the ambient manifold.

In the present paper we investigate a submanifold of codimension 3 of a
(2n+4) -dimensional Kaehlerian manifold admitting an (/, g, U, 'I:', w,)/, fl., v)­
structure.

Firstly, we study the structure induced on the submanifold of codimension
3 of a (2n+4)-dimensional Kaehlerian manifold. In section 1, we define
the (r, g, u, v, w,)/, fl., v)-structure and we show that this kind of structure
gives an almost contact metric structure when )/2+fl.2+v2=1 and we :find a
necessary and sufficient condition that the (/, g, u, v, w,)/, f.l, v)-structure be
antinormal. In section 2, we study some equations concerning the (/, g, u,
v, w,)/, fl., v)-structure and we show that in order for the structure to be anti­
normal, it is necessary and sufficient that h and / anticommute, where h is
the second fundamental tensor with respect to the distinguished normal.

Next, we study the submanifold of codimension 3 of a (2n+4)-dimensional
Kaehlerian manifold of constant holomorphic sectional curvature c. In section
3, we investigate the submanifolds satisfying the condition )/2+fl.2+v2=1 and
we show that an umbilical submanifold with respect to the distinguished
normal is an intersection of a complex cone and a sphere, that is, such a
submanifold is an extended Brieskorn manifold. In section 4, we show that
an antinormal minimal submanifold is a submanifold of a (2n+3)-dimen­
sional Euclidean space under some conditions. Moreover in this section, we
show that a complete submanifold of codimension 3 of a Euclidean space
E2nH is a plane or a ruled surface under some conditions. In section 5, we
find a necessary and sufficient condition that the connection induced in the
normal bundle of the submanifold to be trivial. Moreover in this section,
we study a complete submanifold of codimension 3 of a (2n+4)-dimen
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sional Euclidean space E2nH whose normal connection is flat and characterize
this submanifold under some conditions.

1. Structures induced on submanifolds of codimension 3 of an almost
Hermitian manifold

Let M2nH be a (2n+4)-dimensional almost Hermitian manifold covered by
a system of coordinate neighborhoods {U; x A} and denote by gCB components
of the Hermitian metric tensor and by FBA those of the almost complex
structure tensor of M2"H, where here and in the sequel the indices A, B, C,
... run over the range 1',2', ..., (2n+4)'. Then we have

(1.1) FCBFBA= -ocA, gEDFcEFBD=gCB,

ocA being the Kronecker delta.
Let M2n+1 be a (2n+ I)-dimensional Riemannian manifold covered by a

system of coordinate neighborhood {V:yk} and immersed isometrically in
M2nH by the immersion i:M2n+1-+M2nH, where here and in the sequel the
indicesh, i,j, .,. run over the range 1,2, ..., (2n+ 1). We identify i(M2n+l)

with M2"+1 itself and represent the immersion by

(1.2) xA=xA(yk).

We now put BiA=O;xA, (o;=O/oyi). Then BiA are 2n+ 1 linearly indepe­
ndent vectors of ¥2n+4 tangent to M2"+1. And denote by CA, DA, and EA
three mutually oithogona~ unit normals to M2n+1. Then denoting by gj;
components of the induced metric tensor of M2n+1, we have

(1.3) gji=gCnB/BiD

since the immersion is isometric.
As to the transforms of B;A, CA, [)A, and EA by FBA, we have respectively

the following equations of the form

(1.4) FCABP-flBkA+UiCA+Vi[)A+WiEA,

(1.5) FBABB= -ukBkA -VDA+ flEA,

(1.6) FBADB=-vkBkA+VCA_;{EA,

(1. 7) FBAEB=-w"BkA_pCA+lJJA,

where f /' is a tensor field of type (1, 1), ui, Vi' Wi I-forms and A, fl, ].I functions
in M2"+1, uk, vk, and wit. being vector fields associated with Ui, Vi and Wi
respectively.

Applying the operator F to both sides of (1.4).-......(1.7), using (1.1) and
those equations and comparing tangential parts and normal parts of both
sides, we find

(1.8) flftk= -Ol'+Uiuk+v;vk+w;wk,



(1.10)

(1. 9).
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{

Ithut=vvh - flu!',
Ithvt=: -vuh+ AWh,
Ilwt= fluh - Av!',

{

Utut=l-'. fl2_v2, Utvt=Af£,
vtvt=I-v2-A2; Vtwt=flV,
wtwt=1-A2-fl2, Utwt=AV.

Also, from (1.1), (1. 3) and (1.4), we find

(1.11) gtsl/I/=gj;--UjUi-VjVi-WjWi.

If we put Ij; 1/gti> then we easily see that lji= -:..lij.
ThuS (1.8)'"'-'(1.11) show that the aggregate (fih,gii,ui,Vi,Wi,A,fl,V)

defines the so-called (I, g, ~,v, w, A, fl, v)-structure on, M2n+1 ([3J, [6J).
An (f, g, u, v, w, A, fl; v) -strUcfure is said to be antilWrmal. if the. tensor

field Sjt of type (1, 2) defined by
(1.12) Sjih=[I,I]jih+ (OjUi-OiUj)Uh+ (OjVi-OiVj)Vh+ (OjWi-OiWj)'!J"

satisfies.

(1.13) Sj;h=2 {Uj(o;uh) -Ui(OjUh) +vj(o;vh) -v;(ojvh) +Wj(o,.wh) -Wi(Ojwh}.,

where [f,fJjih is the Nijenhuis tensor formed with lih, that is,

[I, jJjih f/OtfiL -1/i1tf/ - (ojl/ -odl)lth~ ,

We find from (1.9)

(1.14) lipt=O;

where we have put

(1.15) tl'=AUh+ flvh+V'.o".

From this and (1.10), we. haye

(l.16) UtJf,A; vtii .fl, WtPt=v, Ptpt=A2+~+))2.
We now suppose that the aggregate (fih , gji, ph) defines an almost contact

metric struc~ure. Then we .get from the last equation of (1.16) .

~ln ~+~+v2==1

because of Ptpt=l. Conversely if the function A, fl and v satisfy (1.17), then
(1.10) reduces to . ,

. (1.18) . UtUt=A2, utVt=Afl, Utwt:""-AV,
Vtvt=~. vtwl=flV, wtwt=v2.

Hence, it follows that .'

(1.19) Ui=Api, vi=flPi, WiVPi

with the help of (1.16) and (1.18), where Pi-:-gtipt. Substituting (1. i9)
into (1.8) gives Illth =-lJ;h+Pitl' because of (1.17). Also substituting (1.
19) into' (Lli) an? y:sing (1.17), we:find
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gtJ/fl=gji- PjPi'

Thus we see that the aggregate (f.h, gji,ph) defines an almost contact metric
structure. Concluding the developed above, we have

THEOREM 1. 1. ([6J) Let M2n+l be a differentiable manifold with an (f,
g,u,v,W,A,fl.,v)-structure. In order for the aggregate (f,g,p), pbeing given
by (1.15), to define an almost contact metric structure, it is necessary and
sufficient that A2+.u2+V2=1.

In the sequel we suppose that the condition A2+.u2+v2=1 is satisfied on
M2n+l. Suppose that the aggregate (f,g,p) defines an almost contact metric
structure and the induced structure is antinormal. Then we have (1.19) and
consequently (1. 13) reduces to

(1. 20) [f,fJjt+ (17jPi-ViPj)ph =2pj (P'iJ!) -2Pi(VjJ!)

with the help of (1.12) and (1.17). Thus we have

THEOREM 1.2. Let M2n+l be a differentiable manifold VJith an (f, g, u, v,
w, A, fl., v) -structure satisfying A2+ .u2+ v2=1. In order for this structure is
antt:normal, it is necessary and sufficient that (1.20) holds.

2. Structure equations of submanifolds of eod.imension 3 of a Kae­
hlerian manifold

Suppose that aggregate (f,g,P) of ft,gji and ph=Auh+~+lJWhdefines
an almost contact metric structure. Then we have (1.19). and. consequently
from (1.4)

(2.1) FcAB{ ftB."A+PiNA ,

where NA=ACA+fl.IJA+vEA is an intrinsically defined unit normal to M2n+l
because CA, DA and EA are mutually orthogonal unit normals to M211+1 and
A2+ fl.2+ v2=1.

When a subnianifold of 'an almost Hermitian manifold' 'satisfies equation 6£
the form (2. 1), NA being a unit nonDal to the submanifold, we say that
the submap.ifold is semhinvariantwith respect to NA [lJ, [5J. We call NA
the distinguished normal to the semi-invariance. We take NA as CA. Then

., we have A=l. fl.=0, ))=0 and consequently tt"'=ph, vh=wh=O because of
(1.10) and (1.15). Thus (1.4)"-'(1.7) becomes respectively

(2.2) FCABl fihB."A+P..CA,
(2.3) FBACB=_phBjA,
(2.4) FBA[)B=-EA,
(2.5) . FBAEB=DA.

Now denoting by Vj the operator of van der Waerden-Bortolotti covariant
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YjllJ= -hjiP"+h/'Pi,

f'jPi=-hjrfl,

kji=-lj,fl-mjPi,

Iji= -kjdl+/jPi,

differentiation with respect to gji, we have equations of Gauss for M2n+l of
M2nH

(2.6) YjBiA=hjiCA+kjiDA+/jiEA,

where hji, kji and Iji are the second fundamental tensors with respect to CA,
DA and EA respectively.

The equations of Weingarten are given by

(2.7) YjCA= -hlBhA+/jDA+mjEA,

(2.8) YjDA= -k/,BhA_/jCA+"njEA,

(2.9) . YjEA= -//,BhA-mjCA~n.jDA.

where hl'=hjttfh, kt=kjttfh, 11'=/jttfh, (gji) = (gji)-l, Ij , mj and nj being
the third fundamental tensors. In the sequel we denote the normal compon­
ents of YjCA by Vi-CA. The normal vector field CA is said to be parallel in
the normal bundle if we have Yi-CA=O, i. e., Ij and mj vanish identically.

We now assume that the ambient manifold M2n+4 is Kaehlerian. Differen­
tiating (2.2) covariantly along M2n+l and using (2.6) and (2.7), we easily
find [6J

(2.10)

(2.11)

(2.12)

(2.13)
from which

(2.14) kjtpt= -mj,

(2.15) Ijtpt=lj ,

(2.16) k= -mtpt,

(2.17) 1=ltpt,

where we have put k=gjikji,l=gJilji'
Transvecting (2.13) with Ii and making use of (2.12), we obtain

-kih-miPh=ksdllhs+ (htlt)Pi,

from which, .taking the skew-symmetric part with respect to i and h,
mhPi-miPh=Pi(ltfAt) -PJ,(ldl),

or, transvecting with ph and using (2.16)

(2.18) Idl=kPi+mi'

If we transvect (2.18) withfl and Ii and take" account of (2.17), we
have respectively

(2.19)
(2.20)

mtfA"=lPi-Ih,
kl+mtlt=O.
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. Transvecting (2.12) with 1',/ and Substituting (2.13)* we find

kjtl,/= - (ljs!l+mjPt) (khTpr+lhpt),
or, using (2.14) and (2. 15)

(2.21) kjti/+kitl/= - (ljmi+lpnj).

If we transvect (2.13) with Ihi . and substitute (2.12)" we have

(2.22) Ijtl/-kjfk/=IA.-:.:m;mi

with the help of (2. 14) and (2. 15).
Now suppose that the (f, g, u, '0, W, A, p, v)-structure is antinormal, that is,

f/Ytft- f/Yd,l- (Yjf/-Yd/)fl'+ (YjPj':'-' YiPj)P" =2pj (VjJ>") -2Pi(Yjph)
~y virtue of (1.20)~ Substituting (2.10) ~d '(2.11) into this, we find

(f/h/'+h./flQh- (flh/t + hlftl:)Pj=0

" f/he'+h/f/'=Pjqi,: " . f/hl'p,.=O, '
f9t a certain vector field t/. From these eq;uations we see that t/=O, and
oonirequently

(2.23) hjtfl. "-ad/.

Thus we have

THEOREM 2.1. Suppose that the (f, g, u, v; w, A, p, v)-structure induced on a
submanifold M2n+l of codimension 3 of a Kdehleruin manifold M2n+4 satisfies
AZ+p2+v2=1. Then in order for this structure to be antinormal, it istiecessary
and sufficient that the second fundamental tensor h with respect to the disting­
uished normal and f anticmnmute.

The Gauss equations of M2n+l for a Kaehlerian'manifold M2n+4 are given
by -

(2.24) KAijh=KDCBABjDB/BlBhA+hAhhji-hl'hii
.. +kikii~klkll+l'tlji-lll-"i'

where BhA=gACgihBjc, Kjjl and KDCBA being the Riemann-ehristoffel cur­
vature tensofS'.O£ M2n+l and.},J2n+f r~'\Tely.

We ~ow suppose that the ambii3rt manifold is a Kaehlerian manifold
M2lI+4(c) of constant holomorpbic sectional eurvatgre c, that is, it's curvature
tensor has the form

c .
(2.25) KDCBA=T(oDAgCB-ocAgDB+FDAFcB

-FCAFDB-2FDCFBA).
Stmstituting (2.25) into (2.24) and taking a<mWlt of (1. 3), (2. 2) .and

(2.3), we have
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(2.26) K"ji"= ~ (Ok"gji-O/gki+h"lji-llhi-2hjli")

+ hk"hji - hlhki+ kk"kji - klkki+ lk"lji-1/1"i'

In the same way by using (2. 2}..·..... (2. 5), we can prove that equations of
the Codazzi for M2n+4(c) are given by

(2.27) P'"hji-P'jhu-l"kji+ljkki-m"lji+mjl"i

= ~ (Pklji-Pjiki-2pi!kj) ,

(2.28) P'"kji-P'jkki+l"hji-ljhki-nklji+n}ki=O,

(2.29) P'Riji-P'jlki+mkhji-mjhki+nkkji-njkki=O,
and those of the Ricci by

(2.30) P'klj-P'jlk+hktkjt-h/kkt+mknj-mjnk=O,

(2.31) P'kmj-P'jmk+hktljt-h/lkt+nklj-nik=O,

(2.32) P'knj-P'jnk+kktljt-k/lkt+lkmj-ljmk= ~hj'

3. Submanifolds of codimension 3 of M2n+4(C) satisfying 22+1'2
+J,l2=1.

In this section we assume that the (I, g, u, v, w, A, p, v, )-structure induced
on a submanifold M2n+l of codimension 3 of a Kaehlerian manifold M2a+4(C)
of constant holomorphic sectional curvature c satisfies ;'2+p2+~=1 and
consequently the aggregate (I, g,p) defines an almost contact metric structure.

We now suppose that the sumanifold M2n+l is umbilical with respect
to the distinguished normal, that is, choosing CA as the distinguished normal,

(3.1) hji=7:gji,k=O, 1=0

for some function 7:. Then (2.16), (2.17) and (2.20) imply that

(3.2) Itpt=mtpt=ltmt=O

and (2.11) becomes P'jPi=7:lji, which shows that
P'kP'jPi= (f1tr:)lji+7:2 (gkiPj-gjkPi)

with the help of (2.10) and the :first relation of (3.1), from which, using
the Ricci identity,

- KkjiPn= (f1k7:)lji- (P'/T:)hi+7:2 (gkiPj- gjiPk) ,

or, taking account of the first Bianchi identity,

(3.3) (P'k7:)lji+ (f1j1:)lik+ (f1(r:)hj=O.

From this we can easily prove that 7: is a constant. Thus (2. 27) reduces to

(3.4) lkkji-ljkki+mklji-mjhi=- ~ (PJr!ji-pjiki- 2Pdkj)



144 Sang-Seup Eum, U-Hang Ki, Un Kyu Kim and Young Ho Kim

because of (3. 1). Transvecting (3.4) with pi and using (2. 14), (2. 15) and
(3. 2), we get

(3.5) mii-milj= ~ fji'

1£ we transvect (3.5) with fii and take account of (2. 18), (2.19) and
(3.1), then we get

(3.6) mtmt= ~ n.

Also, transvecting (3.5) with m i and using (3.2) and (2.19) with 1=0,
we find

(mtmt- ~ )lj=O,

or substituting (3.6) into this, clj=O. Thus we have C=O because of (3.5).
From (2.10), (2.11) and (3.1), we have

(3. 7) Vjf/~=r(-gjiP"+O/'Pi), VjPi = rfji.

Hence, it follows that the aggregate (f, g,p) defines a Sasakian structure if
1:~o. We may consider r=1 because 1: is a constant.

On the other hand, we see from (2.2) and (2.3) that the direct sum of
the tangent space of M2n+l and CA is invariant. Then the ambient space being
EucHdean, M2n+1 is an intersection of a complex cone with center at origin
and .with generatpr CA and a (2n+3)-dimensional sphere (See [6J). Thus
'we have

THEOREM 3. 1. Let M2a+lbe a umbilical submanifold with respect to the
distinguished normal CA of a Kaehlerian manifold M2n+4(c) of constant holo­
morphic sectional curvature c satisf,ing l2+1l2+v2=I. Then M2n+l is an
intersection of a complex cone with generator CA and a sphere.

We next prove the following

THEOREM 3.2. Let M2n+l be a submanifold of codimension 3 of a Kaehlerian
manifold M2n+l(c) of constant holomorphic sectional curvature c with antinormal
(f, g, u, v, w, 1, fl, v)-structure satisf,ing 12+ fl2+ v2=1. If the distinguished
normal CA is parallel in the normal bundle and the third fundamental tensor
nj satisfies

(3.8) Vjni-Vin;=2afji

for a certain function a, then M2n+l is a h,persurface of M2n+2(C).

Proof. Since V/CA=O, that is, Ij and mj vanish identically, we have
from (2.32)
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because of (2. 21). Thus (3.8) reduces to

(3.9) kktljt=(1-a).!kj.

Transvecting (3.9) with lik and taking account of (2.13) with lj=O, we
find

(3.10) ljtl/=(a-1)·(gji-PjPi)'

Therefore, it follows that

(3.11) kjtk/=(a-1)· (gji-PjPi)

because of (2.22) with lj=mj=O.
Since lj=mj=O, (2.28), (2.29) and (2.31) reduces respectively to

(3.12) Vkkji-Vjkki=nklji-n}ki,

(3.13) Vklji-V}H= -nkkji+njkki,

(3.14) h,/ljt-h/lkt=O.
Transvecting (3.14) with II and making use of (3.10), we find

(a-1)· (hji-Pihjtpt) -hstl/ll=O,

from which, taking the skew-symmetric part,

(3.15) (a-1)·(hjtpt-f3Pj)=0,

where we have put

(3.16) f3=hstpspt.

As in the proof of Theorem 3. 1, we can easily from (3.8) see that a is a
constant by using the Ricci and Bianchi identities.

Differentiating (3.10) covariantly and using the fact that a-1 is a

constant, we obtain

(3.17) l/(Vkljt)+l/CJ7klit)=(1-a). {(J7kPj)Pi+(VkPi)Pj},

from which, taking the skew-symmetric part with respect to k and J and
substituting (3.13),

II (njkkt-nkkjt) +l/(J7ilkt-nkkit+nikkt) -ll (Viljt - njkit+nikjt)

=(1-a). {(VkPj-VjPk)Pi+ (J7kPi)Pj- (J7jPi)Pk},

Dr usmg (2.21) with lj=mj=O,

l/(J7ilkt) -lkt(J7iljt) +2nil/ kkt

= (-~-a). {(J7kPj-VjPk)Pi+ (J7kPi)Pj- (YjPi)Pk}.

Interchanging the indices k and i, we get
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(3.18) l/(f7,.lit) -l/(f7,.ljt) +2n,.1/kit ,

=( ~ -a). {(ViPj-f7jPi)P,.+ (f7iP")Pj- (f7jP,.)Pi}'

Adding (3.17) to (3.18), we find

21/17,.lit+2n,.ljtk/

=( ~ -a). {(f7"Pj-f7jP,.)Pi+ (f7,.Pi+f7iP,,)Pj+ (f7iPi-f7jPi)p,.} ,

from which, transvecting pi and taking account of (2.11), (2.15) with lj=O
and (3.15),

(3.19) (~ -a). (h,.d/+ hitht) =0.

Since the induced structure is antinormal, by transvecting 1/ and taking
account of (2.23) and (3. 15), we find

(3.20) (~ -a). (hji - {3PjPi) =0.

If ~ -a*O, then (2.11) becomes f7jPi=O because of hji={3pjPi. Thus

(2. 27) reduces to

(3.21) (V,.f3)PjPi- (Vi3)hPi' ~ (P"lji-~jhi-2P;/"j)

because of lj=mj=O.

Transvecting (3.21) with pipi, we obtain 17413= (ptf7tf3)P,.~ Hence (3.21)
implies that c is zero. Consequently the mnbient manifold is Euclidean.
According to 'uti:Un8. '5.4 of [6J, a must be zero. It contradicts the fact that
c c,' , '
4-a*0. Thus we ha~e a=4. Thereby (2.26),.....,(2.32) become the stru-

cture equations for a hypersurface of M2n+2(C). Thus we complete the proof
of the theorem.

, .
,4,. Antinormal s:ubmanifolds of 'codimension 3 of M2n+4(c) satisfying

12+ p2+v2=1.

In this section we assume that the induced (I, g, u, 'D, w, A, p, v)-structure
induced on a submanifold M211+ 1 of codimension 3 of a Kaehlerian manifold
M2n+4(c) of constant holomorphic sectional curvature c~O satisfies A2+.u2+V2
= 1 and is antinormal. Then we have (2. 23).

Transvecting (2. 23) with pi and taking account of (1. 14), w~ get

(hitpi)I/=O,

from which,
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(4. 1) hitpt= fJpi

because of (3.16).

Differentiating (4. 1) covariantly and substituting (2. 11), we find

(fTjhit)pt_ h/hjs fts= (fTjfJ)Pi-fJkjtf/,

from which, taking the skew-symmetric part and using (2. 23) and (2. 27)

{ljkit-l;kjt+m}it-miljt+ ~ (Pjfit-Pt!jt- 2Pt!ji)} pt

=2h/hjsf/+ (fTjfJ)Pi- (fTifJ)Pj,

or, using (2.14), (2.15) and (2.23)

(4.2) h/hst!/+ ~ fji= ~ {(fTifJ)Pj- (fTjfJ)p;} +limj-ljmi.

If we transvect (4. 2) with pi, then we have

( 1 14.3) 2:fTifJ=2(ptfTtfJ)Pi+lmi+kli

because of (2.16) and (2.17). Thus (4.2) gives

(4.4) k/kst!/+ ~ hi =1(miPj-mjPi) +k(liPj-l;Pi) +l,-mj-l;-mi'

Transvecting (4.4) with fi and using (4.1), we find

-k/kki+fi2p;pl.:+ ~ (-gil.:+PiPI.:)

.-:.. (li-1pi)flmt- (mi-kpi)fl1t,

from which, substituting (2. 18) and (2. 19) ,

(4.5) k/kkt-fi2PiPk+ ~ (gik-PiPk)

=li11.:+mimk-1(liPI.:+lkPi) +k(miPk+mI.:Pi) + (12+k2)PiPJ.:.

On the other hand, transvecting (2. 23) with pi and making use of (4.1),
we have

(4.6) k=fJ,

where we have put giihji=1;.
Using this fact, (4.5) reduces to

(4.7) kjth/+ ~ gji=(h2+k2+12+ ~ )PjPi+ljli+mjmi

+k(mjPi+miPj) -1 (ljPi+1iPj),

which implies

(4.8) hjikii=k2-k2-12+1tlt+mtmt-n;,

with the help of (2.16) and (2.17). Since the left~nd side of (4.8)
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becomes Ilh ji -hpjPill2 because of (4.1) and (4.6), (4.8) can be written as

(4.9) IIhji-hPjPiIl2=ltlt+11ltmt-(k2+12+n;).

For an eigenvaluep of h/ corresponding to the eigenvector orthogonal to

pi, Ii and mi, we have from (4.7) that rJ+ ~ =0 if n~2. Thus it follows

that c~O because the eigenvalue is real and hence c=O.
We now suppose that Vi-CA=O and M2R+1 is minimal. Then we have

from (4.8) with c=O that hji=O. Therefore (2. 26) "J (2.32) mean that
M2n+l is a submanifold of codimension 2 in a Euclidean space E2n+3 because
of c=O.

Hence we have

PROPOSITION 4.1. Let M2n+l (n~2) be a minimal sub11lanifold of codimension
3 of a Kaehlerian manifold M2n+4(c) of constant hol011lOrphic sectional curvature
c~O such that the (f, g, u, v, w, A., fl., v).:..structure induced on M2n+1 defines an
almost contact metric structure (f, g,p), p being given by (1.15) and is anti­
normal. If the distinguished normal CA is parallel in the normal bundle, then
M2n+1 is a submanifold of a Euclidean space E2a+3.

Denoting by Kji=Ktjl and K=gjiKji the Ricci tensor and the scalar
curvature of M2a+l respectively, we then have from (2.26)

K ji= ~ {(2n+3)gji-3PiPi} +hhji+kkji+llji

-kjtkl-kjtkl-IjJl,

from which

K=n(n+2) ·c+k2+k2+12-kjikji-kjikji-ljilji,

or, substituting (4.8) and taking account of (2.22)

K n(2~+5) c-2(lJt-[2) -2(kjikii-k2),

which means
n(2n+5)

(4.10) K 2 c-\I1jpi-1iPj\l2-2\1kji -kpjpi\l2

with the help of (2.14)'"'-'(2.17). Thus if K~ n(2n
2
+5) c holds, we have

IjPi-1iPj=0, kji=kPjPi. Hence (2.12) and (2.13) imply that Iji=lpjPi,

mjPi= 11liPj' It follows from (4.9) that lIhji-hpjPi\l2+ ~ c=O and conseque­

ntly ltji=hpjPi and c=O because of c>O, Thus (2.10) and (2.11) ~omes

Vj/l'=O, P'jPi=O. And (2.26) reduces to Kk;jl'=O.

Therefore we have
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PROPOSITION 4.2. Let M2n+l be a submanifold of codimension 3 of a Kae­
hlerian manifold M2n+4(c) of constant holomorphic sectional curvature c~O

such that the (f, g, u, -0; w,.ii, fl, v)-structure induced on M2n+l is antinormal and

satisfies .ii2+fl2+v2=I. If the scalar curvature K of M2n+l satisfies K~n(2;+5)c

at every point, then M2n+1 is a locally Euclidean space with the second fund­
amental tensors of the forms

hji=hpjPi, kji=kpjPi, lji=lPjPi

and admits a cosymplectic structure.

We now -prove the following

THEOREM 4. 3. Let M2n+l be a complete submanif'Old of codimension 3 of
a Euclidean space E2n+4 with antinormal (f, g, u, -0, w, A, fl, v)-structure satis­
fying .ii2+fl2+v2=I. If" the distinguished normal CA is parallel in the normal
bundle andthe.-tMrd fundament41 tensor of ¥2n+l satisfies

(4 11) l7·n·-I7·n·=2a-t"··• J Z Z J :JJ"

then M2n+l is a plane or a ruled surface which is generated by parallel displa­
cements of a plane E2n along a plane curve orthogonal to E2n.

Proof. Since I7/CA=O, that is, lj=mj=O, we have from (4.9) with c=O

(4.12) hji= hPjPi.

From (4.11) we can prove that a=O and hence

(4.13) kji=O, Iji=O.
(See Lemma 5.4 and Theorem 5.5 of [6J). Thus (2.7) ......... (2.9) reduce to
respectively

(4.14) I7jCA=-hPj(tJ'BhA), I7jDA=njEA, I7jEA=-nj[)A

because of Ij=mj=O. Also (2.11) and (4.12) imply that

(4.15) I7jtJ'=O.

Let M' be a real hypersurface of M2n+l which is defined by the Pfaffian
form m=Pidxi and be covered by a system of coordinate neighborhoods {U'
; ~a}, where the indices a, b, c run over the range 1',2', ... , 2n'.

Let i' : M'~M2n+l be an isometric immersion represented by yk=yh(~a).

Putting Bah=oaYh, (;;a=()/()~a), then B,} are 2n linearly independent vectors
of M2n+l tangent to M'. By definition, ph is a unit normal to M'. Now we
put

(4.16) BaA = BahBkA, PA=tJ'BkA.

Then pA is a unit normal vector field orthogonal tG 'CA, DA and EA. .h this
case, we can easily see that M' is a totally geodesic submanifold of E2n+4
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because of (4.12), (4.13) and (4.15). Consequently M' is a plane E211 parallel
along ph because the ambient space is Euclidean.

If we take account of (4.12) and (4.13), then (2.6) becomes J7jBhA=
hpjPhCA, or by transvecting ph
(4.17)J7jPA=hpjCA

with the help of (4. 15) .
From (4.14) and (4.17), we have

pWjCA= -hPA, piJ7jPA=hCA,

which shows a plane curve with curvature h on a complex two dimen­
sional plane C2 spaned by {PA, CA, DA, EA}. Then the orthogonal compleme­
ntary space of C2 is a plane E211. Hence M2n+1 is a ruled surface which is
generated by parallel displacements of E2n along a curve on C2 if h=f=.O. If
h=O, then M211+1 is a plane in E211+4because of (4.12) and (4.13). This
completes the proof the theorem.

Replacing the conidtion (4.11) in Theorem 4.3 by K~O, we can see that
kji=O, Iji=O. In fact, since J7/-CA=O, (4.9) with c=O implies that hji=
hpjPi. Consequently (4.10) with c=O becomes K= -2kjikji with the help of
Ij=O and k=O. It follows that kji=O becauuse of K~O and hence Iji=O by
virtue of (2. 22).

According to Theorem 4. 3, we have

CoROLLARY 4.4. Let M2n+l be a complete submanifold of codimension 3 of
a Euclidean space E2n+4 with antinormal (f, g, u, v, w, A, fl., v)-structure satisfy·
ing ji2+fJ.2+v2=1. If the distinguished normal CA is parallel in the normal
bundle and the scalar curvature of M2n+1 is nonnegative at every point, we
have the same conclusions of Theorem 4.3.

5. Submanifolds of eodimension 3 of E2n+4 whose normal connection
is fiat.

In this section we assume that the connection induced in the normal
bundle of M211+1 in a Euclidean space E2nH is Hat. Then we have

(5.1) h/kti-h/ktj=O, h/lti-h/ltj=O, k/lti-k/ljt=O.

Transvecting (2. 12) with kji and using the third relation of (5.1), we find
kjikji=mtmt, from which, using (2.14), I\kji+mjPi\l2=O and consequently

(5.2) kji= - mjPi.
If we take the skew-symmetric part of this, then we have mjPi=miPj, or

by using (2.16), mj= -kpj. Thus (5.2) becomes

(5.3) kji=kpjPi.
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(j'

(2.13), (2.15) and (2. 17) that .

Ij=IPjo

,·.In the same way we have from

(5.4) Iji=lpjPi,

Thus (4.9) with C=O implies '

(5.5) hji = hpjPi .
with the help of the fact that It1t=[2 and "mtmt=k2. " '

Conversely, if (5. 3) ~'(5. 5) are satisfi~,' then we' easily see that (2.23)
and (5.1) are valid. Therefore we have

PROPOSITION 5.1. Suppose tMt the (f, g, u, v, w, A, p, ]))-structure induced
on a submanifold M2n+l of codimension 3 of a Euclid~an' space E2n+4 satisfies
A2+p2+v2=1 and consequently (f, g,p) flefines an almost contact metric stru­
cture. Then in order for these structures to be antinormal, a~ the connection
induced in the normal bundle of M2n+1 to be tr.ivial, ,it is rJ.ecessary and suffic­
ient that the second fundamental tensors of M2n+1have the form

(5.6) hji=hPjPi, kji=kpjPi, lji=lpjp,.

On the other hand, the mean curvature 'vector Ho£'M2n+l is given. by
1 ' .'

H=2n+ 1(hC+kD+IE)~

If we now take the distinguished normal a~ a direction of the mean cur­
vature'vector if H=FO;, that is, we choose the nortml.ls if/IIHII, 'D and 'E
such that H=IlHlIC, then we have

(:~)=(~ oos~' '~in ~\;. (;)',
'E 0 -sinO cosO] E

for some consU;uJ.t 0, where 'c 'H/IIHII'. T~m~s . '

(5.7) 'C; C, 'D.,=cosfJ.'D+sinO.~, 'E=-sinO·D+cosO·E.
As to the transforms of BiA; 'CA,'DA and 'EA by.F~, we,have respectively

the equations of the form

FBABl!, fihBh4.+'u/CA+'v/D~+'w/EA~, ','
FBA'CB= -'uhBhA_'])'DA+'piEA;" ", '
FBA1DB' ~~'i/'BhA+',,!'CA-"'A'EA, ",',

,'" "'.;'" 'FBA'EB=-.IwABhA-'p'CA+'A'EA.

'If~~apply't~e'~perator F ~ tb:es_e,.equations..~nd ~':(5. 7)', we ()btain

(5.8) 'A=).,,-'p==cosOop+sinOov;,-,
'v= -sin O· p+cos 0°]),

which shows that ').=1, ,p='v=O if A=l, p=v=O, that is, although the



152 Sang-Seup Eum, U-Hang Ki. UnKyu Kim-and Young Ho Kim

normals C, D and E are rotated by the :fixed angle- 0, we may take H as
distinguished normal.

Let 'hji' 'kji and 'lji be the second fundamental tensors with respect to
'C, 'D and 'E, and 'lj' 'mj and 'nj the third fundamental tensors correspon­
ding to lj' mj and nj respectively.

"By differentiating (5.7) covariantly and taking account of (2.7) '" (2. 9),
we then have

(5.9) 'hj;=hj;, 'kj.=cosO.kj;+sinO·lji

'lj;= -sin O· kj;+cos O·lj"

. (5.10) 'lj=cosO·lj+sinO·mj, 'mj=-sinO·lj+cosO·mj, 'nj=nj

because 0 is a constant.
Since the distinguished normal as a direction of the mean curvatur~ vector,

we have

(5.11) 'h=h, 'k='I=O,

where we have put 'h='h/ and 'k='k/ and '1='1/.
By using (5.9), we can easily verify that (2.23) and (5.1) are of intrinsic

characters. Hence (5.6) implies -

'hj;=hpjP;, 'kj;='lji=O

because of (5."11). &; in the proof of Theorem 4. 3, M2n+1 is a ruled surface
which is generated by parallel displacements of a plane wn along a plane
curve orthogonal to wn if H =I:- o. Thus we have

THEOREM 5. 2. Let M2n+1 be a complete submanifold of codimension 3 of a
Euclidean space E2tJ+4 with antinormal (f, g, u, v, w,.(, p., v)-structure satisfying
.(2+p.2+v2=1 whose normal connection is flat. If we take the distinguished
normal as a direction of the mean curvature vector H, then M2n+l is a ruled
surface which is generated by parallel displacements of a plane W n along a
plane curve orthogonal to EJ.n provided that H=l:-O. If H=O, then M2n+l is a
plane EJ.n+1.

Combining Proposition 4. 2 and Theorem 5.2, we have

CoROLLARY 5.3. Let M2n+l be a complete submanifold of codimension 3 of
a Euclidean space E2nH with antinormal (f, g, u, v, w, A, p., v)-structure satisfying
.(2+.a2+v2=1. If we take the distinguished normal as a direction of the mean
curvature vector -and the scalar curvature of M24+l is nonnegaii'Oe at every
point, we have the same conclusions of .Theorem 5.2.
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