SUBMANIFOLDS OF CODIMENSION 3 OF A KAEHLERIAN MANIFOLD (I)

By Sang-Seup Eum, U-Hang Ki, Un Kyu Kim and Young Ho Kim*

0. Introduction

It is well known that a submanifold of codimension 3 of an Hermitian manifold admits an $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced from the almost Hermitian structure of the ambient manifold.

In the present paper we investigate a submanifold of codimension 3 of a (2n+4)-dimensional Kaehlerian manifold admitting an $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure.

Firstly, we study the structure induced on the submanifold of codimension 3 of a (2n+4)-dimensional Kaehlerian manifold. In section 1, we define the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure and we show that this kind of structure gives an almost contact metric structure when $\lambda^2 + \mu^2 + \nu^2 = 1$ and we find a necessary and sufficient condition that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure be antinormal. In section 2, we study some equations concerning the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure and we show that in order for the structure to be antinormal, it is necessary and sufficient that h and f anticommute, where h is the second fundamental tensor with respect to the distinguished normal.

Next, we study the submanifold of codimension 3 of a (2n+4)-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c. In section 3, we investigate the submanifolds satisfying the condition $\lambda^2 + \mu^2 + \nu^2 = 1$ and we show that an umbilical submanifold with respect to the distinguished normal is an intersection of a complex cone and a sphere, that is, such a submanifold is an extended Brieskorn manifold. In section 4, we show that an antinormal minimal submanifold is a submanifold of a (2n+3)-dimensional Euclidean space under some conditions. Moreover in this section, we show that a complete submanifold of codimension 3 of a Euclidean space E^{2n+4} is a plane or a ruled surface under some conditions. In section 5, we find a necessary and sufficient condition that the connection induced in the normal bundle of the submanifold to be trivial. Moreover in this section, we study a complete submanifold of codimension 3 of a (2n+4)-dimen

Received Nov. 12, 1979.

^{*)} This research is supported by KOSEF (Korea Science and Engineering Foundation) Research Grant.

sional Euclidean space E^{2n+4} whose normal connection is flat and characterize this submanifold under some conditions.

1. Structures induced on submanifolds of codimension 3 of an almost Hermitian manifold

Let M^{2n+4} be a (2n+4)-dimensional almost Hermitian manifold covered by a system of coordinate neighborhoods $\{U; x^A\}$ and denote by g_{CB} components of the Hermitian metric tensor and by F_B^A those of the almost complex structure tensor of M^{2n+4} , where here and in the sequel the indices A, B, C, \ldots run over the range $1', 2', \ldots, (2n+4)'$. Then we have

(1.1)
$$F_C{}^B F_B{}^A = -\delta_C{}^A$$
, $g_{ED} F_C{}^E F_B{}^D = g_{CB}$

 δ_{C}^{A} being the Kronecker delta.

Let M^{2n+1} be a (2n+1)-dimensional Riemannian manifold covered by a system of coordinate neighborhood $\{V:y^h\}$ and immersed isometrically in M^{2n+4} by the immersion $i:M^{2n+1} \rightarrow M^{2n+4}$, where here and in the sequel the indices h, i, j, ... run over the range 1, 2, ..., (2n+1). We identify $i(M^{2n+1})$ with M^{2n+1} itself and represent the immersion by

$$(1.2) x^A = x^A(y^h).$$

We now put $B_i{}^A = \partial_i x^A$, $(\partial_i = \partial/\partial y^i)$. Then $B_i{}^A$ are 2n+1 linearly independent vectors of M^{2n+4} tangent to M^{2n+1} . And denote by C^A , D^A , and E^A three mutually orthogonal unit normals to M^{2n+1} . Then denoting by g_{ji} components of the induced metric tensor of M^{2n+1} , we have

$$g_{ji} = g_{CD}B_j^{C}B_i^{D}$$

since the immersion is isometric.

As to the transforms of B_i^A , C^A , D^A , and E^A by F_B^A , we have respectively the following equations of the form

$$(1.4) F_C{}^AB_i{}^C = f_i{}^hB_h{}^A + u_iC^A + v_iD^A + w_iE^A,$$

$$(1.5) F_B^A B^B = -u^h B_h^A - \nu D^A + \mu E^A,$$

$$(1.6) F_B{}^A D^B = -v^h B_h{}^A + \nu C^A - \lambda E^A,$$

$$(1.7) F_B{}^A E^B = -w^h B_h{}^A - \mu C^A + \lambda D^A,$$

where f_i^h is a tensor field of type (1, 1), u_i, v_i, w_i 1-forms and λ, μ, ν functions in M^{2n+1} , u^h, v^h , and w^h being vector fields associated with u_i, v_i and w_i respectively.

Applying the operator F to both sides of $(1.4)\sim(1.7)$, using (1.1) and those equations and comparing tangential parts and normal parts of both sides, we find

(1.8)
$$f_i^t f_i^h = -\delta_i^h + u_i u^h + v_i v^h + w_i w^h,$$

(1.9)
$$\begin{cases} f_t{}^h u^t = \nu v^h - \mu w^h, \\ f_t{}^h v^t = -\nu u^h + \lambda w^h, \\ f_t{}^h w^t = \mu u^h - \lambda v^h, \end{cases}$$

(1.10)
$$\begin{cases} u_{t}u^{t} = 1 - \mu^{2} - \nu^{2}, & u_{t}v^{t} = \lambda\mu, \\ v_{t}v^{t} = 1 - \nu^{2} - \lambda^{2}, & v_{t}w^{t} = \mu\nu, \\ w_{t}w^{t} = 1 - \lambda^{2} - \mu^{2}, & u_{t}w^{t} = \lambda\nu. \end{cases}$$

Also, from (1.1), (1.3) and (1.4), we find

$$(1.11) g_{ts}f_{j}^{t}f_{i}^{s} = g_{ji} - u_{j}u_{i} - v_{j}v_{i} - w_{j}w_{i}.$$

If we put $f_{ji}=f_{j}^{t}g_{ti}$, then we easily see that $f_{ji}=-f_{ij}$.

Thus $(1.8)\sim(1.11)$ show that the aggregate $(f_i^h, g_{ji}, u_i, v_i, w_i, \lambda, \mu, \nu)$ defines the so-called $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure on M^{2n+1} ([3], [6]).

An $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure is said to be *antinormal* if the tensor field S_{ij}^h of type (1, 2) defined by

$$(1.12) \quad S_{ji}{}^{h} = [f, f]_{ji}{}^{h} + (\partial_{j}u_{i} - \partial_{i}u_{j})u^{h} + (\partial_{j}v_{i} - \partial_{i}v_{j})v^{h} + (\partial_{j}w_{i} - \partial_{i}w_{j})w^{h}$$
 satisfies

 $(1.13) \quad S_{ji}{}^h = 2 \left\{ u_j(\partial_i u^h) - u_i(\partial_j u^h) + v_j(\partial_i v^h) - v_i(\partial_j v^h) + w_j(\partial_i w^h) - w_i(\partial_j w^h) \right\},$ where $[f, f]_{ji}{}^h$ is the Nijenhuis tensor formed with $f_i{}^h$, that is,

$$[f,f]_{ji}{}^{h}=f_{j}{}^{t}\partial_{t}f_{i}{}^{h}-f_{i}{}^{t}\partial_{t}f_{j}{}^{h}-(\partial_{i}f_{i}{}^{t}-\partial_{i}f_{j}{}^{t})f_{t}{}^{h}.$$

We find from (1.9)

$$(1.14) f_t^h p^t = 0,$$

where we have put

$$(1.15) p^h = \lambda u^h + \mu v^h + \nu w^h.$$

From this and (1.10), we have

(1.16)
$$u_t p^t = \lambda$$
, $v_t p^t = \mu$, $w_t p^t = \nu$, $p_t p^t = \lambda^2 + \mu^2 + \nu^2$.

We now suppose that the aggregate $(f_i{}^h, g_{ji}, p^h)$ defines an almost contact metric structure. Then we get from the last equation of (1.16)

(1.17)
$$\lambda^2 + \mu^2 + \nu^2 = 1$$

because of $p_t p^t = 1$. Conversely if the function λ , μ and ν satisfy (1.17), then (1.10) reduces to

(1.18)
$$u_t u^t = \lambda^2, \quad u_t v^t = \lambda \mu, \quad u_t w^t = \lambda \nu,$$

$$v_t v^t = \mu^2, \quad v_t w^t = \mu \nu, \quad w_t w^t = \nu^2.$$

Hence, it follows that

$$(1.19) u_i = \lambda p_i, \quad v_i = \mu p_i, \quad w_i = \nu p_i$$

with the help of (1.16) and (1.18), where $p_i = g_{ti}p^t$. Substituting (1.19) into (1.8) gives $f_i{}^t f_i{}^h = -\delta_i{}^h + p_i p^h$ because of (1.17). Also substituting (1.19) into (1.11) and using (1.17), we find

$$g_{ts}f_{j}^{t}f_{i}^{s}=g_{ji}-p_{j}p_{i}$$

Thus we see that the aggregate (f_i^h, g_{ji}, p^h) defines an almost contact metric structure. Concluding the developed above, we have

THEOREM 1.1. ([6]) Let M^{2n+1} be a differentiable manifold with an $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure. In order for the aggregate (f, g, p), p being given by (1.15), to define an almost contact metric structure, it is necessary and sufficient that $\lambda^2 + \mu^2 + \nu^2 = 1$.

In the sequel we suppose that the condition $\lambda^2 + \mu^2 + \nu^2 = 1$ is satisfied on M^{2n+1} . Suppose that the aggregate (f, g, p) defines an almost contact metric structure and the induced structure is antinormal. Then we have (1.19) and consequently (1.13) reduces to

(1.20)
$$[f, f]_{ji}^h + (V_j p_i - V_i p_j) p^h = 2p_j (V_i p^h) - 2p_i (V_j p^h)$$
 with the help of (1.12) and (1.17). Thus we have

THEOREM 1.2. Let M^{2n+1} be a differentiable manifold with an $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. In order for this structure is antinormal, it is necessary and sufficient that (1.20) holds.

2. Structure equations of submanifolds of codimension 3 of a Kaehlerian manifold

Suppose that aggregate (f, g, p) of f_i^h, g_{ji} and $p^h = \lambda u^h + \mu v^h + \nu w^h$ defines an almost contact metric structure. Then we have (1.19) and consequently from (1.4)

$$(2.1) F_{\mathcal{C}}{}^{A}B_{i}{}^{C} = f_{i}{}^{h}B_{h}{}^{A} + p_{i}N^{A}$$

where $N^A = \lambda C^A + \mu D^A + \nu E^A$ is an intrinsically defined unit normal to M^{2n+1} because C^A , D^A and E^A are mutually orthogonal unit normals to M^{2n+1} and $\lambda^2 + \mu^2 + \nu^2 = 1$.

When a submanifold of an almost Hermitian manifold satisfies equation of the form (2.1), N^A being a unit normal to the submanifold, we say that the submanifold is semi-invariant with respect to N^A [1], [5]. We call N^A the distinguished normal to the semi-invariance. We take N^A as C^A . Then we have $\lambda=1$, $\mu=0$, $\nu=0$ and consequently $u^h=p^h$, $v^h=w^h=0$ because of (1.10) and (1.15). Thus (1.4)~(1.7) becomes respectively

- $(2.2) F_C^A B_i{}^C = f_i{}^h B_h{}^A + P_i C^A,$
- $(2.3) F_B{}^A C^B = -p^h B_h{}^A,$
- $(2.4) F_B{}^A D^B = -E^A,$
- $(2.5) F_B{}^A E^B = D^A.$

Now denoting by V_j the operator of van der Waerden-Bortolotti covariant

differentiation with respect to g_{ji} , we have equations of Gauss for M^{2n+1} of M^{2n+4}

$$(2.6) V_{j}B_{i}^{A}=h_{ji}C^{A}+k_{ii}D^{A}+l_{ji}E^{A},$$

where h_{ji} , k_{ji} and l_{ji} are the second fundamental tensors with respect to C^A , D^A and E^A respectively.

The equations of Weingarten are given by

(2.7)
$$V_iC^A = -h_i^h B_h^A + l_i D^A + m_i E^A$$

$$(2.8) V_i D^A = -k_i^A B_h^A - l_i C^A + n_i E^A,$$

(2.9)
$$\nabla_{j}E^{A} = -l_{j}^{h}B_{h}^{A} - m_{j}C^{A} - n_{j}D^{A}$$
.

where $h_i^h = h_{it}g^{th}$, $k_i^h = k_{jt}g^{th}$, $l_j^h = l_{jt}g^{th}$, $(g^{ji}) = (g_{ji})^{-1}$, l_j , m_j and n_i being the third fundamental tensors. In the sequel we denote the normal components of V_iC^A by $V_i^{\perp}C^A$. The normal vector field C^A is said to be parallel in the normal bundle if we have $V_j^{\perp}C^A=0$, i.e., l_j and m_j vanish identically.

We now assume that the ambient manifold M^{2n+4} is Kaehlerian. Differentiating (2.2) covariantly along M^{2n+1} and using (2.6) and (2.7), we easily find [6]

(2.10)
$$V_i f_i^h = -h_{ji} p^h + h_j^h p_i$$

(2.12)
$$k_{ji} = -l_{ji}f_{i}^{t} - m_{j}p_{i},$$

(2.13)
$$l_{ji} = -k_{jt}f_{i}^{t} + l_{j}p_{i},$$

from which

$$(2.14) k_{jt}p^t = -m_j,$$

(2. 15)
$$l_{jt}p^{t}=l_{j},$$

(2. 16) $k=-m_{t}p^{t},$

$$(2.16) k = -m_t \dot{p}^t,$$

$$(2.17) l=l_t p^t,$$

where we have put $k=g^{ji}k_{ji}$, $l=g^{ji}l_{ji}$.

Transvecting (2.13) with f_k^j and making use of (2.12), we obtain

$$-k_{ih}-m_{i}p_{h}=k_{st}f_{i}^{t}f_{h}^{s}+(f_{h}^{t}l_{t})p_{i},$$

from which, taking the skew-symmetric part with respect to i and h, $m_h p_i - m_i p_h = p_i (l_t f_h^t) - p_h (l_t f_i^t),$

or, transvecting with p^h and using (2.16)

$$(2.18) l_t f_i^t = k p_i + m_i.$$

If we transvect (2.18) with f_k^i and l^i and take account of (2.17), we have respectively

$$(2.19) m_t f_h^t = l p_h - l_h,$$

$$(2.20) kl + m_t l^t = 0.$$

Transvecting (2.12) with l_h^i and substituting (2.13), we find

$$k_{jt}l_h^t = -(l_{js}f_t^s + m_ip_t)(k_{hr}f^{tr} + l_hp^t),$$

or, using (2.14) and (2.15)

(2.21)
$$k_{it}l_{i}^{t} + k_{it}l_{i}^{t} = -(l_{i}m_{i} + l_{i}m_{i}).$$

If we transvect (2.13) with l_{h}^{i} and substitute (2.12), we have

$$(2.22) l_{ji}l_{i}^{t} - k_{ji}k_{i}^{t} = l_{j}l_{i} - m_{j}m_{i}$$

with the help of (2.14) and (2.15).

Now suppose that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure is antinormal, that is, $f_i \cdot \nabla_t f_i \cdot - f_i \cdot \nabla_t f_j \cdot - (\nabla_j f_i \cdot - \nabla_i f_j \cdot) f_i \cdot + (\nabla_j p_i - \nabla_i p_j) p^k = 2p_j (\nabla_i p^k) - 2p_i (\nabla_j p^k)$

by virtue of (1.20). Substituting (2.10) and (2.11) into this, we find

$$(f_i^t h_t^k + h_i^t f_t^k) p_i - (f_i^t h_t^k + h_i^t f_t^k) p_i = 0$$

and hence

$$f_{j}^{t}h_{t}^{k}+h_{j}^{t}f_{t}^{k}=p_{j}q^{k}, \qquad f_{j}^{t}h_{t}^{k}p_{k}=0,$$

for a certain vector field q^k . From these equations we see that $q^k=0$, and consequently

$$(2.23) h_{jt} f_i^{t} = h_{it} f_j^{t}.$$

Thus we have

THEOREM 2.1. Suppose that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced on a submanifold M^{2n+1} of codimension 3 of a Kaehlerian manifold M^{2n+4} satisfies $\lambda^2 + \mu^2 + \nu^2 = 1$. Then in order for this structure to be antinormal, it is necessary and sufficient that the second fundamental tensor h with respect to the distinguished normal and f anticommute.

The Gauss equations of M^{2n+1} for a Kaehlerian manifold M^{2n+4} are given by

(2.24)
$$K_{kji}{}^{h} = K_{DCB}{}^{A}B_{k}{}^{D}B_{j}{}^{C}B_{i}{}^{B}B^{h}{}_{A} + h_{k}{}^{h}h_{ji} - h_{j}{}^{h}h_{ki} + h_{k}{}^{h}h_{ji} - h_{j}{}^{h}h_{ki} + h_{k}{}^{h}h_{ji} - h_{j}{}^{h}h_{ki},$$

where $B^h_A = g_{AC}g^{jh}B_j^C$, K_{kji}^h and K_{DCB}^A being the Riemann-Christoffel curvature tensors of M^{2n+1} and M^{2n+4} respectively.

We now suppose that the ambient manifold is a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature c, that is, it's curvature tensor has the form

(2. 25)
$$K_{DCB}^{A} = \frac{c}{4} (\delta_{D}^{A} g_{CB} - \delta_{C}^{A} g_{DB} + F_{D}^{A} F_{CB} - F_{C}^{A} F_{DB} - 2F_{DC} F_{B}^{A}).$$

Substituting (2.25) into (2.24) and taking account of (1.3), (2.2) and (2.3), we have

(2. 26)
$$K_{kji}^{h} = \frac{c}{4} (\delta_{k}^{h} g_{ji} - \delta_{j}^{h} g_{ki} + f_{k}^{h} f_{ji} - f_{j}^{h} f_{ki} - 2 f_{kj} f_{i}^{h}) + h_{k}^{h} h_{ii} - h_{i}^{h} h_{ki} + k_{k}^{h} k_{ji} - k_{i}^{h} k_{ki} + l_{k}^{h} l_{ji} - l_{i}^{h} l_{ki}.$$

In the same way by using $(2.2)\sim(2.5)$, we can prove that equations of the Codazzi for $M^{2n+4}(c)$ are given by

(2.27)
$$V_{k}h_{ji} - V_{j}h_{ki} - l_{k}k_{ji} + l_{j}k_{ki} - m_{k}l_{ji} + m_{j}l_{ki}$$

$$= \frac{c}{4} (p_{k}f_{ji} - p_{j}f_{ki} - 2p_{i}f_{kj}),$$

$$(2.28) V_{k}l_{ji} - V_{j}k_{ki} + l_{k}h_{ji} - l_{j}h_{ki} - n_{k}l_{ji} + n_{j}l_{ki} = 0,$$

and those of the Ricci by

$$(2.31) V_k m_i - V_j m_k + h_k^i l_{jt} - h_j^i l_{kt} + n_k l_j - n_j l_k = 0,$$

$$(2.32) V_{k}n_{j} - V_{j}n_{k} + k_{k}^{t}l_{jt} - k_{j}^{t}l_{kt} + l_{k}m_{j} - l_{j}m_{k} = \frac{c}{2}f_{kj}.$$

3. Submanifolds of codimension 3 of $M^{2n+4}(c)$ satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$.

In this section we assume that the $(f, g, u, v, w, \lambda, \mu, \nu,)$ -structure induced on a submanifold M^{2n+1} of codimension 3 of a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature c satisfies $\lambda^2 + \mu^2 + \nu^2 = 1$ and consequently the aggregate (f, g, p) defines an almost contact metric structure.

We now suppose that the sumanifold M^{2n+1} is umbilical with respect to the distinguished normal, that is, choosing C^A as the distinguished normal,

(3.1)
$$h_{ji} = \tau g_{ji}, k=0, l=0$$

for some function τ . Then (2.16), (2.17) and (2.20) imply that

$$(3.2) l_t \dot{p}^t = m_t \dot{p}^t = l_t m^t = 0$$

and (2.11) becomes $\nabla_j p_i = \tau f_{ji}$, which shows that $\nabla_k \nabla_j p_i = (\nabla_k \tau) f_{ji} + \tau^2 (g_{ki} p_j - g_{jk} p_i)$

with the help of (2.10) and the first relation of (3.1), from which, using the Ricci identity,

$$-K_{kji}{}^{h}p_{h} = (\nabla_{k}\tau)f_{ji} - (\nabla_{j}\tau)f_{ki} + \tau^{2}(g_{ki}p_{j} - g_{ji}p_{k}),$$

or, taking account of the first Bianchi identity,

$$(3.3) (\nabla_k \tau) f_{ji} + (\nabla_j \tau) f_{ik} + (\nabla_i \tau) f_{kj} = 0.$$

From this we can easily prove that τ is a constant. Thus (2.27) reduces to

$$(3.4) l_k k_{ji} - l_j k_{ki} + m_k l_{ji} - m_j l_{ki} = -\frac{c}{4} (p_k f_{ji} - p_j f_{ki} - 2p_i f_{kj})$$

because of (3.1). Transvecting (3.4) with p^k and using (2.14), (2.15) and (3.2), we get

$$(3.5) m_j l_i - m_i l_j = \frac{c}{4} f_{ji}.$$

If we transvect (3.5) with f^{ji} and take account of (2.18), (2.19) and (3.1), then we get

$$m_t m^t = \frac{c}{4} n.$$

Also, transvecting (3.5) with m^i and using (3.2) and (2.19) with l=0, we find

$$\left(m_t m^t - \frac{c}{4}\right) l_j = 0,$$

or substituting (3.6) into this, $cl_j=0$. Thus we have c=0 because of (3.5). From (2.10), (2.11) and (3.1), we have

$$(3.7) V_i f_i^h = \tau (-g_{ii} p^h + \delta_i^h p_i), V_i p_i = \tau f_{ii}.$$

Hence, it follows that the aggregate (f, g, p) defines a Sasakian structure if $\tau \neq 0$. We may consider $\tau = 1$ because τ is a constant.

On the other hand, we see from (2.2) and (2.3) that the direct sum of the tangent space of M^{2n+1} and C^A is invariant. Then the ambient space being Euclidean, M^{2n+1} is an intersection of a complex cone with center at origin and with generator C^A and a (2n+3)-dimensional sphere (See [6]). Thus we have

THEOREM 3.1. Let M^{2n+1} be a umbilical submanifold with respect to the distinguished normal C^A of a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature c satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. Then M^{2n+1} is an intersection of a complex cone with generator C^A and a sphere.

We next prove the following

THEOREM 3.2. Let M^{2n+1} be a submanifold of codimension 3 of a Kaehlerian manifold $M^{2n+1}(c)$ of constant holomorphic sectional curvature c with antinormal $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. If the distinguished normal C^A is parallel in the normal bundle and the third fundamental tensor n_j satisfies

$$(3.8) V_{j}n_{i}-V_{i}n_{j}=2\alpha f_{ji}$$

for a certain function α , then M^{2n+1} is a hypersurface of $M^{2n+2}(c)$.

Proof. Since $V_j^{\perp}C^A=0$, that is, l_j and m_j vanish identically, we have from (2.32)

$$V_{k}n_{j} - V_{j}n_{k} + 2k_{k}t_{jt} = \frac{c}{2}f_{kj}$$

because of (2.21). Thus (3.8) reduces to

$$(3.9) k_k^t l_{jt} = \left(\frac{c}{4} - \alpha\right) \cdot f_{kj}.$$

Transvecting (3.9) with f_i^k and taking account of (2.13) with $l_j=0$, we find

$$(3.10) l_{jt}l_i^t = \left(\alpha - \frac{c}{4}\right) \cdot (g_{ji} - p_j p_i).$$

Therefore, it follows that

$$(3.11) k_{ji}k_i^t = \left(\alpha - \frac{c}{4}\right) \cdot (g_{ji} - p_j p_i)$$

because of (2.22) with $l_i = m_i = 0$.

Since $l_j = m_j = 0$, (2.28), (2.29) and (2.31) reduces respectively to

$$(3.12) \qquad \nabla_k k_{ii} - \nabla_i k_{ki} = n_k l_{ii} - n_i l_{ki},$$

(3.13)
$$V_k l_{ii} - V_j l_{ki} = -n_k k_{ji} + n_j k_{ki}$$

$$(3.14) h_k^t l_{it} - h_i^t l_{kt} = 0.$$

Transvecting (3.14) with l_i^k and making use of (3.10), we find

$$\left(\alpha - \frac{c}{4}\right) \cdot (h_{ji} - p_i h_{jt} p^t) - h_{st} l_j^s l_i^t = 0,$$

from which, taking the skew-symmetric part,

(3.15)
$$\left(\alpha - \frac{c}{4}\right) \cdot (h_{jt}p^t - \beta p_j) = 0,$$

where we have put

$$\beta = h_{st} p^s p^t.$$

As in the proof of Theorem 3.1, we can easily from (3.8) see that α is a constant by using the Ricci and Bianchi identities.

Differentiating (3.10) covariantly and using the fact that $\alpha - \frac{c}{4}$ is a constant, we obtain

(3.17)
$$l_i^t(\nabla_k l_{jt}) + l_j^t(\nabla_k l_{it}) = \left(\frac{c}{4} - \alpha\right) \cdot \{(\nabla_k p_j) p_i + (\nabla_k p_i) p_j\},$$

from which, taking the skew-symmetric part with respect to k and j and substituting (3.13),

$$\begin{split} l_{i}^{t} &(n_{j}k_{kt} - n_{k}k_{jt}) + l_{j}^{t} (\nabla_{i}l_{kt} - n_{k}k_{it} + n_{i}k_{kt}) - l_{k}^{t} (\nabla_{i}l_{jt} - n_{j}k_{it} + n_{i}k_{jt}) \\ &= \left(\frac{c}{4} - \alpha\right) \cdot \left\{ (\nabla_{k}p_{j} - \nabla_{j}p_{k})p_{i} + (\nabla_{k}p_{i})p_{j} - (\nabla_{j}p_{i})p_{k} \right\}, \end{split}$$

or using (2.21) with $l_j = m_j = 0$,

$$\begin{split} l_j{}^t(\overline{V}_i l_{kt}) - l_k{}^t(\overline{V}_i l_{jt}) + 2n_i l_j{}^t k_{kt} \\ = & \left(\frac{c}{4} - \alpha\right) \cdot \left\{ (\overline{V}_k p_j - \overline{V}_j p_k) p_i + (\overline{V}_k p_i) p_j - (\overline{V}_j p_i) p_k \right\}. \end{split}$$

Interchanging the indices k and i, we get

Sang-Seup Eum, U-Hang Ki, Un Kyu Kim and Young Ho Kim

$$(3.18) l_j^t(\overline{V}_k l_{it}) - l_i^t(\overline{V}_k l_{jt}) + 2n_k l_j^t k_{it}$$

$$= \left(\frac{c}{4} - \alpha\right) \cdot \left\{ (\overline{V}_i p_j - \overline{V}_j p_i) p_k + (\overline{V}_i p_k) p_j - (\overline{V}_j p_k) p_i \right\}.$$

Adding (3.17) to (3.18), we find

$$2l_j^t \nabla_k l_{it} + 2n_k l_{jt} k_i^t$$

$$= \left(\frac{c}{4} - \alpha\right) \cdot \left\{ (\nabla_k p_j - \nabla_j p_k) p_i + (\nabla_k p_i + \nabla_i p_k) p_j + (\nabla_i p_j - \nabla_j p_i) p_k \right\},\,$$

from which, transvecting p^j and taking account of (2.11), (2.15) with $l_j = 0$ and (3.15),

$$(3.19) \qquad \left(\frac{c}{4}-\alpha\right)\cdot (h_{kt}f_{i}^{t}+h_{it}f_{k}^{t})=0.$$

Since the induced structure is antinormal, by transvecting f_j^k and taking account of (2.23) and (3.15), we find

$$(3.20) \qquad \left(\frac{c}{4}-\alpha\right)\cdot(h_{ji}-\beta p_{j}p_{i})=0.$$

If $\frac{c}{4} - \alpha \neq 0$, then (2.11) becomes $V_j p_i = 0$ because of $h_{ji} = \beta p_j p_i$. Thus (2.27) reduces to

(3.21)
$$(\nabla_{k}\beta) p_{j} p_{i} - (\nabla_{j}\beta) p_{k} p_{i} = \frac{c}{4} \left(p_{k} f_{ji} - p_{j} f_{ki} - 2 p_{i} f_{kj} \right)$$

because of $l_i = m_i = 0$.

Transvecting (3.21) with p^jp^i , we obtain $\nabla_k\beta = (p^i\nabla_i\beta)p_k$. Hence (3.21) implies that c is zero. Consequently the ambient manifold is Euclidean. According to Lemma 5.4 of [6], α must be zero. It contradicts the fact that $\frac{c}{4} - \alpha \neq 0$. Thus we have $\alpha = \frac{c}{4}$. Thereby (2.26) \sim (2.32) become the structure equations for a hypersurface of $M^{2n+2}(c)$. Thus we complete the proof of the theorem.

4. Antinormal submanifolds of codimension 3 of $M^{2n+4}(c)$ satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$.

In this section we assume that the induced $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced on a submanifold M^{2n+1} of codimension 3 of a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature $c \ge 0$ satisfies $\lambda^2 + \mu^2 + \nu^2 = 1$ and is antinormal. Then we have (2.23).

Transvecting (2.23) with p^i and taking account of (1.14), we get $(h_{it}p^i)f_i^{\ t}=0$,

from which,

$$(4.1) h_{it}p^t = \beta p_i$$

because of (3.16).

Differentiating (4.1) covariantly and substituting (2.11), we find

$$(\nabla_i h_{it}) p^t - h_i^t h_{is} f_t^s = (\nabla_i \beta) p_i - \beta h_{it} f_i^t$$

from which, taking the skew-symmetric part and using (2.23) and (2.27)

$$\left\{ l_{j}k_{it} - l_{i}k_{jt} + m_{j}l_{it} - m_{i}l_{jt} + \frac{c}{4} (p_{j}f_{it} - p_{i}f_{jt} - 2p_{t}f_{ji}) \right\} p^{t}$$

$$= 2h_{i}^{t}h_{js}f_{i}^{s} + (\nabla_{j}\beta)p_{i} - (\nabla_{i}\beta)p_{j},$$

or, using (2.14), (2.15) and (2.23)

(4.2)
$$h_i^t h_{st} f_j^s + \frac{c}{4} f_{ji} = \frac{1}{2} \{ (\vec{V}_i \beta) p_j - (\vec{V}_j \beta) p_i \} + l_i m_j - l_j m_i.$$

If we transvect (4.2) with p^{j} , then we have

$$(4.3) \qquad \frac{1}{2} \nabla_i \beta = \frac{1}{2} (p^i \nabla_i \beta) p_i + l m_i + k l_i$$

because of (2.16) and (2.17). Thus (4.2) gives

$$(4.4) h_i^t h_{st} f_j^s + \frac{c}{A} f_{ji} = l(m_i p_j - m_j p_i) + k(l_i p_j - l_j p_i) + l_i m_j - l_j m_i.$$

Transvecting (4.4) with f_k^j and using (4.1), we find

$$-h_{i}^{t}h_{ki} + \beta^{2}p_{i}p_{k} + \frac{c}{4}(-g_{ik} + p_{i}p_{k})$$

$$= (l_{i} - lp_{i})f_{k}^{t}m_{t} - (m_{i} - kp_{i})f_{k}^{t}l_{t},$$

from which, substituting (2.18) and (2.19),

(4.5)
$$h_{i}^{t}h_{kt} - \beta^{2}p_{i}p_{k} + \frac{c}{4}(g_{ik} - p_{i}p_{k})$$

$$= l_{i}l_{k} + m_{i}m_{k} - l(l_{i}p_{k} + l_{k}p_{i}) + k(m_{i}p_{k} + m_{k}p_{i}) + (l^{2} + k^{2})p_{i}p_{k}.$$

On the other hand, transvecting (2.23) with f^{ji} and making use of (4.1), we have

$$(4.6) h=\beta$$

where we have put $g^{ji}h_{ji}=h$.

Using this fact, (4.5) reduces to

(4.7)
$$h_{ji}h_{i}^{t} + \frac{c}{4}g_{ji} = \left(h^{2} + k^{2} + l^{2} + \frac{c}{4}\right)p_{j}p_{i} + l_{j}l_{i} + m_{j}m_{i} + k(m_{j}p_{i} + m_{i}p_{j}) - l(l_{j}p_{i} + l_{i}p_{j}),$$

which implies

(4.8)
$$h_{ji}h^{ji} = h^2 - k^2 - l^2 + l_t l^t + m_t m^t - \frac{nc}{2}$$

with the help of (2.16) and (2.17). Since the left hand side of (4.8)

becomes $||h_{ji}-hp_{j}p_{i}||^{2}$ because of (4.1) and (4.6), (4.8) can be written as (4.9) $||h_{ji}-hp_{j}p_{i}||^{2}=l_{t}l^{t}+m_{t}m^{t}-\left(k^{2}+l^{2}+\frac{nc}{2}\right)$.

For an eigenvalue ρ of h_j^i corresponding to the eigenvector orthogonal to p^i, l^i and m^i , we have from (4.7) that $\rho^2 + \frac{c}{4} = 0$ if $n \ge 2$. Thus it follows that $c \le 0$ because the eigenvalue is real and hence c = 0.

We now suppose that $V_j^{\perp}C^A=0$ and M^{2n+1} is minimal. Then we have from (4.8) with c=0 that $h_{ji}=0$. Therefore (2.26) \sim (2.32) mean that M^{2n+1} is a submanifold of codimension 2 in a Euclidean space E^{2n+3} because of c=0.

Hence we have

PROPOSITION 4.1. Let M^{2n+1} $(n \ge 2)$ be a minimal submanifold of codimension 3 of a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature $c \ge 0$ such that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced on M^{2n+1} defines an almost contact metric structure (f, g, p), p being given by (1.15) and is antinormal. If the distinguished normal C^A is parallel in the normal bundle, then M^{2n+1} is a submanifold of a Euclidean space E^{2n+3} .

Denoting by $K_{ji} = K_{tji}^t$ and $K = g^{ji}K_{ji}$ the Ricci tensor and the scalar curvature of M^{2n+1} respectively, we then have from (2.26)

$$K_{ji} = \frac{c}{4} \{ (2n+3)g_{ji} - 3p_j p_i \} + hh_{ji} + kk_{ji} + ll_{ji} - h_{ii}h_{i}^{t} - k_{ji}k_{i}^{t} - l_{ji}l_{i}^{t},$$

from which

$$K = n(n+2) \cdot c + h^2 + k^2 + l^2 - h_{ii}h^{ji} - k_{ji}k^{ji} - l_{ji}l^{ji}$$

or, substituting (4.8) and taking account of (2.22)

$$K = \frac{n(2n+5)}{2}c - 2(l_t l^t - l^2) - 2(k_{ji}k^{ji} - k^2),$$

which means

(4.10)
$$K = \frac{n(2n+5)}{2}c - ||l_j p_i - l_i p_j||^2 - 2||k_{ji} - k p_j p_i||^2$$

with the help of $(2.14)\sim(2.17)$. Thus if $K\geq \frac{n(2n+5)}{2}c$ holds, we have $l_jp_i-l_ip_j=0$, $k_{ji}=kp_jp_i$. Hence (2.12) and (2.13) imply that $l_{ji}=lp_jp_i$, $m_jp_i=m_ip_j$. It follows from (4.9) that $||h_{ji}-hp_jp_i||^2+\frac{n}{2}c=0$ and consequently $k_{ji}=hp_jp_i$ and c=0 because of $c\geq 0$, Thus (2.10) and (2.11) becomes $V_jf_i^k=0$, $V_jp_i=0$. And (2.26) reduces to $K_{kji}^k=0$.

Therefore we have

PROPOSITION 4.2. Let M^{2n+1} be a submanifold of codimension 3 of a Kaehlerian manifold $M^{2n+4}(c)$ of constant holomorphic sectional curvature $c \ge 0$ such that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced on M^{2n+1} is antinormal and satisfies $\lambda^2 + \mu^2 + \nu^2 = 1$. If the scalar curvature K of M^{2n+1} satisfies $K \ge \frac{n(2n+5)}{2}c$ at every point, then M^{2n+1} is a locally Euclidean space with the second fundamental tensors of the forms

$$h_{ji}=hp_{j}p_{i}, \qquad k_{ji}=kp_{j}p_{i}, \qquad l_{ji}=lp_{j}p_{i}$$

and admits a cosymplectic structure.

We now prove the following

THEOREM 4.3. Let M^{2n+1} be a complete submanifold of codimension 3 of a Euclidean space E^{2n+4} with antinormal $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. If the distinguished normal C^A is parallel in the normal bundle and the third fundamental tensor of M^{2n+1} satisfies

then M^{2n+1} is a plane or a ruled surface which is generated by parallel displacements of a plane E^{2n} along a plane curve orthogonal to E^{2n} .

Proof. Since $V_j^{\perp}C^A=0$, that is, $l_j=m_j=0$, we have from (4.9) with c=0 (4.12) $h_{ji}=hp_jp_i$.

From (4.11) we can prove that $\alpha=0$ and hence

$$(4.13) k_{ii} = 0, l_{ii} = 0.$$

(See Lemma 5.4 and Theorem 5.5 of [6]). Thus $(2.7)\sim(2.9)$ reduce to respectively

(4.14)
$$V_jC^A = -hp_j(p^hB_h^A)$$
, $V_jD^A = n_jE^A$, $V_jE^A = -n_jD^A$ because of $l_j = m_j = 0$. Also (2.11) and (4.12) imply that (4.15) $V_ip^h = 0$.

Let M' be a real hypersurface of M^{2n+1} which is defined by the Pfaffian form $\omega = p_i dx^i$ and be covered by a system of coordinate neighborhoods $\{U'; \xi^a\}$, where the indices a, b, c run over the range $1', 2', \ldots, 2n'$.

Let $i': M' \to M^{2n+1}$ be an isometric immersion represented by $y^h = y^h(\xi^a)$. Putting $B_a{}^h = \partial_a y^h$, $(\partial^a = \partial/\partial \xi^a)$, then $B_a{}^h$ are 2n linearly independent vectors of M^{2n+1} tangent to M'. By definition, p^h is a unit normal to M'. Now we put

$$(4.16) B_a{}^A = B_a{}^h B_h{}^A, P^A = p^h B_h{}^A.$$

Then P^A is a unit normal vector field orthogonal to C^A , D^A and E^A . In this case, we can easily see that M' is a totally geodesic submanifold of E^{2n+4}

because of (4.12), (4.13) and (4.15). Consequently M' is a plane E^{2n} parallel along p^h because the ambient space is Euclidean.

If we take account of (4.12) and (4.13), then (2.6) becomes $\nabla_j B_h^A = h p_j p_h C^A$, or by transvecting p^h

$$(4.17) V_j P^A = h p_j C^A$$

with the help of (4.15).

From (4.14) and (4.17), we have

$$p^{j}\nabla_{j}C^{A} = -hP^{A}, \quad p^{j}\nabla_{j}P^{A} = hC^{A},$$

which shows a plane curve with curvature h on a complex two dimensional plane C^2 spaned by $\{P^A, C^A, D^A, E^A\}$. Then the orthogonal complementary space of C^2 is a plane E^{2n} . Hence M^{2n+1} is a ruled surface which is generated by parallel displacements of E^{2n} along a curve on C^2 if $h \neq 0$. If h=0, then M^{2n+1} is a plane in E^{2n+4} because of (4.12) and (4.13). This completes the proof the theorem.

Replacing the conidtion (4.11) in Theorem 4.3 by $K \ge 0$, we can see that $k_{ji}=0$, $l_{ji}=0$. In fact, since $V_j^{\perp}C^A=0$, (4.9) with c=0 implies that $h_{ji}=hp_jp_i$. Consequently (4.10) with c=0 becomes $K=-2k_{ji}k^{ji}$ with the help of $l_j=0$ and k=0. It follows that $k_{ji}=0$ because of $K \ge 0$ and hence $l_{ji}=0$ by virtue of (2.22).

According to Theorem 4.3, we have

COROLLARY 4.4. Let M^{2n+1} be a complete submanifold of codimension 3 of a Euclidean space E^{2n+4} with antinormal $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. If the distinguished normal C^A is parallel in the normal bundle and the scalar curvature of M^{2n+1} is nonnegative at every point, we have the same conclusions of Theorem 4.3.

5. Submanifolds of codimension 3 of E^{2n+4} whose normal connection is flat.

In this section we assume that the connection induced in the normal bundle of M^{2n+1} in a Euclidean space E^{2n+4} is flat. Then we have

(5.1)
$$h_j^t k_{ti} - h_i^t k_{tj} = 0, \quad h_j^t l_{ti} - h_i^t l_{tj} = 0, \quad k_j^t l_{ti} - k_i^t l_{jt} = 0.$$

Transvecting (2.12) with k^{ji} and using the third relation of (5.1), we find $k_{ji}k^{ji}=m_im^i$, from which, using (2.14), $||k_{ji}+m_jp_i||^2=0$ and consequently

$$(5.2) k_{ii} = -m_i p_i.$$

If we take the skew-symmetric part of this, then we have $m_j p_i = m_i p_j$, or by using (2.16), $m_j = -kp_j$. Thus (5.2) becomes

$$(5.3) k_{ii} = kp_i p_i.$$

In the same way we have from (2.13), (2.15) and (2.17) that

(5.4)
$$l_{ji}=lp_{j}p_{i}$$
, $l_{j}=lp_{j}$.
Thus (4.9) with $c=0$ implies
(5.5) $h_{ii}=hp_{i}p_{i}$

$$(5.5) h_{ji} = h p_j p_i$$

with the help of the fact that $l_t l^t = l^2$ and $m_t m^t = k^2$.

Conversely, if $(5.3)\sim(5.5)$ are satisfied, then we easily see that (2.23)and (5.1) are valid. Therefore we have

Suppose that the $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure induced Proposition 5.1. on a submanifold M^{2n+1} of codimension 3 of a Euclidean space E^{2n+4} satisfies $\lambda^2 + \mu^2 + \nu^2 = 1$ and consequently (f, g, p) defines an almost contact metric structure. Then in order for these structures to be antinormal and the connection induced in the normal bundle of M²ⁿ⁺¹ to be trivial, it is necessary and sufficient that the second fundamental tensors of M2n+1 have the form

$$(5.6) h_{ii} = h p_i p_i, k_{ii} = k p_i p_i, l_{ii} = l p_i p_i.$$

On the other hand, the mean curvature vector H of M^{2n+1} is given by

$$H = \frac{1}{2n+1}(hC+kD+lE).$$

If we now take the distinguished normal as a direction of the mean curvature vector if $H\neq 0$, that is, we choose the normals $H/\|H\|$, such that H=||H||C, then we have

$$\begin{pmatrix} C \\ D \\ E \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} C \\ D \\ E \end{pmatrix}$$

for some constant θ , where C=H/||H||. This means

(5.7)
$$'C=C, 'D=\cos\theta\cdot D+\sin\theta\cdot E, 'E=-\sin\theta\cdot D+\cos\theta\cdot E.$$

As to the transforms of B_i^A , C^A , D^A and E^A by E_B^A , we have respectively the equations of the form

$$F_{B}{}^{A}B_{i}{}^{B} = f_{i}{}^{h}B_{h}{}^{A} + 'u_{i}'C^{A} + 'v_{i}'D^{A} + 'w_{i}'E^{A},$$
 $F_{B}{}^{A}C^{B} = -'u^{h}B_{h}{}^{A} - 'v'D^{A} + '\mu'E^{A},$
 $F_{B}{}^{A}D^{B} = -'v^{h}B_{h}{}^{A} + 'v'C^{A} - '\lambda'E^{A},$
 $F_{B}{}^{A}E^{B} = -'w^{h}B_{h}{}^{A} - '\mu'C^{A} + '\lambda'E^{A}.$

If we apply the operator F to these equations and use (5.7), we obtain

which shows that ' $\lambda=1$, ' $\mu='\nu=0$ if $\lambda=1$, $\mu=\nu=0$, that is, although the

normals C, D and E are rotated by the fixed angle θ , we may take H as distinguished normal.

Let h_{ji} , k_{ji} and l_{ji} be the second fundamental tensors with respect to C, D and E, and l_{j}, m_{j} and l_{j} the third fundamental tensors corresponding to l_{i} , l_{i} , and l_{i} respectively.

By differentiating (5.7) covariantly and taking account of $(2.7)\sim(2.9)$, we then have

(5.9)
$$'h_{ji} = h_{ji}, 'k_{ji} = \cos\theta \cdot k_{ji} + \sin\theta \cdot l_{ji}$$

$$'l_{ii} = -\sin\theta \cdot k_{ii} + \cos\theta \cdot l_{ii},$$

$$(5.10) 'l_j = \cos\theta \cdot l_j + \sin\theta \cdot m_j, 'm_j = -\sin\theta \cdot l_j + \cos\theta \cdot m_j, 'n_j = n_j$$

because θ is a constant.

Since the distinguished normal as a direction of the mean curvature vector, we have

(5.11)
$$h=h, k='l=0$$

where we have put $h='h_t$ and $k='k_t$ and $l='l_t$.

By using (5.9), we can easily verify that (2.23) and (5.1) are of intrinsic characters. Hence (5.6) implies

$$h_{ii}=hp_{i}p_{i}$$
, $k_{ii}=l_{i}=0$

because of (5.11). As in the proof of Theorem 4.3, M^{2n+1} is a ruled surface which is generated by parallel displacements of a plane E^{2n} along a plane curve orthogonal to E^{2n} if $H \neq 0$. Thus we have

THEOREM 5.2. Let M^{2n+1} be a complete submanifold of codimension 3 of a Euclidean space E^{2n+4} with antinormal $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$ whose normal connection is flat. If we take the distinguished normal as a direction of the mean curvature vector H, then M^{2n+1} is a ruled surface which is generated by parallel displacements of a plane E^{2n} along a plane curve orthogonal to E^{2n} provided that $H \neq 0$. If H = 0, then M^{2n+1} is a plane E^{2n+1} .

Combining Proposition 4.2 and Theorem 5.2, we have

COROLLARY 5.3. Let M^{2n+1} be a complete submanifold of codimension 3 of a Euclidean space E^{2n+4} with antinormal $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$. If we take the distinguished normal as a direction of the mean curvature vector and the scalar curvature of M^{2n+1} is nonnegative at every point, we have the same conclusions of Theorem 5.2.

References

- [1] D. E. Blair, G. D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep., 27 (1976), 313-319.
- [2] S. Ishihara and U-Hang Ki, Complex Riemannian manifolds with (f, g, u, v, λ) -structure, Jour. of Diff. Geometry 8(1973), 541-554.
- [3] U-Hang Ki, J. S. Pak and H. B. Suh, $On(f, g, u_{(k)}, \alpha_{(k)})$ -structure, Kôdai Math. Sem. Rep., **26**(1975), 160-175.
- [4] U-Hang Ki and H. B. Suh, On hypersurfaces with normal $(f, g, u_{(k)}, a_{(k)})$ -structure in even-dimensional sphere, Kôdai Math. Sem. Rep., 26(1975), 424-437.
- [5] Y. Tashiro, On relations between the theories of almost complex spaces and almost contact spaces-Mainly on semi-invariant subspaces of almost complex spaces (In Japanese), Sūgaku 16 (1964-1965), 54-61.
- [6] K. Yano and U-Hang Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kōdai Math, Sem. Rep., 29(1978), 285-307.

Sung Kyun Kwan University, Kyungpook National University