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By SaNc-Seur Eum, U-Hanc K1, Un Kyu KM AND Younc Ho Kiu®

0. Introduction

It is well known that a submanifold of codimension 3 of an Hermitian
manifold admits an (f, g, #, v, w, A, g, v)-structure induced from the almost
Hermitian structure of the ambient manifold.

In the present paper we investigate a submanifold of codimension 3 of a
(2n4-4) —dimensional Kaehlerian manifold admitting an (f, g, %, v, w, 4, £, ¥)—
structure.

Firstly, we study the structure induced on the submanifold of ccdimension
3 of a (2rn+4)-dimensional Kaehlerian manifold. In section 1, we define
the (f, g, u, v, w, A, £, v)-structure and we show that this kind of structure
gives an almost contact metric structure when A2+ g2+312=1 and we find a
necessary and sufficient condition that the (f,g,x,v,w, A, g, v)-structure be
antinormal. In section 2, we study some equations concerning the (f, g, %,
v, w, A, i, v)-structure and we show that in order for the structure to be anti-
normal, it is necessary and sufficient that 2 and f anticommute, where 4 is
the second fundamental tensor with respect to the distinguished normal.

Next, we study the submanifold of codimension 3 of a (2z--4)-dimensional
Kaehlerian manifold of constant holomorphic sectional curvature ¢. In section
3, we investigate the submanifolds satisfying the condition A2-g2+12=1 and
we show that an umbilical submanifold with respect to the distinguished
normal is an intersection of a complex cone and a sphere, that is, such a
submanifold is an extended Brieskorn manifold. In section 4, we show that
an antinormal minimal submanifold is a submanifold of a (224 3)-dimen-
sional Euclidean space under some conditions. Moreover in this section, we
show that a complete submanifold of codimension 3 of a Euclidean space
E?7+4 is a plane or a ruled surface under some conditions. In section 5, we
find a necessary and sufficient condition that the connection induced in the
normal bundle of the submanifold to be trivial. Moreover in this section,
we study a complete submanifold of codimension 3 of a (22+4)-dimen
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sional Euclidean space E2**¢ whose normal connection is flat and characterize
this submanifold under some conditions.

1. Structures induced on submanifolds of eodimension 3 of an almest
Hermitian manifold

Let M2#+4 be a (2n-+4)—dimensional almost Hermitian manifold covered by
a system of coordinate neighborhoods {U;r4} and denote by gcp components
of the Hermitian metric tensor and by Fz® those of the almost complex
structure tensor of M2*+4, where here and in the sequel the indices A, B, C,

. run over the range 1/,2, ..., (2z-+4)’. Then we have

(1.1 FcBFpd=—0c4, gepFcEFgP=gcs,
dc4 being the Kronecker delta.

Let M2*! be a (2n+1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhood {V:y*} and immersed isometrically in
M?2»+¢ by the immersion i:M?2"*1—>M?»+4 where here and in the sequel the
indices &, 4, j, ... run over the range 1,2, ..., (2z--1). We identify i(M?**1)
with M2+ jiself and represent the immersion by

(1.2)  zA=zA(h).

We now put B;A=03;24, (0;=0/0y"). Then B;A are 2n+1 linearly indepe-
ndent vectors of M?2*4 tangent to M2**1. And denote by C4, D4, and E4
three mutually orthogonal unit normals to M?2**1. Then denoting by gj;
components of the induced metric tensor of M2+, we have

1.3 gji=gcpB;°B;®
since the immersion is isometric.

As to the transforms of B;4,C4, DA, and E4 by Fg4, we have respectively
the following equations of the form

1.4) FeABS=fAByA+u,CA+v; DA} w;EA,
(1.5) FyABB=—yhByA —yDA} yEA,
(1.6) FyADB= —hByA+ yCA—EA,
(1.7) FyAER= —whB,A— uCA+ DA,

where f/# is a tensor field of type (1, 1), u;, v;, w; 1-forms and 4, g, v functions
in M2+l 4k vk and w* being vector fields associated with #;,v; and w;
respectively.

Applying the operator F to both sides of (1.4)~(1.7), using (1.1) and
those equations and comparing tangential parts and normal parts of both
sides, we find

(1.8) fifd=—0t+uut+ oot +wwh,



Submanifolds of codimension 3 of a Kaehlerian manifold -(I) 139

fthut=wh—#whs
1.9) - { Flvt=—viit+ Juh,
fthwt=tauh_2vhs
wt =1—p2—12, uot =2,
(1.10) {v,'v”:—-l —12— 22, pawt=py,

wwt=1—2—u2, yw'=A2A.

Also, from (1.1), (1.3) and (1.4), we find

(1.11) & i =gji —uju;—v;v; — wijw;. :

If we put f;;=fg: then we easily see that f;;=—f;;. e :

Thus (1.8)~(1.11) show that the aggregate (f&, gy ui, vi wy 4, 11,0)
defines the so—called (f, g, %, v, w, 4, ¢, v)-structare on. M2**1 ([3],[6]).

An (f, g, u, v, w, A, (£, v) —structure is said to be antinormal if the . tensor
field S;# of type (1,2) defined by :

1.12) §;= [f,f],, + (9; u,-—a,uj)u"—%- (0;0;—0;0;) v*+ (010, — 0;w;) wh
satisfies A

(1.13) S;#=2{u;(0u*) —u;(B*) +v;(@0%) —0;(0;0") +1w; P w*) —w: (0204},
where [ f,f]1;* is the Nijenhuis tensor formed with f#, that is,

LA FLiF=F 0. 2= fF0. i — @ift 0. f DFP.

We find from (1.9) .

(1.14) - fhr=0,
where we have put
(1.15) pr=2Aut+ ﬂv"—}-vw"

From thlS and (1.10), we haye

(1.16) “:Pt 1 vtPt =y, szt—”, b= 12+ﬂ2+l)2

We now suppose that the aggregate (f#,gj;,p") defines an almost contact
metric structure. Then we get from the last equation of (1.16)

(1.17) ,12—{—/,;2—}—»2_.1 . .
because of p,p*=1. Conversely if the function 4, ﬂ and v satlsfy (1. 17) then
(1. 10) reduces to. . _

(1.18) ° wut=2, uyt=2Ay, aw'=2,

vt =12, vwt=ny, wwt=y2,
Hence, it follows that ’ i

(1.19) wi=Ap; v;=(1p;, -w;;vpi , ,

with the help of (1.16) and (1.18), where ;= =g,;#’. Substituting (1.19)

into (1.8) gives f/f*=—0/-+p;p* because of (1.17). Also substltutmg Q1.
19) ‘into’ (1.11) and wsing (1.17), we find :
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g1 f ¥ =gji— bibi-
Thus we see that the aggregate (f.}, g;;, #*) defines an almost contact metric
structure. Concluding the developed above, we have

TueoreM 1.1. ([(61) Let M2**! pe a differentiable manifold with an (f,
g, u, v, w, A, t, v)—structure. In order for the aggregate (f, g, p), p being given
by (1.15), to define an almost contact metric structure, it is necessary and

sufficient that A2+ p2+412=1.

In the sequel we suppose that the condition A2+ p2+412=1 is satisfied on
M2+1, Suppose that the aggregate (f,g,#) defines an almost contact metric
structure and the induced structure is antinormal. Then we have (1.19) and
consequently (1.13) reduces to

(1 20) [f!f]j +(V] i :P,)Ph—zﬁJ(VzPh) —ZP:(VJP")
with the help of (1.12) and (1.17). Thus we have

THEOREM 1.2. Let M?2*+1 be a differentiable manifold with an (f, g, u, v,
w, A, it, V) -structure satisfying B+ p2+12=1. In order for this structure is
antinormal, it is necessary and sufficient that (1.20) holds.

. Structure equations 'of sabmanifolds of eodimension 3 of a Kae-
hlerian manifold \

Suppose that aggregate (f,g,p) of f#* g and pr=JAuh+ pot-+vwh defines
an almost contact metric structure. Then we have (1.19) and . consequently
from (1.4) o

(2.1 FABL=f#ByA- - p;N4
where NA=JCA+uDA+yEA is an intrinsically defined unit normal to Af2=+1
because C4, D4 and E4 are mutually orthogonal unit normals to M1 and
24 pt+yi=1.

When a submanifold of an almost Hermitian manifold satisfies equation of
the form (2.1), N4 being a unit normal to the submanifold, we say that
the submanifold is semi-invariant with respect to N4 [1],[5]. We call N4
the distinguished normal to the semi-invariance. We take N4 as CA. Then
" we have =1, =0, v=0 and consequently #*=p*, v*=wh=0 because of
(1.10) and (1.15). Thus (1.4)~(1.7) becomes respectively

2.2) FeABC=fABiA+ PLCA,
(2.3) FpACP= —ptBA,

(2. 4) FBADB= "‘EA

2.5). - FAEP=DA,

Now denoting by ¥; the operator of van der Waerden—Bortolottl covanant
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differentiation with respect to g;;, we have equations of Gauss for M2#+1 of

M2u+4 .
(2. 6) VjB,‘A =hj ,-CA +kj;DA+lj,'EA,

where h;; k;; and ;; are the second fundamental tensors with respect to C4,

DA and EA4 respectively.
The equations of Weingarten are given by

(2. 7) VjCA= —hthhA+ljDA+ MjEA,
(2- 8) VjDA = kth],A —'leA-{- njEA,
(2. 9) . VjEA = lth],A—' ijA_—n_,-DA.

Where hjh—_—' jzgth, kj"———“kﬁg‘h, l,~"=l_,-,g”‘, (g-i")=(gj,-)'1, lj, m; and n; being
the third fundamental tensors. In the sequel we denote the normal compon-
ents of V;C4 by V;CA. The normal vector field C4 is said to be parallel in
the normal bundle if we have V;1C4=0, i.e., I; and m; vanish identically.
We now assume that the ambient manifold M2#+4 js Kaehlerian. Differen-
tiating (2.2) covariantly along M?#+1 and using (2.6) and (2. 7) we easily

find [6]
(2.10) V;ft=—hjiph+h*p;,
(2.11) Vipi=—h f?,
(2.12) kji=—L fif —m;p;,
(2.13) Li=—Fkyfi+1;pi,
from which ‘
(2.14) kj pt=—m;,
(2.15) L pt=l;,
(2.16) - k=—m,p’,
(2.17) =17,

where we have put k=g#k;;, I=g¥l;;.
Transvectmg (2.13) with fi and making use of (2.12), we obtam

—ki—mipp=ka fit i+ (fill) pis
from which, taking the skew-symmetric part with r&spect to i and &,
mppi—mipp=pi(Lfs") — s (e f),
or, transvecting with p* and using (2.16)
(2.18)  Lfi=kpitm,.
If we transvect (2.18) with f,, and I/ and take account of (2.17),
have respectively

(2.19) ' mefit=lps—U,
(2.20) Rl-+mdt=0.

we
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" ‘Transvecting (2.12) with ;/ and substituting (2.13), we find

thlh = ( sfz +m,Pt) (khrf‘r‘{’lhﬁt):
or, using (2.14) and (2.15) ST -

2.21) : ,,l +k,',l“'———( m,+l;m)
If we transvect (2.13) with Z;f and substltute (2 12), we have
(2.22) Ll — kbt =10, —

with the help of (2.14) and (2.15).
Now suppose that the (f, g, 4, v, w, 4, ¢, )-structure is antinormal, that is,
LV fE—FiV o fit— W iff =V f,’)ft"'l‘( bi— VP,)P" 20,V :p®) —2p; (V ;£%)
by virtue of (1.20). Substituting (2.10} and (2. 11) into this, we find
(.f thtk'l'h:ltftk)pz (f'th‘k_{__k tftk)PJ
: ‘a?zd’ “hence :
7 ‘h:"-Hl 'f:""ﬁ,qi T-: Fihtp=0,
for 4 certain vector field o*. From these equations we see that ¢*=0, and
consequently

(2- 23) hjt ff“'.—: hitfj‘-
Thus we have

THEOREM 2.1. Suppose that the (f,g,u,v,w, A, g, v)~structure induced on a
submanifold M+ of codimension 3 of a Kdehlerian manifold M?*+* satisfies
24 p2+12=1. Then in order for this structure to be antinormal, it is necessary
and sufficient that the second fundamental-temsor h with respect to the disting-
uished normal and f anticommute.

The Gauss equations of M?+! for a Kaehlerian ‘manifold M2+4 are given
by

(2-24) ) ij ——KDCBAB,;DB CB BB"A"}"hkkh "h kL,

U T +kb k “‘k hky"l‘lkhl “—'tj lhn ’

where Bk, gAcgJ"BJ » Kiji* and Kpcp? being the Riemann-Christoffel cur-
vature tensors of M?**! and M?+¢ respectively.

We now suppose that the ambjent manifold is a . Kaehlerian manifold
M2+4(c) of constant holomorphic sectional curvature c, that is, it’s curvature
tensor has the form '

(2.25) Kpcpt= 71‘ (Op*gcs—0dc g ps+ FpAFcs

—FcAF pp—2FpcF g4). , o
Substituting (2.25) into (2.24) and taking account of (1.3), (2.2) and
(2.3), we have '
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(2- 26) Kkjiﬁ=’£‘ (5Iehg i ’“ajhg t 1 khf:ii “fjhf v —2f) lzjfih)
+ hkh]lji - hjhhk,‘_{" kkhkj,' - kjhkb‘ + lkhlj,‘ - ljhlﬁ,‘.
In the same way by using (2.2)~(2.5), we can prove that equations of
the Codazzi for M?#+4(¢c) are given by

2.27) Vihii—V jhyi—Upkji+ Ly, — myl i+ mjly;
=':£'(?k fii—pifui—2p: f kj) »

(2- 28) kaji — ijki+ lkhji - ljhki - nklj,;-l- njll,,-=0,

(2.29) Vil;i—V i+ mphyi—mhy;+npk;;— niky; =0,
and those of the Ricci by '

(2- 30) Vklj’_‘lek"’_hktkjt—hjtkkt‘l"mkﬂj—mjﬂk:O,

(2.31) Vim;—V smy+ hytl;y— b L+ npl;— ;13 =0,

(2.32) Vinj—V it kil — byt Limy — Limy=3-f 1.

3. Submanifolds of codimension 3 of M?>+4(c) satisfying 22 u2
+2=1.

In this section we assume that the (f,g,#, v, w, 4, #,v, )-structure induced
on a submanifold M2#+1 of codimension 3 of a Kaehlerian manifold M2+4(c)
of constant holomorphic sectional curvature ¢ satisfies A2+ g2+41?=1 and
consequently the aggregate (f,g,p) defines an almost contact metric structure.

We now suppose that the sumanifold M2#+1 is umbilical with respect
to the distinguished normal, that is, choosing C4 as the dlstmgmshed normal,

3.D ’ hj=tg;;, k=0, I=0
for some function 7. Then (2.16), (2.17) and (2.20) imply that
3.2) Lpt=m,p*=1l,m'=0

and (2.11) becomes 7; ipi=7f;;, which shows that
VkVJ?z" (ka)f:yz"_f (glzzpl g]k?t) :
Wlth the help of (2.10) and the first relation of (3.1), from which, using
the Ricei identity,
— Kyt pa= Vi) f1:— V;0) Frit-o2(guib;— gji bs)»
or, taking account of the first Bianchi identity,
3.3) T i+ Vo) fut Vo) fi;=0.
From this we can easily prove that 7 is a constant. Thus (2.27) reduces to

(3.4) Likj;—Likyi+myl ;i — mily; = — 72— (P fji— P F1i—2bi f3;)
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because of (3.1). Transvectmg 3. 4) with p* and using (2.14), (2.15) and
(3.2), we get

(3- 5) mjl,-—m,-ljr—%fj,-.

If we transvect (3.5) with fii and take account of (2.18), (2.19) and
(3.1), then we get

(3.6) m,m‘=701-n.

Also, transvecting (3.5) with ¢ and using (3.2) and (2.19) with =0,

we find
(m,m‘——i—)lj=0,

or substituting (3.6) into this, cl;=0. Thus we have c=0 because of (3.5).

From (2.10), (2.11) and (3. 1), we have

3.7 Vift=v(—g;ip"+6p:), Vipi=r1f;i.

Hence, it follows that the aggregate (f,g,p) defines a Sasakian structure if
7x(0. We may consider =1 because = is a constant.

On the other hand, we see from (2.2) and (2.3) that the direct sum of
the tangent space of M2**1 and C4 is invariant. Then the ambient space being
Euclidean, M?2#+! is an intersection of a complex cone with center at origin
and with generator C4 and a (22+3)-dimensional sphere (See [6]). Thus
we have ,

THEOREM 3.1. Let M%7+ be a umbilical submanifold with respect to the
distinguished normal CA of a Kaehlerian manifold M?*+4(c) of constant holo-
morphic sectional curvature ¢ satisfying A2+ p2+yv2=1. Then M?*1 is an
intersection of a complex come with genmerator CA and a sphere.

We next prove the following

THEOREM 3.2. Let M+ be a submanifold of codimension 3 of a Kaehlerian
manifold M?+1(c) of constant holomorphic sectional curvature ¢ with antinormal
(f, g, u,v, w0, A pt,v)—structure satisfying A2+ p2+12=1. If the distinguished
normal CA is parallel in the normal bundle and the third fundamental tensor
n; satisfies

(3.8) Vin,—Vn;=2af;;
for a certain function a, then M+l is a hypersurface of M?*+2(c).

Proof. Since V;1C4A=(), that is, I; and m; vanish identically, we have
from (2.32)

anj j‘Vjﬂ,‘;‘!"Zletlj,:—g‘fk‘i
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because of (2.21). Thus (3.8) reduces to
B9 . kL=(5—a) s

Transvecting (3.9) with f;* and taking account of (2.13) with [;=0, we
find

(3.10) i =(a— £ (gi—:9D-
Therefore, it follows that
(3- 11) i kakitz( '—jz—) " (gji —Pjpi)

because of (2.22) with I;=m;=0.
Since I;=m;=0, (2.28), (2.29) and (2.31) reduces respectively to

(3.12) Vikii—V iki=ml;i—nily;,
(3.13) Vil;i—V b= —mypkji+ niky;,
(3- 14) hkzlj: _hjtlkp‘:O-

Transvecting (3.14) with /;# and making use of (3.10), we find
(a - %) - (Bji—pihje ') —hal 1 =0,
from which, taking the skew-symmetric part,

@15 (a—g) Gup—B) =0,
where we have put
(3.16) B=rhaup'p'.

As in the proof of Theorem 3.1, we can easily from (3.8) see that ais a
constant by using the Ricci and Bianchi identities.

Differentiating (3.10) covariantly and using the fact that a——Z— is a
constant, we obtain
GID  Ed) k) = (f—a) (Tap)pet Tapdps,
from which, taking the skew-symmetric part with respect to 2 and ;j and
substituting (3.13),
17 (nikge—mpkje) + (U gy — npkis+ nikyy) — i (V il — nik; -+ nik;,)
= (—Z——a) AWrp;—Vp) pi+ Wip) p;— Wb il
or using (2.21) with 7;=m;=0,
LW ia) — 1 (W il;e) +2n.l 2k,
—(£—a) (Tat T 000+ Tep b~ )i
Interchanging the indices % and 7, we get
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(3. 18) ljt (Vkl,',) —‘l,'t (Vkljt) +2ﬂkljtk,’t. .
2(—2——6!) AW :pi—V;pd o+ Vipe) p;— (Vi) b3} -
Adding (3.17) to (3.18), we find
2ljthl,'g+ anlj,k,-‘
=(~§——~ ) {Wip;—VipD) it Wapi+Vipe) b+ Wipi—Vipd b4}
from which, transvecting / and taking account of (2.11), (2.15) W1th l=
and (3.15), :
(3.19) (5—a)- Gufi+ hsi) =0,
Since the induced structure is antinermal, by transvecting f;* and taking
account of (2.23) and (3.15), we find '
(3.20) (£—a)- Gyi—Bps80 0.
If %—arﬁo, then (2.11) becomes V;p;=0 because of h;;=pBp;p;. Thus
(2.27) reduces to
@3.21) i) piti— W) pupi—i uFsi— i u—20i713)

because of I;=m;=0. | .
Transvecting (3.21) with p/p', we obtain V8= (pF .8)ps. Hence (3.21)

implies that ¢ is zero. Consequently the ambient manifold is Euclidean.

According to Lemma 5.4 of [6] a must be zero. It contradicts the fact that

Z————a#O Thus we have a= Thereby (2. 26)~(2 32) become the stru-

cture equations for a hypersurfaoe of M>+2(¢). Thus we complete the proof
of the theorem.

4. Antinormal submamfolds of codlmensmn 3 of M2"+4(c) satlsfymg
L+ pP+yi=1.

In this section we assume that the induced (f,g,%,v,w, 4, g, v)-structure
induced on a submanifold M2*+! of codimension 3 of a Kaehlerian manifold
M2+4(¢) of constant holomorphic sectional curvature ¢>0 sat1sﬁes 12+,L¢2+u2
=1 and is antinormal. Then we have (2.23).

Transvecting (2.23) with p and taking account of (1. 14), we get

(hztp )f]

from which,
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@1 bt =P
because of (3.16). ,
Differentiating (4.1) covariantly and substituting (2.11), we find
(V ki) p* —hithis =V ;B8) pi— Bhje £,
from which, taking the skew-symmetric part and using (2.23) and (2.27)
{ljkit - likjt+ mjlit— miljt+ 7‘1'} (ijit_'Pif:it_' 20 f ji)} V4
=2h’his ¢+ Vi) pi— ViB) pjs
or, using (2.14), (2.15) and (2 23)

4.2) hithyf. j‘+ fii= (7 B) pi— WV iB) pi} +lim;—1;m;.
If we transvect (4.2) with 7, then we have
(4.3) FV b= (57 B) pit It B,
because of (2.16) and (2.17). Thus (4.2) gives ,
4.9 hithstf:is_‘_'%f 31 =U(m;pj—m;p;) +k(Uipj— ;?z) +lm;—m;.

Transvecting (4.4) with f;7 and using (4.1), we find
—hithait+ B b+ *Z; (—gitpipe)
= (Li—1p3) fi'm— (m;—kp) fi'ls,
from which, substituting (2.18) and (2.19),
(4.5 kithy—Bpiput 1 (gis—pits)
=l lk""m;mb"‘l Uipptbipi) +E (mppt+myp;) + @+B) pipi.

On the other hand, transvectmg (2.23) with f#¢ and making use of (4.1),
we have

(4.6) h=5,
where we have put g#h;;=h.
Using this fact, (4.5) reduces to

(4. 7) hjth;t+ Z-gji= (h2+k2+ 12+ %)P]P,"f‘ ljl,'"}“ mjm;
+k(mpi+mip;) —L(Uipi+1ip;),
which implies ‘
4.8) hyihF =R — B — P Ll mm — 5 _
with the help of (2.16) and (2.17). Since the left hand side of (4.8)
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becomes ||A;;—hp;p;l|?> because of (4.1) and (4.6), (4.8) can be written as
4.9 Vhse=hpypillE=Lt-+ mmt — (B 247,
For an eigenvalue p of k; corresponding to the eigenvector orthogonal to
', 1" and m’, we have from (4.7) that p2+£=0 if n=2. Thus it follows

that ¢<0 because the eigenvalue is real and hence ¢=0.

We now suppose that V/;1C4=0 and M%*1 is minimal. Then we have
from (4.8) with ¢=0 that k;=0. Therefore (2.26)~(2.32) mean that
M2+l ig a submanifold of codimension 2 in a Euclidean space E?**3 because
of ¢=0.

Hence we have

PROPOSITION 4.1. Let M2+ (n=22) be a minimal submanifold of codimension
3 of a Kaehlerian manifold M*+4(c) of constant holomorphic sectional curvature
c¢20 such that the (f,g,u,v,w,2A, 1, v)=structure induced on M?**1 defines an
almost contact metric structure (f,g,p), p being given by (1.15) and is anti-
normal. If the distinguished normal CA is parallel in the normal bundle, then
M2+1 s g submanifold of a Euclidean space E?+3.

Denoting by K;;=K,;# and K=g#K;; the Ricci tensor and the scalar
curvature of M2+!1 respectively, we then have from (2.26)
Kji=‘:‘£‘ {(2n+3) g;;—3p;p:} +hbji-+kkj+1;;
—hjhi —kpkd — 1l d,
from which
K=n(n+2) ’C+h2+k2+ lz"hjghﬁ““ki;kﬁ—lﬁlﬁ,
or, substituting (4.8) and taking account of (2.22)

R="2E8) o (1) —2 (kb — B,
which means
(4.10) K=‘n—(&£2_ﬂ)—‘6‘— ;05— 1: P12 —211k;,— kp; pil|?

with the help of (2.14)~(2.17). Thus if K_z_—”—(?-’éﬂ)—c holds, we have

L;pi—1;pi=0, kj;=kp;p;. Hence (2.12) and (2.13) imply that I;;=Ip;p;,
m;p;=m;p;. It follows from (4.9) that llhj;—hpjpi|lz+%c=0 and conseque-
ntly kj;=hp;p; and ¢=0 because of ¢=0, Thus (2.10) and (2.11) begomes
V;fA=0, V;;=0. And (2.26) reduces to Kj;=0.

Therefore we have
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PROPOSITION 4.2. Let M2 pe g submanifold of codimension 3 of a Kae-
hlerian manifold M?*+4(c) of constant holomorphic sectional curvature ¢=0
such that the (f, g, u, v, w, A, i, v)-structure induced on M2?"+! is antinormal and

satisfies A2+ p2-+12=1. If the scalar curvature K of M2?"+1 satisfies K;E(&lzi_-s—)-c
at every point, then M?**1 is g locally Euclidean ;space with the second fund-
amental tensors of .tke forms

hj;=hp; pi, ki;=Fkp; i, Li=1lp; p;
and admits a cosymplectic structure.

We now prove the following

THEOREM 4.3. Let M?+1 pe g complete submanifold of codimension 3 of
@ Euclidean space E?*** with antinormal (f, g, u,v,w, A, g, v)—structure satis-
Sying R4 p24-22=1. If the distinguished normal C4 is parallel in the normal
bundle and the.third fundamental tensor of M?*+1 satisfies

(4.11) Vin;—V in;=2af;;,
then M?*1 is a plane or a ruled surface which is generated by parallel displa-
cements of a plane E?* along a plane curve orthogonal to E2*,

Proof. Since V;*CA=0, that is, ;=m;=0, we have from (4.9) with c=0

(4.12) hji=hp;p;.
From (4.11) we can prove that a=0 and hence
(4. 13) kj;=0, lj,'=0.

(See Lemma 5.4 and Theorem 5.5 of [6]). Thus (2.7)~(2.9) reduce to
respectively

(4- ].4) VJCA == ’—hPJ (PhBhA) ) VjDA=ﬂjEA, VjEAz “—ﬂJDA
because of I;=m;=0. Also (2.11) and (4.12) imply that
(4.15) : Vipt=0.

Let M’ be a real hypersurface of M2*+1 which is defined by the Pfaffian

form w=p;dz’ and be covered by a system of coordinate neighborhoods {U’
; &2}, where the indices a, b, ¢ run over the range 1’,2’, ..., 2",

Let i : M'—M?2**1 be an isometri¢c immersion represented by y*=y(£2).
Putting Bjt=0,y*, (0°=0/05%), then B,* are 2z linearly independent vectors
of M2?#+1 tangent to M’. By definition, p* is a unit normal to M’. Now we
put

(4. 16) BaAzBathA’ PA:PthA'

Then PA is a unit normal vector field orthogonal t6C2, D4 and EA. In this
case, we can easily see that M’ is a totally geodesic submanifold of E2#+¢
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because of (4.12), (4.13) and (4.15). Consequently M’ is a plane E?* parallel
along p* because the ambient space is Euclidean.

I we take account of (4.12) and (4.13), then (2.6) becomes F;B;A=
hp;pyC4, or by transvecting p*

(4.17) V,PA=pp,CA
with the help of (4.15).

From (4.14) and (4.17), we have

PV,CA=—hP4,  pilV;PA=}CA,

which shows a plane curve with curvature & on a complex two dimen-
sional plane C? spaned by {P4, C4, D4, E4}. Then the orthogonal compleme-
ntary space of C? is a plane E2*. Hence M#**! is a ruled surface which is
generated by parallel displacements of E?* along a curve on C2 if A+#0. If
h=0, then M?2*+! is a plane in E?*** because of (4.12) and (4.13). This
completes the proof the theorem.

Replacing the conidtion (4.11) in Theorem 4.3 by K=0, we can see that
k;;=0, 1;=0. In fact, since V;*C4=0, (4.9) with ¢=0 implies that h;=
hp;p;. Consequently (4.10) with ¢=0 becomes K= —2k;%/* with the help of
;=0 and k=0. It follows that k;;=0 becauuse of K=0 and hence 7;;=0 by
virtue of (2.22).

According to Theorem 4.3, we have

COROLLARY 4.4. Let M?**1 be a complete submanifold of codimension 3 of
a Euclidean space E2% with antinormal (f, g, u, v, w, A, i, V)—structure satisfy-
ing R2+p2+12=1. If the distinguished normal C4 is parallel in the normal
bundle and the scalar curvature of M?**! is nomnegative at every point, we
have the same conclusions of Theorem 4. 3.

5. Submanifolds of codimension 3 of E2*** whose normal connection
is flat.

In this section we assume that the connection induced in the normal
bundle of M?*! in a Euclidean space E2*** is flat. Then we have

(5. l) - hjtkti—hitktj=01 hjtlti_hitltjzoa kj‘l,,-—k,-’lj,=0.
Transvecting (2.12) with %/ and using the third relation of (5.1), we find
kjki*=mm?, from which, using (2.14), [|k;;+m;p;l2=0 and consequently

(5- 2) kj;= —m;p;.

If we take the skew-symmetric part of this, then we have m;p,=m;p;, or
by using (2.16), m;=—kp;. Thus (5.2) becomes

(5.3) kj;=kp;p;.
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-.In the same way we have from (2. 13) (2.15)and (2. 17) that

(5.4) =1p;pi, l?_,»
Thus (4.9) with ¢=0 1mp11es 4
(5.5) =hpip;

with the help of the fact that Ll*=1? and m,m’—kz. )

Conversely, if (5.3)~(5.5) are satisfied, then we easﬂy see that (2. 23)
and (5.1) are valid. Therefore we have

PROPOSITION 5.1. Suppose that the , 2,1, 0,w, 4, 1, v)—structure induced
on a submanifold M+ of codimension 3 of a Euclidean space E2+% satisfies
R+p2412=1 and consequently (f, g,p) defines an almost contact metric stru-
cture. Then in order for these structures to be antinormal and the connection
induced in the normal bundle of M?**! to be trivial, it is necessary and suffic-
ient that the second fundamental tensors of M?*! have the form

(5.6) hj;=hpip;,  kji=kpipi, Li=Ip;ps
On the other hand, the mean curvature vector H of M"”‘+1 is glven by -

H= 5 +1(hc+kD+lE),

If we now take the distinguished normal as a direction of the mean cur-
vature vector if H#0, that is, we choose the normals H/ e I], 'D and 'E
such that H=||H]|C, then we have :

c 1 0 0 C\’
'D)———-(O cosd sin 0) (D) :
'E 0 -sinf cosf/ \E

for some constant #, where *C =H/||HIl. This means o
(.7 'C=C, 'D= cosﬁ .D+sin§-E, 'E=—sinf- D-+cosf-E. .
" As to the transforms of B;4,’CA,’DA and 'EA by Fp4, we have respectively
the equations of the form
FpABP=ftBiA+"u/CA+"v/ DA+ "w/ EA,
FpA'CB=—"ybBA—"yDAL T EA
Fy# DB=2Tphp At 1y CA— I EA4,
- ,-FBAIEB_ IUDI'B], A_Y 'CA-I-'”EA
I we apply the operator F to these equatxons and use (5 7) We obtain
(5.8) 'A=2; Tp=cos 0-ptsin -y, - o Tt
'v=—sinf-p-+cosf-y,

which shows that 'A=1, 'u='v=0 if 1=1, pg=r=0, that is, although the

R . RE 4 KT
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normals C, D and E are rotated by the fixed angle §, we may take H as
distinguished normal. _

Let 'h;;, ’k;; and ’l; be the second fundamental tensors with respect to
’C,’D and ’E, and ’l;,’m; and ’n; the third fundamental tensors correspon-
ding to I, m; and =; respectively.

- By differentiating (5.7) covariantly and taking account of (2.7)~(2.9),
we then have

(.9 "hji=hy;, "kji=cos0-k;;+sin0-1;
’L; =——sm0 kj;+cos@-1;,
; _(5. 10) ’l;=cos @-1;+sin@-m;, 'my=—sinf-l;+cosO-m;, 'nj=n;

because # is a constant.
" Since the distinguished normal as a direction of the mean curvature vector,
we have

(5.11) 'h=h, "k="1=0,
where we have put 'A="h and "k="k} and "I="I}.

By using (5.9), we can easily verify that (2.23) and (5.1) are of intrinsic
characters. Hence (5.6) implies

"hii=hp;p;, "kji="1;;=0

because of (5.11). As in the proof of Theorem 4.3, M2*+! is a ruled surface
which is generated by parallel displacements of a plane E?* along a plane
curve orthogonal to Ez* if H+(0. Thus we have

THEOREM 5.2. Let M?**1 pe a complete submanifold of codimension 3 of a
Euclidean space E**+* with antinormal (f,g,u,v, w, A, g, v)-structure satisfying
24 p2+2=1 whose normal connection is flat. If we take the distinguished
normal as a direction of the mean curvature vector H, then M2%*! is a ruled
surface which is generated by parallel displacements of a plane E>* along a
plane curve orthogonal to E?* provided that H+0. If H=0, then M?2n+1 is a
plane E?2+1,

Combining Proposition 4.2 and Theorem 5.2, we have

COROLLARY 5.3. Let M2 be a complete submanifold of codimension 3 of
a Euclidean space F?*** with antinormal (f, g, u, v, w, 4, pt, v)~structure satisfying
A2 2v2=1. If we take the distinguished normal as a direction of the mean
curvature vector and the scalar curvature of M?2*l is nommegative at every
point, we have the same conclusions of ‘Theorem 5.2.
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