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REMARKS ON REDUCING OPERATOR VALUED SPECTRUM

By SA GE LeE

1. Introduciton

In [3] and [4], D.W. Hadwin initiated the study of reducing operator
valued spectrum, and made further progresses in his subsequent papers (5]
[6] [7D-

The aim of this article is to provide still other informati on which appear
to be overlooked in the Hadwin's works above. Throughout, H denotes
a separable infinite dimensional Hilbert space over the complex numbers,
&Z(H) the set of all operators (bounded linear transformations) on H, and
K(H) the ideal of compact operators in &(H). A closed linear manifold
M of H will be called a subspace of H and denoted by M<H.

For more technical terminologies and notations, we shall follow [4],
with httle changes.

2. Reduncing Operator Eigenvalue

The next definition extends the corresponding one in ([47] p.332), by
removing the irreducibility requirement for the operator A.

DEFINITION 1. If T €&(H) and Ac€&(K), where K is any nonzero
separable Hilbert space. Then the reducing eigenspace Eig (A;T) of A is
defined as the set of all vectors f €H such that p,(T, T*)f — 0 weakly in
H, whenever {p,(z,y)}is a sequence of noncommutative polynomlals such
that p,(A; A*)—0 in the weak opeator topology in' £(K).

The next lemma is an easy consequence of definition 1 and hence the
proof is omltted

LEMMA 1. Let T, A be as in definition 1. If M is a reducing subspace of
T and T|M is unitarily equivalent to A, denvted by T{M A, then
McCEig(A;T).

DEFINITION 2. Let K and L be nonzero separable 'Hilbert spaces. Let
A€&(K) and Be&A(L). Then A and B are called disjoint, denoted by
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A& B, if no suboperator of S is unitarily equivalent to any suboperator of
T (definition 2.1 [4] p.332).

The following proposition extends (i) and (ii) of proposition 2.3 ([4] p-
332).

PROPOSITION 1. Let T, A be as in definition 1. Then Eig(A;T) is a
reducing subspace of T.

Proof. It is routine to check that Eig(A;T) is a linear submanifold of
H invariant under T and T*. We denote by M the norm closure of Eig
(A; T). It suffices to show that McCEig(A; T). Without loss of generality,
we may assume that Eig(A;T)+ {0}, so that M+ {0}. First we will show
that T|M has no suboperater disjoint from A. Assume, to the contrary, that
T'|M has a suboperator B €&8(N) such that B4 A.

By (ii) of Lemma 2.2 {{4] p-332), there is a sequence {p,(x,y)} of non-
commutative polynomials such that p,(A, A*)—0 in the weak operator to-
pology on £(K) and P,(B, B¥)—I in the weak operator topology on &(N).
Let us pick up g#0 in N. Then

(1) (Pu(T1 T*)g’ g)=(Pn(B’ B*)ga g)ﬁ(ga g)°
Now {p,(B, B*)} is a norm bounded sequence, say by 2(C>0), from the
uniform boundedness principle. Pick up a vector f&Eig(A;T) such that
lf—gll<ligll/(2k). Then \ :
| (u(T, T*) g, ) | S| (6T, T*) (g—1)> 2) | + 1 (8T, T*)f, 2) |
S|p(B, B llg—sfll llgl+12.(T, T*)f, 2) |
<k(ligll/ 2B gl + (1/Dllel?,
(for sufficiently large #.)
=(3/D gl
This contradicts to (1), showing that no suboperator of T'|M is disjoint
from A. In other words,
(2) every suboperator B of T|M has a suboperator D (of B) that is
unitarily equivalent to a suboperator A, of A.

Let F={J; ®D,; JeA} be the set of all operators of the form

asd

ZJ(—B D,, where each D, is a suboperator of T|M and D, is unitarily

equivalent to a suboperator A, of A. Then & is nonempty, by (2). Here
we understand that D,#D; whenever a#8,a,8J and D,c&(M,). We
order by 21 ® D.,gZ; @®D,, if Jy;cJ;. Then = is a partial ordering for

ecy

J. We can apply Zorn’s lemma to & and use (2) to conclude that T|M=
21@ D,, for certain 1€ A. It follows that, for some unitary operator
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U:Z}I ® M,—M, we have
US(TIM) =3 ® Ac&E ® M)

Let feM. We want to show that fEEig(A; T). Assume that p,(A, A*)
— 0 in the weak operator topology in £(K). It suffices to show that
(8) (p.(T, T*)f,g) —0 as n— oo, for each geM.

Put U*f=§1®52®"'EZI®M,~. Then
(1 EOA; ZOANE E) = (T®pu(4r, AME,E)
=iz:.|;(1>n(Ai, A®ELED,

and
lp.(As, A= Mpa(4, A%) ik,

while {l{p,(A, A*)|lg} is a bounded sequence.

Thus, to show (3), it only needs to verify that

(Pn(U(:éI@Ai) U*, U(ieZl@A,-*) U*)f, g)—0.

By a simple computation, this is equivalent to say that

(4) E(?ﬂ (A, A*){:i, 77;) - Oa
where U*g=771€-)n26—)~--e_Z}IG—)M-.

By Dixmier [1] p.34, the weak operator topology on £(K) coincides with
the ultraweak operator topology on a norm bounded subset of £(K). Hence
(4) holds, by the fact that p,(A4, A*)—0 in the weak operator topology in
&(K). It follows that (3) holds and MCEig(A;T), thatis M=Eig(A;T).
Q.E.D.

A quick review of the proof of proposition 1 yields the fact:

if Eig(A; T)# {0}, then T|Eig(A; T) has no suboperator disjoint from A4,
which is called that A covers T|Eig(A;T), denoted by A} (T|Eig(A;T))
(Ernest [2] p.9 definitien 1.10).

By modifying the proof of lemma 2, we can say a little bit more as
follows.

PROPOSITION 2. Let T, A be as in definition 1. Let Ay be a suboperator
of A. Then

(1) Eig (A; T)CEig(A; T),

(ii) if Eig(Ay;T)#1{0}, then Ay} (T|Eig(A; T).

We say that two operators S and T are quasiequivalent, denoted by S=
T, if ST and T} S (Ernest [2] p.9, definition 1.10).
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PROPOSITION 3. Let A, B and T be operators acting on nonzero separable
Hilbert spaces K, L and H respectively. Then

(i) ASB if and only if Eig(A;T) | Eig(B; T).

If, in addition, A and B are factor operators, then

(i1)) A=B if and only if Eig(A; T)=Eig(B;T), when Eig(A;T)+ {0}.

Proof. (i) (=) In the proof of proposition 2.3 (iv) [4] p. 333, only the
fact that AL B is used. Hence we can follow the proof there.

(&) Assume that Eig(A;T)_ Eig(B;T). Suppose, contrarily that A& B.
Then there are suboperators C of A and D of B such that C=D.

Since Eig(C;T)=Eig(A;T), we have Eig(D; T)ZEig(B;T), by propo-
sition 2(i) and Eig(C;T)=Eig(D;T), we have a contradiction.

(i) By corollary 1.4 (Ernest [2] p.12), either A<B or B<A. (Here,
A<B means that A is unitarily equivalent to a suboperator of B). If both
A<B and Bs A, then A=B by Theorem 1.3 ([2] p.6, Ernest), in which
case Eig(A; T)=Eig(B;T). So assume that BSA with A=A;DA,, B=A,
and A;<A. (Recall that operators are always assumed to be acting on non-
zero spaces. ) Clearly, Eig(B;T)=Eig(A;;T)CEig(A;T). Now we show
the reverse inclusion, Eig(A;T)CEig(B;T). Put

N=Eig(A; T)OEig(A,; T) # {0}.

We apply (ii) of proposition 2, we see that A} (T|Eig(A;T)), so that
A;&TIN. Thus there is a suboperator C of T|N and a suboperator D of 4,
such that C=D. Let C act on the nonzero space M(<N). Thus by lemma 1,

McCEig(D;T)CEig(Ay; T).

This is a contradiction to MCN. Q.E.D.

3. Algebraic implications

For Te&(H), let Z(T), Zo(T) and 2Z.(T), respectively, bte the
reducing operator spectrum, reducing operator eigen spectrum, and the esse-
ntial reducing operator spectrum of 7. Let C*(T)(W*(T)) be the C*-
algebra (von Neumann algebra, resp.) generated by T and I in 8(H).

PROPOSITION 4. If T€R(H) then C*(T)NK(H)=1{0} if and only if
ZO(T) C:Z'ess(T)o

Proof. (&) Let 2y(T) 2, (T). Assume contrary that C*(T) NK(H)+
{0}. By Corollary 2.9[4] p.334, there is an operator A€ (T)~2(T),
a contradiction.

(>) Assume that C*(T)NK(H)=1{0}. Let A€ (T). We find an
irreducible represenion I of C*(T) such that #(T)=A. By (ii) of Corllary
1.4 [47 p.331, we see that A=M(T)<2,.,(T), as desired. Q.E.D.
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By using corollary 2.7[47 p.334, we can prove the following proposition
easily.

PROPOSITION 5. If TER(H), then W*(T) NK(H)=1{0} if and only if
Zo(T)={A€Zy(T): mult(A:T)=o00}.

COROLLARY. If 2y(T)=¢, then W*(T)NK(H)=1{0}.

PROPOSITION 6. (Spectral Inclusion). Let SER(K) and T€R(H). Then
the following are equivalent. '

(i) SeX(T).

(ii) 2(S)c3(D).

(i) There is a represention I of C*(T) onto C*(S) such that I(T)=S,
II(I) =I and ranklI(B) <rank(B), for all BEC*(T).

Proof. We apply Theorem 3.3[4] p.336, in the obvious way.

LEMMA 2 (Prof. Hadwin informed to the author.)

2 (T)=1{A: There is a unital represention II:C*(T)—C*(A)
such that C*(T) NK(H) Cker(l)}.

PROPOSITION 7. Let S€&(K) and TeXR(H). Then (i) Z.(S)CZ.(T)
if and only if there exists a *~homomorphism p: C*(T)/C*(T) NX(H) —
C*(S)/C*(S)NK(K), sending the coset [T1=T+C*(T)NK(H) to [S]
and [I] to [T}

(1) 2..(S)=2..(T) if and only if there exists a *—isomorphism I of
C*(T)/C*(T) NK(H) with C*(S)/C*(S)NK(K), sending [T] to [S]and
(1] e [I].

Proof (i) We apply lemma 2 in the evident way.

(ii) comes from (i). Q. E. D.

Addendum. As an analogue to Theorem 2.8. (p.334 [47]), we have the
following proposition.

ProrPoSITION 8 Let A€&(K) and Te<&(H), where H is infinite

dimensional. Then the following conditions are equivalent.

(1) AeXo(T) and mult(A; T)<co.

(ii) There is an irreducible *—representation I of W*(T) into B(K) such
that I(T)=A and W*(T) NK(H) Cker(Il).
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