REMARKS ON REDUCING OPERATOR VALUED SPECTRUM

By SA GE LEE

1. Introduciton

In [3] and [4], D. W. Hadwin initiated the study of reducing operator valued spectrum, and made further progresses in his subsequent papers ([5] [6] [7]).

The aim of this article is to provide still other informati on which appear to be overlooked in the Hadwin's works above. Throughout, H denotes a separable infinite dimensional Hilbert space over the complex numbers, $\mathcal{E}(H)$ the set of all operators (bounded linear transformations) on H, and $\mathcal{K}(H)$ the ideal of compact operators in $\mathcal{E}(H)$. A closed linear manifold M of H will be called a subspace of H and denoted by $M \leq H$.

For more technical terminologies and notations, we shall follow [4], with little changes.

2. Reducing Operator Eigenvalue

The next definition extends the corresponding one in ([4] p. 332), by removing the irreducibility requirement for the operator A.

DEFINITION 1. If $T \in \mathcal{B}(H)$ and $A \in \mathcal{B}(K)$, where K is any nonzero separable Hilbert space. Then the reducing eigenspace Eig (A; T) of A is defined as the set of all vectors $f \in H$ such that $p_n(T, T^*)f \to 0$ weakly in H, whenever $\{p_n(x, y)\}$ is a sequence of noncommutative polynomials such that $p_n(A, A^*) \to 0$ in the weak operator topology in $\mathcal{B}(K)$.

The next lemma is an easy consequence of definition 1 and hence the proof is omitted.

LEMMA 1. Let T, A be as in definition 1. If M is a reducing subspace of T and T|M is unitarily equivalent to A, denoted by $T|M\cong A$, then $M\subset Eig(A;T)$.

DEFINITION 2. Let K and L be nonzero separable Hilbert spaces. Let $A \in \mathcal{B}(K)$ and $B \in \mathcal{B}(L)$. Then A and B are called disjoint, denoted by

132 Sa Ge Lee

A
ightharpoonup B, if no suboperator of S is unitarily equivalent to any suboperator of T (definition 2.1 [4] p. 332).

The following proposition extends (i) and (ii) of proposition 2.3 ([4] p. 332).

PROPOSITION 1. Let T, A be as in definition 1. Then Eig(A; T) is a reducing subspace of T.

Proof. It is routine to check that Eig(A;T) is a linear submanifold of H invariant under T and T^* . We denote by M the norm closure of Eig(A;T). It suffices to show that $M \subset Eig(A;T)$. Without loss of generality, we may assume that $Eig(A;T) \neq \{0\}$, so that $M \neq \{0\}$. First we will show that T|M has no suboperator disjoint from A. Assume, to the contrary, that T|M has a suboperator $B \in \mathcal{E}(N)$ such that $B \downarrow A$.

By (ii) of Lemma 2.2 ([4] p. 332), there is a sequence $\{p_n(x,y)\}$ of non-commutative polynomials such that $p_n(A,A^*)\to 0$ in the weak operator to-pology on $\mathcal{E}(K)$ and $P_n(B,B^*)\to I$ in the weak operator topology on $\mathcal{E}(N)$. Let us pick up $g\neq 0$ in N. Then

(1)
$$(p_n(T, T^*)g, g) = (p_n(B, B^*)g, g) \rightarrow (g, g).$$

Now $\{p_n(B, B^*)\}$ is a norm bounded sequence, say by k(>0), from the uniform boundedness principle. Pick up a vector $f \in Eig(A; T)$ such that ||f-g|| < ||g||/(2k). Then

$$|(p_n(T, T^*)g, g)| \leq |(p_n(T, T^*)(g-f), g)| + |(p_n(T, T^*)f, g)|$$

$$\leq ||p_n(B, B^*)|| ||g-f|| ||g|| + |p_n(T, T^*)f, g)|$$

$$\leq k(||g||/2k)||g|| + (1/4)||g||^2,$$

(for sufficiently large n.)

$$=(3/4)||g||^2.$$

This contradicts to (1), showing that no suboperator of T|M is disjoint from A. In other words,

(2) every suboperator B of T|M has a suboperator D (of B) that is unitarily equivalent to a suboperator A_1 of A.

Let $\mathcal{F} = \{\sum_{\alpha \in J} \oplus D_{\alpha}; J \in \Lambda\}$ be the set of all operators of the form $\sum_{\alpha \in J} \oplus D_{\alpha}$, where each D_{α} is a suboperator of $T \mid M$ and D_{α} is unitarily equivalent to a suboperator A_{α} of A. Then \mathcal{F} is nonempty, by (2). Here we understand that $D_{\alpha} \neq D_{\beta}$, whenever $\alpha \neq \beta, \alpha, \beta \in J$ and $D_{\alpha} \in \mathcal{E}(M_{\alpha})$. We order by $\sum_{\alpha \in J_1} \oplus D_{\alpha} \leq \sum_{\alpha \in J_2} \oplus D_{\alpha}$, if $J_1 \subset J_2$. Then \leq is a partial ordering for \mathcal{F} . We can apply Zorn's lemma to \mathcal{F} and use (2) to conclude that $T \mid M = \sum_{\alpha \in J} \oplus D_{\alpha}$, for certain $I \in \Lambda$. It follows that, for some unitary operator

 $U: \sum_{\alpha \in I} \oplus M_{\alpha} \rightarrow M$, we have

$$U^*(T|M) = \sum_{\alpha \in \mathcal{A}} \bigoplus A_{\alpha} \in \mathcal{E}(\sum_{\alpha \in \mathcal{A}} \bigoplus M_{\alpha})$$

Let $f \in M$. We want to show that $f \in Eig(A; T)$. Assume that $p_n(A, A^*) \to 0$ in the weak operator topology in $\mathcal{E}(K)$. It suffices to show that

(3) $(p_n(T, T^*)f, g) \to 0$ as $n \to \infty$, for each $g \in M$.

Put
$$U^*f = \xi_1 \oplus \xi_2 \oplus \cdots \in \sum_{\alpha \in I} \oplus M_i$$
. Then
$$(p_n(\sum_{\alpha \in I} \oplus A_i, \sum_{\alpha \in I} \oplus A_i^*)\xi, \xi) = ((\sum_{i \in I} \oplus p_n(A_i, A_i^*))\xi, \xi)$$

$$= \sum_{i \in I} (p_n(A_i, A_i^*)\xi_i, \xi_i),$$

and

$$||p_n(A_i, A_i^*)||_{M_i} \leq ||p_n(A, A^*)||_K$$

while $\{\|p_n(A, A^*)\|_K\}$ is a bounded sequence.

Thus, to show (3), it only needs to verify that

$$(p_n(U(\sum_{i\in I} \oplus A_i) U^*, U(\sum_{i\in I} \oplus A_i^*) U^*)f, g) \rightarrow 0.$$

By a simple computation, this is equivalent to say that

(4)
$$\sum_{i\in I}(p_n(A,A^*)\xi_i,\eta_i)\to 0,$$

where $U^*g = \eta_1 \oplus \eta_2 \oplus \cdots \in \sum_{i \in I} \oplus M_i$.

By Dixmier [1] p. 34, the weak operator topology on $\mathcal{E}(K)$ coincides with the ultraweak operator topology on a norm bounded subset of $\mathcal{E}(K)$. Hence (4) holds, by the fact that $p_n(A, A^*) \to 0$ in the weak operator topology in $\mathcal{E}(K)$. It follows that (3) holds and $M \subseteq Eig(A; T)$, that is M = Eig(A; T). Q. E. D.

A quick review of the proof of proposition 1 yields the fact:

if $Eig(A; T) \neq \{0\}$, then T|Eig(A; T) has no suboperator disjoint from A, which is called that A covers T|Eig(A; T), denoted by $A\}(T|Eig(A; T))$ (Ernest [2] p. 9 definition 1.10).

By modifying the proof of lemma 2, we can say a little bit more as follows.

PROPOSITION 2. Let T, A be as in definition 1. Let A_1 be a suboperator of A. Then

- (i) Eig $(A_1; T) \subset Eig(A; T)$,
- (ii) if $Eig(A_1; T) \neq \{0\}$, then $A_1\}$ ($T \mid Eig(A; T)$.

We say that two operators S and T are quasiequivalent, denoted by $S \approx T$, if S T and T S (Ernest [2] p. 9, definition 1.10).

134 Sa Ge Lee

PROPOSITION 3. Let A, B and T be operators acting on nonzero separable Hilbert spaces K, L and H respectively. Then

- (i) $A \downarrow B$ if and only if $Eig(A; T) \perp Eig(B; T)$.
- If, in addition, A and B are factor operators, then
- (ii) $A \approx B$ if and only if Eig(A; T) = Eig(B; T), when $Eig(A; T) \neq \{0\}$.
- *Proof.* (i) (\Rightarrow) In the proof of proposition 2.3 (iv) [4] p. 333, only the fact that $A \downarrow B$ is used. Hence we can follow the proof there.
- (\Leftarrow) Assume that $Eig(A;T) \perp Eig(B;T)$. Suppose, contrarily that $A \not \leq B$. Then there are suboperators C of A and D of B such that $C \cong D$.

Since $Eig(C;T) \leq Eig(A;T)$, we have $Eig(D;T) \leq Eig(B;T)$, by proposition 2(i) and Eig(C;T) = Eig(D;T), we have a contradiction.

(ii) By corollary 1.4 (Ernest [2] p. 12), either $A \leq B$ or $B \leq A$. (Here, $A \leq B$ means that A is unitarily equivalent to a suboperator of B). If both $A \leq B$ and $B \leq A$, then $A \cong B$ by Theorem 1.3 ([2] p. 6, Ernest), in which case Eig(A;T) = Eig(B;T). So assume that $B \leq A$ with $A = A_1 \oplus A_2$, $B \cong A_1$ and $A_2 \subseteq A$. (Recall that operators are always assumed to be acting on nonzero spaces.) Clearly, $Eig(B;T) = Eig(A_1;T) \subset Eig(A;T)$. Now we show the reverse inclusion, $Eig(A;T) \subset Eig(B;T)$. Put

$$N = Eig(A; T) \ominus Eig(A_1; T) \neq \{0\}$$
.

We apply (ii) of proposition 2, we see that A_1 (T|Eig(A;T)), so that $A_1 \leq T|N$. Thus there is a suboperator C of T|N and a suboperator D of A_1 such that $C \cong D$. Let C act on the nonzero space $M(\leq N)$. Thus by lemma 1, $M \subset Eig(D;T) \subset Eig(A_1;T)$.

This is a contradiction to $M \subset N$. Q. E. D.

3. Algebraic implications

For $T \in \mathcal{B}(H)$, let $\Sigma(T)$, $\Sigma_0(T)$ and $\Sigma_{\mathrm{ess}}(T)$, respectively, be the reducing operator spectrum, reducing operator eigen spectrum, and the essential reducing operator spectrum of T. Let $C^*(T)(W^*(T))$ be the C^* -algebra (von Neumann algebra, resp.) generated by T and I in $\mathcal{B}(H)$.

PROPOSITION 4. If $T \in \mathcal{B}(H)$ then $C^*(T) \cap \mathcal{K}(H) = \{0\}$ if and only if $\Sigma_0(T) \subset \Sigma_{ess}(T)$.

- *Proof.* (\Leftarrow) Let $\Sigma_0(T) \subset \Sigma_{ess}(T)$. Assume contrary that $C^*(T) \cap \mathcal{K}(H) \neq \{0\}$. By Corollary 2.9[4] p. 334, there is an operator $A \in \Sigma_0(T) \sim \Sigma_{ess}(T)$, a contradiction.
- (\Rightarrow) Assume that $C^*(T) \cap \mathcal{K}(H) = \{0\}$. Let $A \in \Sigma_0(T)$. We find an irreducible represention II of $C^*(T)$ such that II(T) = A. By (ii) of Corllary 1.4 [4] p. 331, we see that $A = II(T) \in \Sigma_{ess}(T)$, as desired. Q. E. D.

By using corollary 2.7[4] p. 334, we can prove the following proposition easily.

PROPOSITION 5. If $T \in \mathcal{B}(H)$, then $W^*(T) \cap \mathcal{K}(H) = \{0\}$ if and only if $\Sigma_0(T) = \{A \in \Sigma_0(T) : mult(A:T) = \infty\}$.

COROLLARY. If $\Sigma_0(T) = \phi$, then $W^*(T) \cap \mathcal{K}(H) = \{0\}$.

PROPOSITION 6. (Spectral Inclusion). Let $S \in \mathcal{E}(K)$ and $T \in \mathcal{E}(H)$. Then the following are equivalent.

- (i) $S \in \Sigma(T)$.
- (ii) $\Sigma(S) \subset \Sigma(T)$.
- (iii) There is a represention II of $C^*(T)$ onto $C^*(S)$ such that II(T) = S, II(I) = I and $rankII(B) \le rank(B)$, for all $B \in C^*(T)$.

Proof. We apply Theorem 3.3[4] p. 336, in the obvious way.

LEMMA 2 (Prof. Hadwin informed to the author.) $\Sigma_{\rm ess}(T) = \{A: \text{ There is a unital represention } \overline{II}: C^*(T) \to C^*(A) \text{ such that } C^*(T) \cap \mathcal{K}(H) \subset \ker(\overline{II}) \}.$

PROPOSITION 7. Let $S \in \mathcal{B}(K)$ and $T \in \mathcal{B}(H)$. Then (i) $\Sigma_{ess}(S) \subset \Sigma_{ess}(T)$ if and only if there exists a *-homomorphism $\rho: C^*(T)/C^*(T) \cap \mathcal{K}(H) \to C^*(S)/C^*(S) \cap \mathcal{K}(K)$, sending the coset $[T] = T + C^*(T) \cap \mathcal{K}(H)$ to [S] and [I] to [I].

(ii) $\Sigma_{ess}(S) = \Sigma_{ess}(T)$ if and only if there exists a *-isomorphism II of $C^*(T)/C^*(T) \cap \mathcal{K}(H)$ with $C^*(S)/C^*(S) \cap \mathcal{K}(K)$, sending [T] to [S] and [I] to [I].

Proof (i) We apply lemma 2 in the evident way.

(ii) comes from (i). Q. E. D.

Addendum. As an analogue to Theorem 2.8. (p. 334 [4]), we have the following proposition.

PROPOSITION 8. Let $A \in \mathcal{B}(K)$ and $T \in \mathcal{B}(H)$, where H is infinite dimensional. Then the following conditions are equivalent.

- (i) $A \in \sum_{0} (T)$ and $mult(A; T) < \infty$.
- (ii) There is an irreducible *-representation II of $W^*(T)$ into $\mathcal{E}(K)$ such that II(T) = A and $W^*(T) \cap \mathcal{K}(H) \not\subset \ker(II)$.

References

J. Dixmer, Les algebras d'operateures dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
 J. Ernest, Charting the operator terrain, Memoirs of the Amer. Math. Soc. 171 (1976).
 D. W. Hadwin, Closures of unitary equivalence classes, Ph. D. thesis, Indiana University, 1975.
 _____, An operator-valued spectrum, Indiana Univ. Math. J. (26)2(1977) 329

 _____, Continuous functions of operators: A functional calculus, Indiana Univ. Math. J. (27)1(1978) 113-125.
 _____, Approximate equivalence and completely positive maps, preprint.
 _____, An asymptotic double commutant theorem for C*-algebras, preprint.

Seoul National University