SCHOTTKY-LANDAU PROPERTY AND HYPERBOLICITY OF COMPLEX MANIFOLDS

By KANG TAE KIM

This paper is based on an idea of P. A. Griffiths [3] and M. H. Kwack [4]. The primary aim is to give a characterization of hyperbolic manifolds in terms of Schottky-Landau property. In addition, the author gives an elementary proof of R. Brody's result (cf. [2]) as an application of this characterization.

1. Preliminaries

Let M be a complex manifold of dimension n and T(M) its tangent bundle. A differential pseudometric is an upper semicontinuous function F_M : $T(M) \rightarrow \mathbb{R}$ satisfying

- (1) $F_M(z, v) \ge 0$, for any $(z, v) \in T(M)$, and
- (2) $F_M(z, rv) = |r| F_M(z, v)$ for any $r \in \mathbb{C}$, where \mathbb{R} and \mathbb{C} are the fields of real numbers and of complex numbers, respectively. The *integrated form* of F_M is given by, for all $x, y \in M$,

$$d_F(x,y) = \inf \int_{\tau}^{\tau} F_M(z,dz) = \inf \int_{0}^{1} F_M(\gamma(t),\gamma'(t)) dt,$$

where the infimum is taken over all piecewise C^1 curves joining x and y in M. A well-known example of a differential pseudometric is a Kobayashi pseudometric which is defined by

$$K_M(z,v) = \{|t|: f \in H(D,M), f(0) = z, f'(0)t = v\}$$

where H(D, M) is the set of holomorphic mappings of the unit disc D in the complex plane C into M. The upper semicontinuity of K_M is proved by H. L. Royden (cf. [5]). A complex manifold is F_M -hyperbolic if each point in M has a neighborhood U and admits a positive number m_U depending only on U satisfying:

$$F_{M}(z,v) \geq m_{U}||v||,$$

for all $z \in U$ and $v \in T_z(M)$. M is said to be hyperbolic if it is K_M -hyper-

bolic.

Given a pair of points (z, w) in M, we choose points $z=z_0, z_1, \dots, z_k=w$ of M, points a_1, a_2, \dots, a_k ; b_1, \dots, b_k of D and holomorphic mappings f_1, \dots, f_k of D into M such that $f_i(a_i)=z_{i-1}$ and $f_i(b_i)=z_i$. The Kobayashi pseudometric is defined by

$$d_M(z, w) = \inf \sum_{i=1}^k \rho_D(a_i, b_i)$$
,

where the infimum is taken over all possible choices of points and functions as above and where ρ_D is the Poincaré metric on the unit disc. The following theorems show the relationships between the above terminologies.

THEOREM 1.1. (H. L. Royden). d_M is the integrated form of K_M .

THEOREM 1.2. (H. L. Royden, T. J. Barth). For a complex manifold M, the following are equivalent:

- (1) M is hyperbolic.
- (2) d_M is a proper distance.
- (3) d_M induces the standard topology on M.

2. Lemmas

We shall denote by D(0, r) the open disc about origin with radius r in the complex plane. The following two lemmas generalize the lemmas given by M. H. Kwack [4].

LEMMA 2.1. Let $\{f_k\}$ be a sequence of holomorphic mappings from D=D(0,1) into a hyperbolic manifold M which converges uniformly to an f on each compact subset of D. Further assume that $f_k(0) \in W$ for all indices k and for a fixed open and relatively compact subset W contained in a coordinate neighborhood U in M. Then $df_k(0)$ converges to df(0).

Proof. By Theorem 1.2., there exist positive numbers r_0, r_1 and r_2 such that

- (1) $0 < r_0 < r_0 + r_1 < r_2$, and
- (2) $\{p \in M : d_M(W, p) < r_2\} \subset U$.

Let t_0 with $0 < t_0 < 1$ satisfy that

$$f(D(0,t_0))\subset \{p\in M;\ d_M(W,p)< r_0\}.$$

Choose a positive integer K such that for any k>K and for all $x\in D(0,t_0)$,

$$d_M(W, f_k(x)) \le d_M(W, f(x)) + d_M(f_k(x), f(x)) \le r_0 + r_1 < r_2,$$

and hence $f_k(\overline{D}(0,t_0)) \subset U$. So the result follows from the Weierstrass' theorem.

LEMMA 2.2. Let $\{f_k\}$ be a sequence of holomorphic mappings of D into a hyperbolic manifold M such that $f_k(0) \in W$ for all $k=1,2,\cdots$ and for a fixed relatively compact open subset W of a relatively compact coordinate neighborhood U in M.

Then, there is a positive real number t < 1 such that on D(0,t) a subsequence of $\{f_k\}$ converges uniformly to a holomorphic mapping $f: D(0,t) \to M$.

Proof. Note that M is locally compact Hausdorff space. Let $\varphi = (w_1, \dots, w_n)$ be a coordinate function on U. Since $\overline{W} \cap U^c = \phi$ (empty set), where $U^c = M - U$, choose a positive number t' such that $Q = \{ p \in M : d_M(W, P) < t' \}$ becomes a relatively compact subset of U by virtue of Theorem 1.2. Since all the f_k are distance decreasing with respect to d_M , we have

$$f_k(\{p \in D : \rho_D(0,p) < t'\}) \subset Q.$$

Note that $\varphi(Q)$ is a bounded subset of \mathbb{C}^n . Thus by the Montel's theorem, we can choose $t \leq t'$ such that a subsequence of $\{f_k\}$ converging uniformly on D(0,t) to a holomorphic mapping $f:D(0,t)\to M$.

3. Main theorem

THEOREM 3.1. A complex manifold M is hyperbolic if and only if it has the Schottky-Landau propety, i.e., given a point $z_0 \in M$ and a constant a > 0, there is a neighborhood W of z_0 in M satisfying the following property: for any holomorphic mapping $f: D(0,r) \to M$ with $f(0) \in W$ and $||df(0)|| \ge a$, there is a constant R=R(a,W)>0 depending only on a and W such that $r \le R$.

Proof. Assume that M is hyperbolic. Let $z_0 \in M$, a > 0 be given. Choose a relatively compact coordinate neighborhood U about z_0 and a relatively compact open subset W of U containing z_0 . Then we claim that this W does the job. Suppose that M does not have a Schottky-Landau property, then there is a sequence $\{r_k\}$ of positive real numbers tending to infinity and a sequence of holomorphic mappings $f_k: D(0, r_k) \to M$ with $f_k(0) \in W$ and $\|df_k(0)\| \ge a$. Let $h_k(z) = f_k(r_k z)$, then $h_k: D \to M$ satisfies the properties: $h_k(0) \in W$, $h_k \in H(D, M)$ and $\|dh_k(0)\| \ge ar_k$. Therefore, by Lemma 2.1., $\{h_k\}$ cannot have any subsequence converging uniformly on a neighborhood of 0. But this contradicts Lemma 2.2.

Conversely, assume that M has the Schottky-Landau property. Let $z_0 \in M$ be given and let a=1. Then a neighborhood W of z_0 in M which forms the Schottky-Landau property. We claim first that, given $(z,v) \in T(M)$, for every $f \in H(D,M)$ with $f(0) = z \in W$ and $df(0) \eta = v$, for some $\eta \in C$,

$$||df(0)|| \leq \delta_W,$$

for some δ_W depending only on M and W. Assume the contrary, then for an arbitrarily given B>0, there is a holomorphic mapping $f:D\to M$ such that $f(0)=z\in W$, $df(0)\eta=v$ and $\|df(0)\|>B$. Define $h:D(0,B)\to M$ by h(z)=f(z/B). Then h is holomorphic and $\|dh(0)\|=(1/B)\|df(0)\|>1$. Since B can be arbitrarily large, this contradicts the Schottky-Landau property. Therefore there is a constant δ_W satisfying (*).

Hence, given $(z, v) \in T(M)$, $z \in W$, for any $\eta \in C$ such that there is an $f \in H(D, M)$ satisfying that f(0) = z and $df(0) \eta = v$, we have

$$\delta_{W} |\eta| \ge ||df(0)|| |\eta| \ge ||v||$$

or

$$|\eta| \geq m_W ||v||$$
,

where $m_W = 1/\delta_W$. This completes the proof.

4. Application to compact cases

Using the device of Theorem 3.1., we will give an elementary proof of the following

THEOREM 4.1. (R. Brody). Let M be a compact complex manifold. Then the following are equivalent:

- (1) M is hyperbolic.
 - (2) $\sup\{\|df(0)\|: f\in H(D,M)\}<\infty$.
 - (3) M admits no complex line, i.e., there is no nonconstant holomorphic mapping from the complex plane into M.
- *Proof.* (1) \Rightarrow (2). By Theorem 3.1., for any $z_0 \in M$, there is a neighborhood W of z_0 in M such that, for any $f \in H(D(0,r),M)$ with $f(0) \in W$ and $||df(0)|| \geq 1$, there is a constant R = R(W,1), depending only on W, such that $r \leq R$. It follows that every $f \in H(D,M)$ with $f(0) \in W$ satisfies $||df(0)|| \leq R$. Since M is compact, (2) holds.
- $(2)\Rightarrow(1)$. Suppose that M is not hyperbolic. Then by Theorem 3.1., there is a point $z_0\in M$ such that there is a sequence of holomorphic mappings $f_k:D(0,r_k)\to M$ satisfying $f_k(0)\in W$ for any coordinate nighborhood W of z_0 and $\|df_k(0)\|\geq 1$, where $\{r_k\}$ is a sequence of positive real numbers tending to infinity. Let $g_k(z)=f_k(r_kz)$, then $g_k\in H(D,M)$ and $\|dg_k(0)\|\geq r_k$ so that $\sup\{\|df(0)\|:f\in H(D,M)\}=\infty$.
 - $(1) \Rightarrow (3)$. Obvious.
- (3) \Rightarrow (1). Suppose that M is not hyperbolic. Then as above, there exists a sequence of holomorphic mappings $f_k: D(0, r_k) \to M$ such that $f_k(0) \in W$ and $||df_k(0)|| \ge 1$ for a fixed relatively compact open subset W of a relatively compact coordinate neighborhood in M, and such that r_k tends to infinity

as k becomes larger. Note that $H(D(0, r_k), M)$ forms a normal family, since M is compact. Assume $\{r_k\}$ is an increasing sequence with $r_1 \ge 1$.

Let $\{f_{1,i}\}$ be a subsequence of $\{f_k\}$ converging uniformly on all compact subsets of $D(0, r_1)$. For each $n=2, 3, 4, \cdots$, we choose recursively a subsequence $\{f_{n,k}\}$ of $\{f_{n-1,k}\}$ converging uniformly on all compact subsets of $D(0, r_n)$.

Now choose the diagonal sequence $\{f_{k,k}\}$ and let f be the limit function of the sequence of holomorphic mappings $f_{k,k}$ restricted on the unit open disc. We claim that this f can be extended to a holomorphic mapping $F: C \rightarrow M$, which will complete the proof.

Let β be an arbitrary point in C. Then there is a natural number p such that $|\beta| < r_p$. Let F_p be the limit function of the sequence

$$f_{p,p}|_{D(0,r_p)}, f_{p+1,p+1}|_{D(0,r_p)}, \cdots$$

Of course, F_p is holomorphic on $D(0, r_p)$, especially at β , and $F_p|_{D} = f$. Thus by the Monodromy theorem we get the result.

References

- 1. T. J. Barth, The Kobayashi distance induces the standard topology, Proc. A. M. S., 35 (1972)
- 2. R. Brody, Intrinsic metrics and measures on compact complex manifolds, Thesis, Harvard Univ., 1975
- 3. P. A. Griffiths, Holomorphic mapping into canonical algebraic varieties, Ann. of Math., 93(1971)
- 4. M. H. Kwack, Some classical theorems for holomorphic mapping into hyperbolic manifolds, Proc. Symp. Pure Math., 27 (1975)
- H. L. Royden, Remarks on Kobayashi metric, Several complex variables II, Lecture notes in Math., v. 185, Springer-Verlag, 1971

Seoul National University