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SCHOTTKY-LANDAU PROPERTY AND HYPERBOLICITY
OF COMPLEX MANIFOLDS

By lUNG T AE KIM

This paper is based on an idea of P. A. Griffiths [3J and M. H. Kwack.
[4J. The primary aim is to give a characterization of hyperbolic manifolds
in terms of Schottky-Landau property. In addition, the author gives an
elementary proof of R. Brody's result (d. [2J) as an application of this
characterization.

1. Preliminaries

Let M be a complex manifold of dimension n and T(M) its tangent
bundle. A differential pseudometric is an upper semicontinuous function FM:
T(M)-+R satisfying

(1) FM(Z, v) ?: 0, for any (z, v) E T(M) ,
and.

(2) FM(z,rv)=lr!FM(z,v) for any rEC,
where Rand C are the fields of real numbers and of complex numbers,
respectively. The integrated form of FM is given by, for all x,yEM,

(JF(X,y) =inf{FM(Z, dz) =inf ~FM(r(t),r'(t»)dt,

where the infimum is taken over all piecewise Cl curves joining x and y in
M. A well-known example of a differential pseudometric is a Kobayashi
pseudometri~ which is defined by

KM(z,v)= {It I: fEH(D,M), f(O)=z, f'(O)t=v}

where H(D, M) is the set of holomorphic mappings of the unit disc D in
the complex plane C into M. The upper semicontinuity of K M is proved by
H. L. Royden (d. [5J). A complex manifold is FM""hyperbolic if each point
in M has a neighborhood U and admits a positive number mu depending
only on U satisfying:

FM(z, v) ?:mullvll,

for all zE U and vE Tz(M). M is said to be hyperbolic if it is KM-hyper-
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holic.
Given a pair of points (z, w) in M, we choose points z=zo, %h "', %k=W

of M, points at. a2, ... , ak; bI> •••, bi of D and holomorphic mappings ft, "',h
of D into M such that fi(ai) =Zi-l and fi(bi) =Zi' The Kobayashi pseudomet¥ic
is defined by

'where the infimum is taken over all possible choices of points and functions
as above and where PD is the poincare metric on the unit disc. The follow­
ing theorems show the relationships between the above terminologies.

THEOREM 1.1. (H. L. Royden). dM is the integrated form of K M.

THEOREM 1. 2. (H. L. Royden, T. J. Barth). For a complex manifold M,.
the following are equivalent:

(1) M is hyperbolic.
(2) dM is a proper distance.
(3) dM induces the standard topology on M.

2. Lemmas

We shall denote by D(O, r) the open disc about ongm with radius r in
the complex plane. The following two lemmas generalize the lemmas given
by M. H. Kwack [4J.

LEMMA 2.1. Let {h} be a sequence of holomorphic mappings from D=
D(O, 1) into a hyperbolic manifold M which cmroerges uniformly to an f on each
compact subset of D. Further assume that fI(O) E W for all indices k and for
a fixed open and relatively compact suhset W contained in a coordinate neigh­
borhood U in M. Then dik(O) cmroerges to af(O).

Proof. By Theorem 1. 2., there exist positive numbers ro, rl and r2 such
that

(1) 0<rO<rO+rl<r2, and
. (2) (pEM: aM(W,p)<r2} cU.

Let to with O<to<1 satisfy that

f(D(O,to»c {pEM; du(W,p)<ro}.

Choose a positve integer K such that for any k>K and for ail xED(O, to),

dM(W,h(x» ~dM(W,f(x»+du(fj(x),j(x»~rO+rl<r2,

and hence" h(D(O, to» c U. So the result follows from the Weierstrass'
theorem.
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LEMMA 2.2. Let {h} be a sequence oj holomorphic mappings of D into a
hyperbolic manifold M such that h(O) E W for all k=l, 2, ... and for a fixed
relatively compact open subset W of a relatively compact coordinate neighborhood
U in M.

Then, there is a positive real number t<l such that on D(O, t) a subsequence
of {h} converges uniformly to a holomorphic mapping f:D(O, t)-M.

Proof. Note that M is locally compact Hausdorff space. Let qJ= (WI> •••,
wn) be a coordinate function on U. Since wn Uc=rp (empty set), where
Uc=M- U, choose a positive number t' such that Q= {pEM: dM(W, P)
<t'} becomes a relatively compact subset of U by virtue of Theorem 1. 2.

Since all the h are distance decreasing with respect to dM , we have

h( {pED : PD(O,P) <t'} ) cQ.
Note that cp(Q) is a bounded subset of en. Thus by the Montel's theorem,
we can choose t ~ t' such that a subsequence of {h} converging uniformly
on D(O, t) to a holomorphic mapping f:D(O, t)-M.

3. Main theorem

THEOREM 3. 1. A complex manifold M is hyperbolic if and only if it has
the Schottky-Landau propety, i. e., given a point zoEM and a constant a>O,
there is a neighborhood W of Zo in M satisfying the following Property: for
any holomorphic mapping.j:D(O,r) - M withf(O) E W a;W IIdf(O)l/za, there
is a constant R=R(a, W»O depending only on a and W such that r~R.

Proof. Assume that M is hyperbolic. Let zoEM, a>O be given. Choose
a relatively compact coordinate neighborhood U about =0 and a relatively
compact open subset W of U containing z00 Then we claim that this W
does the job. Suppose that M doesnot have a Schottky-Landau property,
then there is a sequence {rj} of positive real numbers tending to infinity
and a sequence of holomorphic mappings h:D(O, rj)~Mwithh(O) E Wand
IIdh(O) I\za. Let hj(z) h(rjz), then hj:D - M satisfies the properties:
hk(O) E W, hkEH(D, M) and Udhj(O)lIzark. Therefore, by Lemma 2.1. ~

{hk} cannot have any subsequence converging uniformly on a neighborhood
of O. But this contradicts Lemma 2. 2. '

Conversely, assume that M has the Schottky-Landau property. Let ZoEM
be given and let a=1. Then a neighborhood W of zo in M which forms
the Schottky-Landau property. We claim first that, given (z, v) E T(M),
for every fEH(D, M) with f(O) =zE Wand df(O)7j=v, for some 7jEC,

(*) Ildf(O) II ~ow,
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for some Ow depending only on M and W. Assume the contrary, then for
an arbitrarily given B>O, there is a holomorphic mapping f:D ----4M such
that f(O) =zE W, df(O)1J=v and I\df(O) II>B. Define h:D(O, B)----4M by
h(z) fez/B). Then h is holomorphic and I\dh(O)II=(l!B)l\df(O)I\>I.
Since B can be arbitrarily large, this contradicts the Schottky-Landau prop­
erty. Therefore there is a constant Ow satisfying (*).

Hence, given (z, v) E T(M), zE W, for any 1JEC such that there IS an
fEH(D, M) satisfying that f(O) =z and df(O)1J=v, we have

iJwl1J1 ~ IIdf(O) 1I11J1 ~ IIvll
or

111\ ~mwllvll, .

where mw=l!ow. This completes the proof.

4. Application to compact cases

Using the device of Theorem 3. 1., we will give an elementary proof of
the following

THEOREM 4.1. (R. Brody). Let M be a compact complex manifold. Then
~he following are equivalent:

(1) M is hyperbolic.
(2} sup {IId/(O) II : fEH(D, M)} <00.

(3) M admits .1MJ co1ltplex line, i. e., there is no 1W1Jconstant holomorphic
mapping 'from the complex plane into M. '

Proof. (1)::>(2). By Theorem 3.1., for any zoEM, there is a neighbor­
hood W ofzo in M such that, for any fEH(D(O, r), M) with f(O) E W
and IIdf(O)II~l~ there is a constant R=R(W, 1), depending only on W,
such that r5',R. It follows that every fEH(D, M) with f(O) E W satisfies
IIdf(O) I15',R. Since M is compact, (2) holds.

(2)::> (1). Suppose that 1M is .not hyperbolic. Then by Theorem 3. 1. ,
there is a point Zo E M such that there is a sequence of holomorphic mappings
!Te:D(O, rk)----4M satisfying h(O) E W for any coordinate nighborhood W of
zo and IIdh(O)II~I, where Irk} is a sequence of positive real numbers tend­
ing to infiility. Let gk(Z) h(~kZ), then gkEH(D,M) and IIdgk(O)II~rk so
that sup Illdf(O) \I : fEH(D, M)} = 00.

(1)::> (3). Obvious. .
(3)::> (1). Suppose that M is not hyperbolic. Then as above, there exists

a sequence of holomorphic mappings h:D(O, rk)----4M such that!k(O) E Wand
\Idh(O) II ~ 1 for a fixed relatively compact open subset W of a relatively
compact coordinate neighborhood in M, and such that rk tends to infinity



Schottky-Landau property and hyperbolicity of complex manifolds 129

as k becomes larger. Note that H(D(O, rk), M) forms a normal family, SInce
M is compact. Assume {rk} is an increasing sequence with rl~l.

Let {Ihi} be a subsequence of {iel converging uniformly on all compact
subsets of D(O, rl). For each n=2, 3, 4, .. ', we choose recursively a sub­
sequence {fn,k} of {fn-hk} converging uniformly on all compact subsets of
D(O, r n).

Now choose the diagonal sequence {!k,k} and let I be the limit function
of the sequence of holomorphic mappings 1M restricted on the unit open disc.
We claim that this I can be extended to a holomorphic mapping F:C-4M,
which will complete the proof.

Let f3 be an arbitrary point in C. Then there is a natural number p
such that 1f31 <rp • Let Fp be the limit function of the sequcence

Ip,p IDW,rp), IP+hp+ll DIO,rp)' ••••

Of course, Fp is holomorphic on D(O, rp), especially at f3, and Fpl D I.
Thus by the Monodromy theorem we get the result.
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