Regular Ideals in an algebra $C_c^{\infty}(\Omega)$

By Jae Myung Park.

Seoul National University, Seoul, Korea

1. Introduction.

Let Ω be non-empty open subset of R".

Let $C_c^{\infty}(\Omega)$ be the set of all infinitely smooth complex-valued centiouous functions on Ω with compact support. Then $C_c^{\infty}(\Omega)$ forms a ring under the addition and multiplication defined by the formulas

$$(f+g)(x)=f(x)+g(x)$$
, and $(fg)(x)=f(x)g(x)$.

Furthermore, if the scalar multiplication is defined by the relation $(\alpha f)(x) = \alpha f(x)$ for any scalar α , then it is easy to see that $C_c^{\infty}(\Omega)$ becomes a commutative algebra. The present note is a study of the regular ideals in the algebra $C_c^{\infty}(\Omega)$.

2. Regular ideals in an algebra $C_c^{\infty}(\Omega)$.

Definition. Let A be an algebra. An element $x \in A$ is said to have a left (right) quasi-inverse if there exists some $y \in A$ such that $y \circ x = y + x - yx = 0$ ($x \circ y = x + y - xy = 0$), and x is side to have a quasi-inverse if there exists some $y \in A$ such that $y \circ x = x \circ y = 0$. If $x \in A$ has a quasi-inverse, then x is said to be quasi-regular, or quasi-invertible, and x is said to be quasi-singular if it is not quasi-regular.

Theorem.1. If f is a $C_c^{\infty}(\Omega)$ -function such that $\inf_{\omega \in \Omega} |1-f(\omega)| > 0$, then

$$\{-h+hf|h\in C_{\mathcal{C}}^{\infty}(\Omega)\}=C_{\mathcal{C}}^{\infty}(\Omega).$$

Proof. The function g defined by $g(\omega) = \frac{f(\omega)}{f(\omega) - 1}$ is a $C_c^{\infty}(\Omega)$ -function and hence belongs to $C_c^{\infty}(\Omega)$. Obviously $f \circ g = 0$, so that f is quasi-regular in $C_c^{\infty}(\Omega)$.

And $f = -g + gf \in \{-h + hf | h \in C_c^{\infty}(\Omega)\}$. Clearly $\{-h + hf | h \in C_c^{\infty}(\Omega)\}$ is an ideal in $C_c^{\infty}(\Omega)$, and so for any $u \in C_c^{\infty}(\Omega)$ we have

$$u=(u-uf)+nf\in\{-h+hf|h\in C_c^\infty(\Omega)\},$$

that is, $\{-h+hf|h\in C_c^\infty(\Omega)\}=C_c^\infty(\Omega)$.

Lemma. Let p be a point of Ω , and let $Mp = \{f \in C_c^{\infty}(\Omega) | f(p) = 0\}$.

Then Mp is a maximal ideal of $C_c^{\infty}(\Omega)$.

Proof. It is obvious that Mp is an ideal. In fact. if $f \in Mp$ and $g \in Mp$, i.e. f(p) = 0,

g(p)=0, then $(\alpha f+\beta g)(p)=\alpha f(p)+\beta g(p)=0$ where α and β are scalars, and (hf)(p)=h(p)f(p)=0 for any function $h\in C_{\mathbb{C}}^{\infty}(\Omega)$. To show that Mp is maximal, let $g\in Mp$. For any function $f\in C_{\mathbb{C}}^{\infty}(\Omega)$, we shall prove that $f=gf_1+f_2u$ for some $u\in Mp$ and $f_i\in C_{\mathbb{C}}^{\infty}(\Omega)$ (i=1,2). Let the support of g be K. then K, the interior of K, is not empty since $p\in K$. Let us choose two compact sets K_1 and K_2 such that $g\neq 0$ on K_2 , $p\in K_1\subset K_2$ and $K_2\subset K$. We can find $u_1\in C_{\mathbb{C}}^{\infty}(\Omega)$ such that $u_1\equiv 1$ on K_1 and supp $u_1\subset K_2$. Let g^* be defined by $g^*=g^{-1}$ on K_2 and $g^*=0$ on $\Omega-K$ Then $g^*u_1\in C_{\mathbb{C}}^{\infty}(K_2)$ and $gg^*u_1\equiv u_1$. Let $u_2\in C_{\mathbb{C}}^{\infty}(\Omega)$ such that $u_2\equiv 1$ on $CK_2\cap \text{supp } f$, supp $u_2\subset CK_1$ and $u_1+u_2=1$ on supp f. Then $f=fgg^*u_1+fu_2$, which completes our proof.

Definition. Let A be an algebra. A left (right, two-sided) ideal I in A is said to be regular if there exists some $u \in A$ such that $xu - x \in I(ux - x \in I, xu - x \in I)$, and $ux - x \in I$, $x \in A$.

Theorem 2. Let p be a point of Ω . Then the maximal ideal Mp in $C_c^{\infty}(\Omega)$ is regular. **Proof.** Since there exists $g \in C_c^{\infty}(\Omega)$ such that g(p)=1,

$$(fg-f)(p)=f(p)g(p)-f(p)=f(p)-f(p)=0$$
 for $f \in C_c^{\infty}(\Omega)$.
That is, $fg-f \in Mp$.

Theorem 3. Let Mp be a maximal regular ideal in the algebra $C_{\mathbb{C}}^{\infty}(\Omega)$. If $f \in C_{\mathbb{C}}^{\infty}(\Omega)$ and $\inf_{\omega \in \Omega} |1 - f(\omega)| > 0$, then there exists some $g \in C_{\mathbb{C}}^{\infty}(\Omega)$ such that $f \circ g \in Mp$.

Proof. Let $g = \frac{f}{f-1}$. Then $g \in C_c^{\infty}(\Omega)$ and f has a quasi-inverse g. That is, $f \circ g = f+g$ -fg=0. This gives that $f \circ g \in Mp$.

References.

- (1) Ronald Iarsen: Banach Algebras an introduction. 1973.
- (2) François Treves: Topogical vector space, Distributions and kernels. 1967.
- (3) Leonard Gillman and Meyer Jerison: Rings of continuous functuons, princeton, N. J. 1960.
- (4) Charkes E. Richart: Banach Algebras, princeton, 1960.
- (5) Serge Lang: Algebra, 1975.