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Regular Ideals in an algebra Cz(Q)

By Jae Myung Park.

Seoul National University, Seoul, Korea

1. Introduction.
Let Q be non-empty open subset of R".
Let C2 (Q) be the set of all infinitely smooth complex-valued centiouous functions on Q
with compact support. Then C2(Q) forms a ring under the addition and multiplication
defined by the formulas

(F+8) () =f(x)+g(x), and (Y =f(x)g(x).
Furthermore, if the scalar multiplication is defined by the relation (af)(x)=af(x) for
any scalar «, then it is easy to see that C2(Q) becomes a commutative algebra. The
present note is a study of the regular ideals in the algebra Cz(Q).

2. Regular ideals in an algebra C3(Q).

Definition. Let A be an algebra. An element x€ A is said to have a left (right) quasi-
inverse if there exists some ye A such that yex=y+xr—yxr=0 (xey=x+y—2xy=0), and x is
side to have a quasi-inverse if there exists some ye A such that yex=xcy=(. If x& A has
a quasi-inverse, then x is said to be quasi-reqular, or quasi-invertible, and x is said to be
quasi-singular if it is not quasi-regular.

Theorem,l1. If fis a Cz(Q)-function such that irégl—f(w)l >0, then

{=h+hflheCe() =Ce(.

Proof. The function g defined by g(w) =—7({%’—ZT is a C&(Q)-function and hence belongs

to Cz(Q). Obviously fog=0, so that f is quasi-regular in Cz(Q).
And f=—g+gfe {—h+hflheCe(Q)}. Clearly {—A+hflheCe(Q)) is an ideal in C2(Q),
and so for any #=C2(Q) we have
u=w—uf)+nfe{—h+hflheCc(Q)},
that is, {—A+AaflheC(Q)}=Ce(Q).
Lemma. Let p be a point ofQ), and let Mp=(feC(Q)|f(p)=0}.
Then Mp is a maximal ideal of C2(Q).
Proof. It is obvious that Mp is an ideal. In fact. if feMp and geMp, i.e.f(p)=06,



g(p)=0, then (af+pg)(p)=af(p)+pg(p)=0 where a and § are scalars, and (hf)(p)=
R(P)f(p)=0 for any function h€Cz(Q). To show that Mp is maximal, let g&Mp. For
any function f€C2(Q), we shall prove that f=gf-+f,u for some ueMp and f,eC:(Q)
(i=1,2). Let the support of g be K. then I;', the interior of K, is not empty since pel%.
Let us choose two compact sets X; and K such that g#0 on Iéz, peK,cK, and chIo{.
We can find #,€CZ(Q) such that #,=1 on K, and supp »,CK,. Let g* be defined by g*
=g ' on K, and g¥=0 on Q—K Then g*u,=C2(K.) and gg*w,=u,. Let u,eC(Q) such
that u,=1 on CK.Nsuppf, supp #,cCK, and u,+u,=1 on suppf. Then f=fgg*u,+fu.,
which completes our proof.

Definition. Let A be an algebra. A left (right, two-sided) ideal I in A is said to be
regular if there exists some u€ A such that szu—rel(ux—x<l, xu—xel ;and ux—=xel),
x in A.

Theorem 2. Let p be a point of . Then the maximal ideal Mp in C&(Q) is regular.

Proof. Since there exists g€C2(Q) such that g(p)=1,

(Jg=NDB)=fP)g(p)—Ap)=F(p)—f(p)=0 for feCZ(Q).

That is, fg—feMp.

Theorem 3. Let Mp be a maximal regular ideal in the algebra C2(Q). If feC(Q)

and ﬁ’(z ]1—f(w)] >0, then there exists some g&C2(Q) such that foge Mp.

Proof. Let g=—§_—1—. Then geC2(Q) and f has a quasi-inverse g. That is, fog=f+g
—fg=0. This gives that foge Mp.
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