Locally s-closed Spaces

By Hwang Yll.

Kon Kuk University, Seoul, Korea.

§1. Introduction

The object of this paper is to introduce a locally s-closed space. We give several characterizations of such spaces, some of which make use of filters, and a type of convergence we define as s-convergence. We Obtain the following results:

- (1) Each locally s-closed, first countable, regular compact space is finite.
- (2) Each extremally disconnected locally compact space is locally s-closed.

§2 Definitions and theorems.

Definition 2-1. A Hausdorff space X is H-closed if and only if for every open cover $\{U_a|a\in A\}$ there exists a finite subfamily $\{U_{a_i}|i=1,2,\cdots,n\}$ such that the union of their closures cover X.

Definition 2-2. A set A in a topological space X is semiopen if and only if there exists an open set V such that $V \subset A \subset \overline{V}$, where \overline{V} is the closure of V.

Definition 2-3. A filterbase $\mathcal{F} = \{A_a\}$ s-converges to a point $x_0 \in X$ if for each semiopen set V containing x_0 there exists an $A_a \in \mathcal{F}$ such that $A_a \subset \overline{V}$.

Definition 2-4. A filterbase $\mathcal{F} = \{A_a\}$ s-accumulates to a point $x_0 \in X$ if for each semiopen set V containing x_0 and $A_a \in \mathcal{F}$, $A_a \cap \overline{V} \neq \phi$.

The corresponding definitions using nets are apparent and will not be stated. An easy consequence of these definitions is

Theorem 2-1. Let \mathcal{F} be a maximal filterbase in X. Then \mathcal{F} s-accumulates to a point $x_0 \in X$ if and only if \mathcal{F} s-converges to x_0 . [4. Theorem 1]

Definition 2-5. A topological space X is s-closed if and only if for every semiopen cover $\{U_a|a\in\Gamma\}$ of X there exists a finite subfamily $\{U_{a_i}|i=1,2,\cdots,n\}$ such that the union of their closures cover X.

It is apparent from the definition above that a Hausdorff s-closed space is H-closed.

Definition 2-6. A space X is locally s-closed if for each point $x \in X$ and each open cover $\{U_a | a \in I\}$ of a nighborhood N(x) of x, there exists a finite subcollection $\{U_a | i=1, 2, \dots, n\}$

such that $N(x) \subset \bigcup_{i=1}^{n} \overline{U}_{a_i}$.

Lemma. If a subset B of X is semiopen then it is semiclosed.

(Proof) Since B is semiopen, there is a open set V such that $V \subset B \subset \overline{V}$.

Since $CV = CV \supset CB \supset C\overline{V} = (CV)^{\circ} = CV$, i.e. $CV \supset CB \supset CV$, CB is semiopen.

Thus B is semiclosed. Q. E. D.

Theorem 2-2. Let X be a topological space and N(x) be a neighborhood of x in X. Then (a) If \mathcal{F} is a filterbase in N(x) such that \mathcal{F} s-converges to $y \in N(x)$, than \mathcal{F} s-accumulates to y.

- (b) Let \mathcal{F}_1 and \mathcal{F}_2 be two filters in N(x) and suppose \mathcal{F}_2 is stronger than \mathcal{F}_1 . If \mathcal{F}_2 s-accumulates to $y \in N(x)$, then \mathcal{F}_1 s-accumulates to y.
- (c) Let $\mathfrak M$ be a maximal filterbase in N(x). Then $\mathfrak M$ s-accumulates to $y \in N(x)$ if and only if $\mathfrak M$ s-converges to y.

The proof of the above theorem is trivial.

Theorem 2-3. For a topological space the fellowing are equivalent:

- (a) X is locally s-closed.
- (b) For each point x in X and each collection of nonempty semiclosed sets $\{F_a | a \in I\}$ such that $(\bigcap_a F_a) \cap N(x) = \phi$ for a neighborhood N(x) of x, there is a finite subcollection

$$\{F_{a_i}|i=1,2,\cdots,n\}$$
 such that $(\bigcap_{i=1}^n (F_{a_i})^\circ) \cap N(x) = \phi$.

- (c) For each point x in X and each collection of nonempty semiclosed sets $\{F_a | a \in I\}$, if each finite subcollection $\{F_{a_i} | i=1,2,\cdots,n\}$ has the property that $(\bigcap_{i=1}^n (F_{a_i})^\circ) \cap N(x) \neq \phi$ for each neighborhood N(x) of x, then $(\bigcap_a F_a) \cap N(x) \neq \phi$.
- (d) For each point $x \in X$ and each filterbase $\mathcal{F} = \{N_a | a \in I\}$ in a neighborhood N(x) of x, there exists a $y \in N(x)$ such that \mathcal{F} s-accumulates to $y \in N(x)$.
- (e) For each point $x \in X$ and maximal filterbase $\mathfrak{M} = \{N_a | a \in I\}$ in a neighborhood N(x) of x there exists a $y \in N(x)$ such that \mathfrak{M} s-converges to $y \in N(x)$.

(Proof) (a) \Rightarrow (e): Suppose that for each point $x \in X$ and maximal filterbase $\mathfrak{M} = \{N_a \mid a \in I\}$ in a neighborhood N(x) of x, \mathfrak{M} does not s-converge to any point in N(x): therefoer, by Theorem 2-2, \mathfrak{M} does not s-accumulate any point in N(x).

This implies that for every $y \in N(x)$, there exists a semiopen set V(y) containing y and $N_{a(x)} \in \mathfrak{M}$ such that $N_{a(x)} \cap \overline{V(y)} = \phi$. Obviously $\{V(y) | y \in N(x)\}$ is a semiopen cover of N(x) and by hypothesis there exists a subfamily $\{V(y_i) | i=1, 2, n\}$ such that

 $\bigcup_{i=1}^{n} \overline{V(y_i)} \supset N(x).$ Since \mathfrak{M} is a filterbase in N(x), there exists an $N_0 \in \mathfrak{M}$ such that $N_0 \subset \bigcap_{i=1}^{n} N_{a(x_i)}$. Hence $N_0 \cap \overline{V(y_i)} = \phi$, contradicting the essential fact that $N_0 \neq \phi$.

(e) \Rightarrow (d): Since every filterbase in N(x) contained in a maximal filterbase in N(x) and since the maximal filterbase s-accumulates to some point in N(x), the given filterbase

s-accumulates to the point by Theorem 2-2. (b).

(d) \Rightarrow (b): Suppose that for each point $x \in X$ and each collection of nonempty semiclosed sets $\{F_a: a \in I\}$ such that $(\bigcap_a F_a) \cap N(x) = \phi$ for a neighborhood N(x) of x, and suppose that for every finite subfamily $\{F_{v_i} | i=1, 2, \cdots, n\}$, $N(x) \cap (\bigcap_{i=1}^n (F_{a_i})^\circ) \neq \phi$.

Then $\mathcal{F} = \{N(x) \cap (\bigcap_{i=1}^n (F_{a_i})^\circ) \mid n \in \mathbb{Z}^+, F_{a_i} \in \{F_a \mid a \in I\}\}$ forms a filterbase in N(x). By hypothesis, \mathcal{F} s-accumulates to some point $y_0 \in N(x)$. This implies that for every semiopen set $V(y_0)$ containing y_0 , $(N(x) \cap (F_a)^\circ) \cap \overline{V(y_0)} \neq \phi$ for every $a \in I$. Since $y_0 \notin \cap F_a$, there exists an $a_0 \in I$ such that $y_0 \notin F_{a_0}$. Hence y_0 is contained in the semiopen set $X - F_{a_0}$. Thus $(N(x) \cap (F_{a_0})^\circ) \cap (\overline{X - F_{a_0}}) = (N(x) \cap (F_{a_0})^\circ) \cap (X - (F_{a_0})^\circ) = \phi$ contradicting the fact that \mathcal{F} s-converges to y_0 .

(b)⇔(c): is the contraposition.

(b) \Rightarrow (a): Let $\{V_a | a \in I\}$ be a semiopen covering of a neighborhood N(x) of x in X. Then $N(x) \cap (\bigcap_{x \in I} (X - V_a)) = \phi$. By hypothesis, there exists a finite subfamily

$$\{V_{a_i}|i=1,2,\dots,n\}$$
 such that $N(x)\cap\bigcap_{i=1}^n(X-V_{a_i})^\circ)=N(x)\cap\bigcap_{i=1}^n(X-\overline{V}_{a_i})=\phi.$

Therefore $N(x) \subset \bigcup_{i=1}^{n} \overline{V}_{a_i}$ and consequently X is locally s-closed. Q. E. D.

Lemma 2-4. Each s-closed first countable, regular space is finite. [4, Theorem 3]

Theorem 2-5. Each locally s-closed, first countable, regular compact space X is finite. (Proof) Since X is locally s-closed, each point x in X has an open neighborhood N(x) which is s-closed, first countable, regular.

On the while, since X is compact, the cover $\{N(x): x \in X\}$ of X has a finite subfamily $\{N(x_i) | i=1,2,\cdots,n\}$ such that $X=\bigcup_{i=1}^n N(x_i)$. Since by the lemma 2-4, each $N(x_i)$ is finite, so is X. Q. E. D.

Corollary. Each locally s-closed, compact metrizable space is finite. Since every compact, regular space is metrizable, we have from the corollary of theorem 2-5. the following.

Corollary. Each finite, locally s-closed, regular compact space is uncountable.

Definition 2-7. X is called extremally disconnected if the closure of an open set is an open set.

Theorem 2-6. Each extremally disconnected, locally compact space is locally s-closed. (Proof) If X is extremally disconnected, then the closure of an open set is an open set. The interior of a semiopen set is dense in it. We consider $\{\overline{U_t^{\circ}}|t\in T\}$ in stead of given semiopen cover of N(x). Q. E. D.

References

- 1. Chung, In Jae, Locally nearly-compact Spaces, UIT Report, 1976.
- 2. Louis M. Friedler, Resolutions of H-closed Spaces, Proceedings of A.M.S. Vol. 71, No. 2. P, P, 309~312, 1978.
- 3. Robert A, Herrmann, RC-Convergence, Proceedings of A.M.S. Vol. 75, No. 2. P.P. 311~316. 1979.
- 4. Travis Thompson, s-closed Spaces, Proceedings of A.M.S. Vol. 60. P.P. 335~338, 1976.