On the Maximal Ideal In $\operatorname{Hom}_{\wedge}(M, M)$

Doo Ho Kim

Kang Won National University, Choon Chun, Korea.

1. Introduction.

The present note is concerned with the maximal ideal of $\operatorname{Hom}_{\bigwedge}(M,M)$, where M is an indecomposable left Λ -module with finite length. Let Λ be a ring with unit element, and let M be a left Λ -module. If it is impossible to write $M=M_1\oplus M_2$, where M_1,M_2 are nonzero left Λ -submodules of the left Λ -module M. Then M is called indecomposable.

A finite strictly descending chain of left Λ -submodules of the left Λ -module M

$$M=M_0\supset M_1\supset M_2\supset\cdots\supset M_r=0$$

is a Jordan-Hölder series in which each M_i is a maximal left Λ -submodule of M_{i-1} $i=1,2,3,\cdots r$.

And then r is called the finite length of M.

The other terminologies and notations are based on Sze-Tsen Hu [2].

Definition 1. A left Λ -module M is called *left Noetherian* iff every nonempty collection of left Λ -submodules of M has a maximal element.

Definition 2. A left Λ -module M is called *left Artinian* iff every nonempty collection of left Λ -submodules of M has a minimal element.

2. Proof of Theorems.

Lemma 1. Let M be a left Λ -module and N a left Λ -submodule of M. Then M is left Artinian if and only if N and M/N are left Artinian.

Proof. (Necessity) Any left Λ -submodule of N is a left Λ -submodule of M, so N is left Artinian.

Let $f: M \longrightarrow M/N$ be the canonical projection.

Let $M_1' \supseteq M_2' \supseteq \cdots$ be a descending sequence of left Λ -submodules of M/N.

Then we get a descending sequence of $M_1 \supseteq M_2 \supseteq \cdots$ of left Λ -submodules of M by letting $M_i = f^{-1}(Mi')$.

Hence there exists an integer k such that $M_i = M_k$ for $i \ge k$.

Therefore $M_i' = M_k'$ for all $i \ge k$ and so M/N is Noetherian. (Sufficiency).

Suppose N and M/N are left Artinian.

Let $M_1 \supseteq M_2 \supseteq \cdots$ be a descending sequence of left Λ -submodules of M, and for all i let

 $M_i'=f(M_i).$

Since $M_1 \cap N \supseteq M_2 \cap N \supseteq \cdots$ and $M_1' \supseteq M_2' \supseteq \cdots$ are descending sequences of Λ -modules, by hypotheses there exists an integer i_0 such that $M_i \cap N = M_i \cap N$, $M_i' = M_{i_0'}$ for all $i \ge i_0$.

Now we consider that if N_1 , $N_2(N_1 \subseteq N_2)$ are left Λ -submodules of M such that $N_1 \cap N = N_2 \cap N$ and $f(N_1) = f(N_2)$, then $N_1 = N_2$.

If $x \in N_2$, then there exists $y \in N_1$ such that $x-y \in Ker(f)=N$, thus $x-y \in N_2 \cap N=N_1 \cap N \subseteq N_1$; hence $x \in y+N_1 \subseteq N_1$. From $M_{i_0} \supseteq M_{i_0+1} \supseteq \cdots$, it follows that $M_{i_0} = M_{i_0+1} = \cdots$ hence M is an Artinian left Λ -module.

Theorem. 1. If the left Λ -module M is written as $M = M_1 + M_2 + \cdots + M_n$, where each M_i is Artinian left Λ -submodules of M, then M is Artinian.

Proof. It is enough to show the case where n=2: $M=M_1+M_2$.

Then $M/M_1 = (M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$.

Since M_2 is Artinian, $M_2/(M_1 \cap M_2)$ is Artinian; thus M/M_1 is Artinian. Since M_1 is Artinian, from Lemma 1 M is Artinian.

Lemma 2. Let M be a left Λ -module. Let $f \in Hom_{\wedge}(M, M)$ and i be any positive integer, then

- (1) If $Im(f)=Im(f\circ f)$, then Im(f)+Ker(f)=M
- (2) If $Ker(f) = Ker(f \circ f)$, then $Im(f) \cap Ker(f) = 0$
- (3) If M be left Artinian, then for every sufficiently large integer i, M=Im(f')+Ker(f')
- (4) If M is left Noetherian for all sufficiently large integer i, then $Im(f^i) \cap Ker(f^i) = 0$ Proof. (1). Let $Im(f) = Im(f \circ f)$.

For any $x \in M$, there exists $y \in M$ such that $f(x) = (f \circ f)(y)$, thus f(x-f(y)) = 0, hence $x-f(y) \in Ker(f)$ and $x = (x-f(y)) + f(y) \in Ker(f) + Im(f)$ therefore M = Im(f) + Ker(f)

(2). Let $Ker(f) = Ker(f \circ f)$, and $x \in Im(f) \cap Ker(f)$, then f(x) = 0 and there exists $y \in M$ such that x = f(y)

hence $(f \circ f)(y) = 0$.

And so $y \in Ker(f \circ f) = Ker(f)$ implies that x = f(y) = 0

(3). If M is left Artinian, for all sufficiently large integer i

$$Im(f^i) = Im(f^{2i})$$

Letting f^i instead of f in (1), we have

$$M=Im(f^i)+Ker(f^i)$$
.

(4). Let M be left Noetherian. For all sufficiently large integer i

$$Ker(f^i) = Ker(f^{2i})$$

Letting f^i instead of f in (2), $Im(f^i) \cap Ker(f^i) = 0$

Lemma 3. If M is a left Artinian A-module, then every monomorphism $f \in Hom_{\bigwedge}(M, M)$ is an epimorphism.

If M is a left Noetherian A-module, then every epimorphism $f \in Hom_{\wedge}(M, M)$ is a monomorphism.

Proof. Let f be a monomorphism and let M be Artinian.

Then there is an integer i such that Im(f')=M, since Ker(f')=Ker(f)=0. From $M\supseteq Im(f)\supseteq Im(f\circ f)\supseteq \cdots\supseteq Im(f')=M$, that is M=Im(f).

Therefore f is an epimorphism.

Let f be an epimorphism and let M be Noetherian, then there exists an integer i such that $Ker(f^i)=0$, since $Im(f^i)=Im(f)'=M$.

From
$$0 \subseteq Ker(f) \subseteq Ker(f \circ f) \subseteq \dots \subseteq Ker(f \circ f) = 0$$

That is Ker(f)=0. Hence f is a monomorphism.

Theorem 2. Let M be a non-zero indecomposable Λ -module of finite length, and let I be the set of the nonivertible elements of the ring $\operatorname{Hom}_{\bigwedge}(M,M)$, then I is the maximal two-sided ideal of $\operatorname{Hom}_{\bigwedge}(M,M)$.

Proof. M has finite length, so M is Artinian and Noetherian.

Let $f \in I$, then from Lemma 3, f is not a monomorphism and not an epimorphism.

From Lemma 2 there exists a sufficiently large integer i such that $M = Im(f^i) + Ker(f^i)$ and $Im(f^i) \cap Ker(f^i) = 0$ that is $M = Im(f^i) \oplus Ker(f^i)$. But M is indecomposable,

$$Im(f^i)=0$$
 or $Ker(f^i)=0$

If $Ker(f^i)=0$, then Ker(f)=0 and so f is monomorphism.

It is impossible, hence

$$Im(f^i)=0$$
, that is $f^i=0$.

For any $f, g \in I$, $f+g \in I$. If there exists h such that

$$h \circ (f+g) = 1_M$$
, then $h \circ f + h \circ g = 1_M$, and $h \circ f \in I$, $h \circ g \in I$.

Thus there exists a sufficiently large integer i such that

$$(h \circ f)^i = 0, (h \circ g)^i = 0.$$

Then $1_M = 1_M^{2i} = (h \circ f + h \circ g)^{2i} = 0$

(since
$$(h \circ f) \circ (h \circ g) = (1 - h \circ g) \circ (h \circ g) = h \circ g - (h \circ g)^2$$

= $(h \circ g) \circ (1 - h \circ g) = (h \circ g) \circ (h \circ f)$, and $(h \circ g)^i = (h \circ f)^i = 0$

For any $f \in I$, $g \in Hom \land (M, M)$.

 $f \circ g \in I$, $g \circ f \in I$. (otherwise $h \circ (g \circ f) = 1$, $(h \circ g) \circ f = 1$, hence f is an epimorphism, impossible)

Thus I is the two-sided ideal. If J is the ideal contining I properly, then J has an invertible element of $Hom_{\wedge}(M, M)$, and so $J = Hom_{\wedge}(M, M)$, Therefore I is maximal.

References

- 1. Auslender and Buchshaum; *Groups, Rings, Modules*, Harper and Row, New York 1974, pp. 320-350
- 2. Sze-Tsen Hu; *Introduction to Homological Algebra*; Holden-Day, San Francisco 1968, pp. 153-163.
- 3. D. G. Northcoct; An Introduction to Homological Algebra: Cambridge 1966, pp. 144-154
- 4. Birkoff and Maclane; Algebra; Macmillan, New York 1968, pp. 338-344