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Operator Spaces which are Non—F—Spaces
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1. Introduction

In this note some theorem about operator space in which the image of a set under # is
not always a closed set, are shown. The operator # on a set X is a mapping, which
assigns a set uAcX to every AcX and satisfies the following axioms: ug=¢, u(X)=X,
Acud, u(AUB)=wA)UwB). The condition u(uA)=uA called axiom F, is not
required in general thus we distinguish among F-spaces (i.e., spaces satisfying F-axiom)
and non-F-spaces.

In non-F-spaces neighborhood of point x€ X and interior of sets are defined as follows:
a set U is a neighborhood of a point xe X if x&u(X—-U);

int A={x€A: A is a nbd of x)

We can induce a topology from the given operator space and show that initial and final
operators in the some of Bourbaki of operators in case of monosources and episinks

respectively exist.

2. Definitions and theorems.

We denote by ¢/[K] the closure of a subset K of a topological space and by int(K)
the interior of a subset K

Definition 2.1 A point is in the §-closure of a subset K of a space-if each open subset
V of the space with

xe V satisfies KNcl( V=g
In this case we write xe8-c/{K]

Lemma 2.1 If X is a regular space, then every subset A of X,

cl(A)=0—~cl(A)

Proof. It is obvious that ¢/ (A)c—cl(A).

To prove the converse, let xe8—c! A.

Then for every open subset V with x€V, c(V)nAxg, Since X is regular, for every
open set W with xe W, there is an open set ¥V with x€V such that c/(V)c W, Hence
AnW=xg¢, Thus xecl(A)

Lemma 2.2. For every open set U of a space X,



A—cl[U)=cl(U).

Proof. Let x&c/(U), There is an open subset V with x€V such that VnU=¢ Thus
Ve U¢, Since UF€ is closed, c/(V)YcUS. ie., cddVnU=¢ Thus x&f—cl(U).

Next two theorems show the examples of operators space.

Theorem 2.3. Let A, B be subsets of a {opological space X.

(D 6—cllgl=¢, 8—cl(X]I=X

(2) Acl—ci(A)

(3) 6—cl{AUB)=0—cl(A)}UO—cl(B)

(&) In general, 0—cl(0—~cl[A))x0—cl[A)

Proof. (1) and (2) are obvious by the definition. It is sufficient to show (3).

Since §—cl{A1c@—cl[AUB), 8—cl(Blco—cl[AUB),
0—cl(AJUG—cl(Blcb—ciAUB).

Let x=6—cl{AUB). Then for every open set U with xeU, cd(UIn(AUB)*¢.

Thus ci{UJNAx¢ or cllUINBx¢. i.e., x€8—cl[A] or x€6—cl(B]

Hence —cl{AUB)cH—cl(AJUG—cl(B)

Theorem 2.4 For any convergence space (X,C), the following holds (2).

) AcA

2) é=¢

(3) AUB=AUB are hence ACB implies AcB
(4) In general, AxA

Definition 2.2. A subset A of an operator space (X,u) is said to be closed in (X, u) if
uA=A.

Lemma 2.5. For any operator space (X,u), F={AlA is closed in (X,u)} is the family
of closed set for some topology on X.

Proof. (i) uX=X, ug=¢ i.e., X,¢€YF

) If 4, BeZF, then u(AUB)=u(AUB)=u(A)Uu(B)=AUB. Thus AUBE%.
G If (A),elcF, then n4d;cu(nAdA)cnud,=nA. Thus nA,eF

Definition 2.3 Let (X, #) bz an operator space, then the topology defined by {A4}A° is
closed in (X, u)} is called the topology on X induced by the operator u

Remark We note that for a operator space (X,#) and a subset A of X, #A is not
necessarily the clousure of A with respect to the induced topology by u

Theorem 2.6. 'Let (X, u) be an operator space. Then a subset A of X is open in the
induced topology on X by u iff intA=A.

Proof. Suppose intA=A4, Let x& A=intA, i.e., x&A° Since A is a neighborhood of
x, 2&u(A?) Thus u(A)c A°. Hence u(4)=4° i.e., A is open in the induced topology
on X by u.

Conversely, suppose u(A)=A". Let x€ A. Then x& A'=u(A"). Since x&u(A°), A is
a neighborhood of x, Thus x€intA, i.e., int A=A.

Definition 2.4. Let (X,u) and (Y,#’) be the operator spaces. A map f: X—Y is
continuous if for every subset A of X, f(uA)cu’f(A).
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Theorem 2.7. For every operator space (X, u), the identity map I, : (X, u)—(X,u) is
continuwous. And if f: (X, u)——(Y, ") is continueus and g : (Y, w)——(Z, u") is continuous,
then gf : (X, u)——(Z,u") is also continuous.

Proof. The proof of the first part of the above theorem is obvious ty the definition
and that of the second part is obvious since for every subset 4 of X,

(& /HwA) cgu (F(A)) cu”(gf(A)).
Thus gf is continuous.

Remark. By the above theorem, the class of all operator space and continuous maps
form a category which will be denoted by Operator.

Theorem 2.8. Let ((X, #,))iet be a family in Operator and f, : X—X; ¢ map for each
i€l. Then there is an operator u on X such that a monosouce (f;: (X, u)— (X, 1;))icr
is initial in the sense of Bourbaki, i.e., for each i€l, f; is continuous, and for any
operator space (Y, u’"), a ‘map g (Y, ) —(X,u) is continuwous iff for each i€l, fig:
(Y, u)—(X,, 1) is continuous.

Proof. Define # as follows: For each ¢ and for every subset A of X, let fi(uA)=uf,
(A). Let’s first show that u is an operator satisfying the conditions.

(i) For each iel,

Siug) =uf () =mip=¢=F($)-

Thus ug=¢.

For each i€,
SiluX)=u;f:(X)D/£,(X)

Thus #X>X. Hence uX=X.

(ii) For each i€,

fi(A) cu, /,(A) =fi(uA).

Thus AcuA.

(iii) For each iel,

Fu(AUB)=u,f;(AUB)
=u,(f;,(A)Uf(B))
=u,f{(A) Uu fi(B)
=fi,(uA) Uf(uB)
=f((uA) U (uB)).

Thus u(AUuB)=uAUuB.

Hence # is an operator on X satisfying the condition.
Obviously for each /7, f; is continuous.

Suppose for each iel, fig: (Y, u)—(X,, ;) is continuous.

Then fig(w' A cu.fig(A) =f:(ug(A))
Since f is monosource, g’ A)cug(A)
Hence g is continuous. This completes the proof.

Definition 2.5. The operator # on X defined in the above theorem is called the initial
monosource operator with respect to (fier



Definition 2.6. For a operator space (X, ) and a subset A of X, the initial monosource
operator u, with respect to the natural embedding A——X is called the relation operator
of uon A, and (A,uA) is called a subspace of (X, u).

Definition 2.7. Let ((X,u.))ie; be a family of operator spaces indexed by a set I
Then the initial monosource operater ITu#; on I7X; with respect to projections is called
the product operator and (J7X;, ITu;) is called the product operator space of the family.
The following theorem is immediate by the above theorem.

Theorem 2.9. a map f: (X,u)—(IIX,, ITu,) is continuous. iff for each icl, P,f:
(X, u)—(X,, u,) is continuous. Hence (ITX,, ITu,) is a categorical product of ((X:u;))ie:
in Operator.

Theorem 2.10. Let((X;, u.))ier be a family of operator spaces and for each i€l, f;:
Xi—X a map. Then there is an operator u such that an episink (f;: (X, u)— (X, 4))ie1
is final in the sense of Bourbaki.

Proof. Define # as follows: For each i€/ and for every subset B of X,, let fi(u; B)=
uf:(B).

To show that # is an operator satisfying the conditions. Since (f;: X;——X)ies is an
episink for every subset C of X, there is an i€l and C’cX; such that f,(C’)=C. Thus
uC=uf(C")=f(uC")2f(C")=C, It is obvious to show that ug=¢ and uX=X. It remains
to show that #(AUB)=(wA)U B). Since (f;: X—X)ie: is an episink, for subsets
A, B of X, there is an /=] and subsets A/, B’ of X, such that f,(A’)=A and f,(B’)=B.

Thus u(AUB)=u(f:(A)Uf:(B))

=uf,(A’UB")
=f;(u,(A’UB'))=f,(u; A’ Uu,B’)
=fi(u;A) U f(u.B") =uf (A Vuf,(B")
=uAUuB.

Obviously for each i/, f; is continuous. Suppose that for an operator space (Y,#’)
and amap g: X—Y, gf;: (X, u)—(Y,w’) is continuous. Then for every subset B of
X, there is an ie] and AcX,; such that /;(A)=B. Thus gluB)=gu(f;,(A)))=gf.(u;A)C
wgf;,(A)=u’g(B). Hence g is continuous. This completes proof.

Definition 2.8. The operator # defined in the above theorem is called the final
operator on X with respect to episink (f),el
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