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On the Cauchy Probability Density Functions

Kyu-Youl Lee.
Kang Won National University, Choon Chun, Korec.

If X, X, ..., X, are independent random variables each having the Cauchy probability
density function, then (X;+X;+---+X,)/# also has the Cauchy probability density function.
Lemma 1. Let X be a continuous random variable having the probability density function
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b) By a) and inversion formula f,(x)=—21;f e o (Ddt,
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Substituing —x for x, e S_we Tl dt.

Lemma 2. Let X be a random variable having the Cauchy probability density function
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Then the characteristic function of X is given by ¢, () =e "\

Proof. By lemma 1 b), S” e”‘?(#tzs-dt:e‘“'.



Interchange the role of x and ¢.

S” e""—iﬁ—_l—}_wdx=e"”, which is the desired conclusion.

Theorem. If X\, X, ..., X, are independent random wvariables each having the Cauchy
probability density function, then(X,+X,+--+X,)/n also has the Cauchy probability density
Sunction.

Proof. By induction, we shall prove only the case n=2.
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which is resulted by lemma 2.
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By inversion formula,
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This is the Cauchy probability density function which is desired result.
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