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A Study on the Existence of Optimal Control
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1. Introduction

The existence of a time optimal control problem was first proved by A.F. Filippov [1]
in 1962 and then it was generalized to Pontryagin problem by L. Cessari. The notion of
attainable set was used by Emilio Roxin [2] to give a different proof for the existence
of an optimal control. And this idea was used by L. W. Neustadt [3] to solve the same
type of problem without convexity condition of the set Q*(f,x) for a linear control
problem.

In any rate, all the proofs of the existence theorem based upon the fact that the subset
R(¢, x)—the subset in (¢, x)-space in which all the admissible trajectories lie—is compact.
However, for a practical problem, there is no reason why the R(¢, x) is always compact.

The purpose of this paper is to find a condition under which an optimal control exists
for the problem when the set R(Z,x) is not compact.

2. Preliminaries
We shall consider the system

@2.D —Z—fl—=f‘(t, xyen 20wl e u") (=12, 0)
with x'(t)) =x,. We introduce the vectors
2=(x!, e, 27
w=u, o, ™)
:(fl, e N
in Euclidean space with the usual norm {| 2| =X (x)% Then the system (2.1) can be

written

2.2) —Zf—= At 2w ¢ 2t =7,

The fundamental problem of control theory is of the following form:
Given (i) subsets I, and I, of E**,
(ii) functions g, : 9,——E" and g, : §,—E",
(iii) a class of functions 4 such that, for each choice of ue 4, the system (2.2)
has a solution ¢(; £, %, #) defined on [#, ¢,] satisfying the condi:ions



(@) (o p(t))ED,

(b (thﬂo(tl))ng
(©) R'(t, (), u@)) >0, (i=1,2,+m)
where R : E**»"'——E' is given.
We wish to find a control ¥ 4 which minizes the functional
2.3 JCu, to, %) =G, %0) +81 (1, 1)

+{ 1t 00, u)Hat

where f°: E"*"*'—E" is a given function.

If RY, (i=1,2,+-m), are sufficiently nice, then, for a fixed (¢, x), condition (c) of (iii)
gives a subset of E™ which we denote Q(¢,x). Then condition (¢) of (iii) becomes «(¢)
eQU, @) for each t in [4,¢,]. Thus the fundamental problem can be described as
follows:

We wish to minimize the functional (2.3) subject to the restraints

(i> %‘tx_'zf(t:x’ u); x(to):xo

(D (nx) €D and (4, x)ET,
Uiy () e QU o) telt t]
where ¢ is a solufion of (i) corresponding to the choice of a control ze 4.
Throught this paper, R denotes a subset of the (¢, x) -space E**' and D=((¢, %, u) | (¢, %)
€R and usQ U, x)}.
Definition: A pair of functions (p,u) defined on an interval {4,¢,] is said to be an
admissible pair if the following conditions hold:
(1) ¢ is absolutely continuous on [, £,].
(2) u is measurable on [t t].
3) U, )R for every ¢ in [t ¢:].
4) u(t)eQU, o)) for almost all ¢ in (£, £,].
B fU o, u(O) e L[t t,].

(6) ¢ is a solution of the system
X~ f(t, 5, u(®)) with p(ts) =z,

@D o 9U))ET, and ¢, oG ET,

Definition: We say that the class z of admissible pairs is complete if the following
condition holds:

If {(gi,us)} is a sequence of admissible pairs defined on [f, ¢,] and if p,——¢ in the
Frechet sense, then there exists a measurable function » so that (p,#) is admissible.

In this case, we shall call # an admissible control and ¢ the corresponding trajectory.

Definition: Let f=(f°, £, «oeee, f)=(f", /) and define
QU ) ={(2%2)|2°=/°C, x,4) and z=F(¢, x,u) with ue QU x)}
and Q' ) ={(2% 22> f°U, %, u) and z=f(¢, x, u) with v Q, 2)}



Following theorem due to L. Cessari is well knowen.
Theorem 1. Suppose following conditions are satisfied
(1D R is compact,
(2) Q is an upper semicontinous function of R into 25, and for each (I,x) in R,
QU, x) is compact,
(3) f is continuous on D,
(4) @ (t,%) is a convex subset of E™ for every (t,x) in R, and
(5) T, and I, are closed subsets of E**' and g, and g, are continuous on I, and I,
respectively.
then the functional (2.3) attains its minimum in any non-empty complete class of admissible
bairs.

Following example shows that if R is not compact, then the optimal control may not
exist.

Example 1. For the system

L (- —14u
with O o¢o={llull<1}
(@) t=0, %<1, ¢, is fixed.

Consider the problem of maximizing ¢(f;). For this problem, f°=0 and thus Q* is
convex. Take u=1. If we let »(0)=1, then the corresponding solution is given by

_ 1
¢(t>_ (l_t)z+c
where C is a constant real number. There are infinitely many solutions. Thus if £#,>1,
then there is no optimal solution. For this problem R is not compact.

3. Main Results
In this paper, we are going to study the possibility of replacing the condition R be
compact by some other conditions.

Theorem 2. Suppose that the conditions of Theorem 1 holds except condition (1). If
(1) R is closed and contained in a slab
{4, D) Te<t< T, and -o0 < x'< 0}
(2) there exists a constant N>0 such that, for all (t,x,u) in D, <x,f><N(|lzl*+1D
where <, > denotes the inner product.
(8) all trajectories have at least one point (t,¢(t)) belonging to a compact subset P of
£,
then the conclusion of Theorem 1 still holds.
Proof: Let (p,u) be an admissible pair and define
o= llp® | *+1.
Then
de=2,illso‘(t)—%";;



= 28 ¢/ (O (t. (1), u(D)

<2N(l e I 24+ 1D =2No(®)
Thus

d¢
—ar < 2NO(E).

Suppose (#*, (1*)) belongs to P. Integrating from ¢* to ¢,
() KPUP) VML PU*) N T -Tog K
where K is a constant independent of ¢. Hence ¢ lies in a compact subset of the (¢, x)-
space.
Theorem 3. Suppose go=0 and g,=0 and that the conditions of Theorem 1 holds except
condition (1). If R is closed and, in addition to conditions (2) and (3) of Theorem 2,
(4) there exists G>0 such that
o, 2, u)=~—G for all (¢, x,u)eD
(5) there exists an N,>0 and u>0 such that 1°(¢, x,u) > p for all (¢, x,u) €D with |t| >N,
then the conclusion of Theorem 1 still holds:

Proof: Let (¢, %) be an admissible pair and suppose
J@®={ 1, GO, w (D)1=
Let a be any positive number such that
(1) a=N,
(ii) the projection of P on ¢-axis is contained in [—a, a].
Let ap=a+L where L>0 which will be given later. We shall show that with an
appropriate choice of L, if (¢, %) is an admissible pair with points (4, ¢(45)) such that
{ts] >ao, then J(p, u)>j. Thus for the minimizing problem we can ignore such trajectories
and apply the result of Theorem 2.
Now there exists a point (¢* ¢(#*)) in P which is on the trajectory. If |t;| >a, and
¢(ty) is in the trajectory, then by the conditions (4) and (5) there exists an subinterval
[¢,t"] of [—a,a] on which
e u®)>—-G

and for the remainder of the trajectory, call the corresponding interval E,
LU oD, u(D2p>0

and thus we have

Jow={ L p(®, w®)dt+ [ ot o, u)dt>—20G+4lL
Hence if we take

L=p""(2aG+|j| +1)
then

Jow=lj1+1>j

4. Remarks
Condition (4) of Theorem 1 is necessary but by no means sufficient. That is, even if
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Q* (¢, %) is not convex, optimal control may still exists.
Example 2. Consider the problem of minimizing

Jy={ (w -1t

with
&y, 0=l <D
Jo=(0,0) and /1=(1, 0).
For this problem,
fr=G—1?
S0
(Y =4(*—u)
(fD"=12u"—4
Thus f° is not convex so that Q* is not convex. But the minimum of J(x) still exists;
that is, if we take u*

1H

1 for
u¥*()=

o
N

N
AR
—_

—1 for

then J(u*) is the minimum.
In fact, for the linear control system, the convexity condition is not necessary; that
is, if the control system is such that
LU x, w)=a(®)x+0(u, t)
SU o, u)=AEx+b(u, )
where xz, b(u, t), and a(?) are n-vectors, b°(y,t) is scalar, and A(f) is an #»-» matrix,
then without the convexity condition of Q*, an optimal solution exists [31.
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