Microbiological Studies on the Rice Makkulli (Part 2) Nucleic Acid Degrading Enzymes and Their Related Substances during Rice Makkulli Koji Making

쌀막걸리의 미생물학적 연구 (제2보)쌀막걸리 제국중 핵산분해효소 및 핵산관련물질

  • 정덕화 (경상대학교 식품가공학과) ;
  • 성낙계 (경상대학교 식품가공학과)
  • Published : 1980.03.01

Abstract

Changes of nucleic acid related substances and their enzymes during rice makkulli koji making were observed and enzymological properties of crude enzymes were examined. The results obtained were as follows : (1) The amounst of acid soluble phosphorus were increased, while no remarkable changes were observed in the component of total phosphorus during koji making. (2) AMP and IMP were increased, while ADP and ATP were decreased gradually in the course of process. (3) Activities of nucleic acid degrading enzymes were increased with the lapse of time. (4) In the crude enzyme solution extracted from rice makkulli koji, the optimal pH of RNase was 4.0~5.0 and those of PDase PNase were 5.0. (5) RNase and PMase were stable at the range of pH 4.0~5.0 and PDase was stable at the pH 4.0. (6) The optimal temperature of RNase was 55$^{\circ}C$, and that of PDase was at the range of 50~55$^{\circ}C$, and 5$0^{\circ}C$ for PMase. (7) Among the three enzymes, the heat stability was in order RNase, PDase and PMase, and especially PMase was so heat labile that it was almost inactivated at 7$0^{\circ}C$ for 10 min. (8) Inhibition by metal ions and other inhibitors was disclosed : C $u^{++}$ and Z $n^{++}$ inhibited the activity of RNase, and C $u^{++}$, NaF and N $a_2$HP $O_4$ inhibited that of PDase, while C $u^{++}$ and NaF inhibited the PMase activity.ctivity.

쌀막걸리 제국중의 핵산관련물질 및 핵산분해효소의 소장을 시험하고 이들 조효소의 효소학적 성질에 대하여 실험한 결과는 다음과 같다. 1) 제국중 산하용성인은 약간 증가하였으나 총인은 그다지 변화가 없었다. 2) 제국중 AMP, IMP등은 약간 증가하였으나 ADP, ATP는 점차 감소하였다. 3) 시간의 경과에 따라 핵산분해효소의 활성은 증가하였다. 4) 국으로 부터 추출한 조효소액에서의 최적 pH는 대체로 RNase가 pH4.0~5.0, PDase와 PMase는 pH 4.0 이었다. 5) RNase와 PMase는 PH 4.0~5.0 부근에서 안정하였고 PDase는 pH4.0에서 대체로 안정하였다. 6) RNase, PDase, PMase의 최적온도는 모두 50~55$^{\circ}C$ 범위였다. 7) 세가지 효소의 열안정성은 RNase>PDase> PMase의 순이었고 특히 PMase는 열안정성이 낮아 7$0^{\circ}C$ 10분간 처리로서 거의 실활되었다. 8) C $u^{++}$, $Zn^{++}$은 RNase의 활성을 저해하였고, C $u^{++}$, NaF, $Na_2$HP $O_4$는 PDase, C $u^{++}$ NaF는 PMase의 활성을 저해하였다.

Keywords