On the Srivastava’s Theorem for the search design.

Jung-Koog Um*
ABSTRACT

In this paper, Srivastava’s Theorem for the search design is considered, with additional

assumptions, to the 3~ parallel flats fractions. It is also expressed in terms of ACPM.
1. Introduction

The basic mathematical formulation of the search design problem and
some necessary and sufficient conditions for existence of designs were
given by Srivastava (1975, 1976). In her first paper, “Designs for Searching
Non-negligible Effects”, she established the following definition and theorem
which are basic in the search designs.

Definition 1.1. Consider the following general linear model

Y=X0+ X+, (1.1

E(e)=0, V(e)=0"Iy,
where Y(Nx1) is a vector of observations, and e(N'x1) is the error vector.
The Xi;(Nxv:), i=1,2 are called design matrices, and Si(vix 1), i=1,2,
are vectors of fixed unknown parameters with i'= (8,82 B8i). Suppose
that we want to estimate the elements of @1. Also suppose it is given that
the elements of éz are all negligible, except possibly for a set of, at most,
%k elements where % is a known positive integer. The integer k would usually
be quite small compared to v,, We want Y (and hence X; and X,) to be

such that we can estimate all elements of §; and furthermore, search the
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non-negligible elements of B; and estimate them. Let 7T be the design
corresponding to the observations Y. Then the design T is said to be a
search design of resolving power k.
Theorem 1.1. Consider the model (1.1), together with e=0, Then T is a
search design of resolving power £k if, and only if, for every submatrix
Xor(Nx2E) of X, we have Rank (Xi: X)) =v,+2 k.

In this paper, we consider a slight modification of the search problem for
the 3» factorial. Suppose that ¢?2=0. Let £1 contain the general mean u and
the main effects in 3» factorial so that v;=14+2#x. Let 82 denote the two-

n
2

(g) possible two-factor interactions are present. The three-factor and higher-

factor interactions so that u2:< >><4. We assume that, at most, 2 of the

order interactions are not present. In this situation, the design is said to

be a search design of resolution IILk.

2. Some Basic Theorems

The parallel-flats fraction design T can be expressed as solutions to the

symbolic matrix equation.

At=C where C=(c; ¢,...cs).
The parallel-flats fraction construction introduces the alias set structure on
the columns of the X-matrix. This structure simplifies certain aspects of
Theorem 1. 1.

By virtue of the alias structure X can be expressed as X=(X,: X,
X.z i+ X.) where # is a number of alias sets and we can consider alias
sets separately since columns in different sets are orthogonal.

It will be assumed that at most % of the (;1) possible two-factor inter-
actions will be present. Since each two-factor interaction represents four
degrees of freedom, each selection of % interactions corresponds to 4%
columns of X. Similarly, each possible combination of 2% columns in

Theorem 1.1 corresponds to 2% interactions here and thus sets of 8%
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columns. For example, if k=2 then for every set of four two-factor

m

interactions we must consider 16 colmns and check ( 4

n
(2)

Also the matrix- (X ! X,:) in Theorem 1.1 can be partitioned by alias
sets here as [X. o1 Xigpor) ! (X111 Xopy00) P oo 8 (Xwg 8 X uy20)] where X ;1

corresponds to columns for linear and quadratic effects of main effects in

)cases where m=

the jth alias set and X ; . corresponds to columns for linear and quadratic
effects of those interactions that occur in the jth alias set. This can be
expressed as [(Pin: Pi22) i (Pom i Pyor) i -+ P (Pum i Pu,2:)] in terms of
ACPM where Pj» corresponds to columns for main effects and Pj,
corresponds to columns for effects of those interactions that occur in the
jth ACPM. Note that rank (X, j; } X, j,22) =2rank(Pjn : Pioe), 7=1,2,...,u.
Therefore, (X. 51! X. ;1) is full rank if, and only if, (Pjn : Pjs) is full
rank where j=1,2,..., #. (For ACPM, see the paper 6).

Suppose that we have a search design of Resolution III. 2 Then if £ of
the two-factor interactions are present in the model we must be able to
estimate them. Therefore, we have the following theorem using an obvious
generalization of the above notation.

Theorem 2. 1. A necessary condition that T be a Search Design of Resolution
III. £ is that for every selection of k2 two-factor interactions the matrix
(X. 5t X.j,8) is full rank for j=0,1,2,..., .

Corollary. A necessary condition that 7 be a Search Design of Resolution
1II.% is that for every selection of 2 two-factor interactions the matrix
(Pjm i Pj,x) is full rank for j=1,2,..., #, and the matrix (X. g X o) is
full rank.

The conditions of Theorem 1.1 when applied to this case would require
that for every subset of 2% interactions the matrices [X. 1} X j24],
7=0,1,2,..., #, be full rank. Since the 2% interactions may occur in
several different alias Sets, this may not be too difficult to check. However,

we will impose one further assumption which drastically simplifies this
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condition. The four degrees of freedom for any interaction, say F; with F},
partition into two parts FiF; and F:F;?, each with two degrees of freedom
usually called linear and quadratic. We will assume that if F; and F;
interact, then at least one of the effects (linear and quadratic) in each of
FiF; and F.Fj? is nonzero.

This assumption is not as restrictive as it might appear. Suppose F; and
F; are both quantitative variables and a polynomial in x:; and x; is being
fitted. If only one of the four terms x:x;, x:x; xix? or x?x7? is required
in the model (for example, only x:ix;), then every one of the four degrees
of freedom defined by FiF; and F:F;? linear and quadratic will be nonzero.
The only way for these to be zero is for several of the terms to be required
in the model and “accidently add to zero” in the linear combinations defining
FiF; and F;F;#, The probability that this occurs for both linear and
quadratic in a set will be considered zero. Similarly, if one or both of F;
and F; are qualitative it seems equally unlikely that these particular
contrasts will be zero, hence that probability will be assumed to be zero.

We will examine this case in depth for 2=2. Suppose that effects FiF; and
F:F? are in different alias sets and Theorem 2.1 is satisfied. Since k=2 we
have to handle all possible subsets of four two-factor interactions. Consider
F:F;, FiFyy F'FY, and FYF/ where (&, ))&k, DG, 7)+F, ") such
that none of the effects occur in S;, Suppose the 8=4x2 effects appear in
three alias sets such that two of the alias sets have three effects each and
the third has two. This situation will be denoted by (3,3,2,0,0,...).
Similarly, if all eight components occur in two alias sets with four in
each we will denote this by (4,4,0,0,...). Thus a vector (aja,...)
denotes the case where a; effects in one alias set, g, in another, and so
on. With this additional assumption we will establish the following
theorem.

Theorem 2.2. Suppose that two effects F:iF; and FiFi# are in different

alias sets and for every selection of two two-factor interactions the matrix
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(X.51t Xj,2) is full rank, 7=0,1,2,..., ». Suppose also that if X; and F;
interact that at least one degree of freedom from both FiF; and FiF;? are
nonzero. Then a necessary and sufficient condition for a parallel-flats
fraction T to be a Search Design of Resolution III.2 is that for any subset
of four two-factor interactions:
(Case 1) If the division is (4,4,0,0,...) then at least one of matrices
(Xt XrDor(X gt X4 is full rank wher » and g are indices of alias
sets which contain four two-factor interactions.
(Case 2) If the division is (4,3,1,0,0,...) then at least one of matrices
(X XrDor(X g P X3 is full rank where » and ¢ are indices of alias
sets which contain four two-factor interactions and three two-factor
interactions respectively.
(Case 3) Every other division is automatically resolvable.
Ij&f. For a parallel-flats fraction the columns of X are partitioned by alias
sets and each alias set can be treated separately. This fact is perhaps most

clearly seen from equation
E(L)=H;F;,j=0,1,2,..., u, (See the paper6).

where H; depends only on X ; With ¢2=0 we have that Z_:szjE,-, J=0,
1,2,...,u, must be satisfied for every 7, and these may be treated separately.

For the necessary portion Cases 1 and 2 suppose that both [X s } X »,25],
v=1,2 are less than full rank. Then along the lines of Srivastava (1975)
in th proof of Theorem 1.1 we can find two different models which
exactly fit the data.

For the sufficiency in these two cases, we note that if one of the two is
full rank we can estimate all effects and hence observe at least two to be
zero. Then using the second assumption of the theorem we can “infer”
that the whole interaction is negligible and eliminate these from the model.
To see that all other cases are resolvable, note that at least two different
effects will always be estimate. If both are zero, those interactions can be

eliminated from the model. If one is zero and the other is nonzero, one
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factor can be eliminated and one necessarily retained which also resolves
the detection. If both are nonzero we have, of course, completed the
detection. This completes the proof.

Corollary. Suppose that two effects F.F; and F:Fj are in different alias
sets and for every selection of two-factor interactions the matrix (Pjm : P2
is full rank for j=1,2,..., #. Suppose also that if F; and F; interact that
at least one degree of freedom from both FiF; and FiF;* are nonzero. Then
a necessary and sufficient condition for a parallel-flats fraction T to be a
Search Design of Resolution III.2 is that for any subset of four two-factor
interactions:

(Case 1) if the division is (4,4,0,0,...) then at least one of matrices
(Prm t Pryy) or (Pgm i Pg,y) is full rank;

(Case 2) if the division is (4,3,1,0,0,...) then at least one of matrices
(Prm @ Pr,y) or (Pgm i Pg,3) is full rank;

(Case 3) every other division is automatically resolvable.

3. Example

Consider the 3° factorial design with the design matrix

A=(111000Y. The following alias sets are obtained.
120100
120010
110001

So={u, F3F?, FFy?}

S1={F, FyFs, FoF 32, FoF3, FyFg, F3F,, FuFs, F F, FoFg)
Sy={F,, F\F;, F\F,, F\F;, F\F,, F3.F?, F;F? F,F?, FFg?}

Sy= {Fs, Fy, F\Fy, F\F 2, F\F3?, F,F,, FoF5, FFg}

Sy={Fy, Fs, F\Fp?, F1F2?, F\F2, FyF?, Fo FE, FUFg).

The following ACPM are obtained with the five parallel flats
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C=(01202
01120
02011
00112
Fl F2F3 ‘FI2F|4,2 FZFSZ FZFG F3F4 FSFS F4F6 FSFS
e e e e e e e e €
e (021) (021) (012) e (021) e (012) (021)
Pi=le (012) (021) e (021) e (021) (021) (021)
e e (012) (021) (021) (021) (012) e (021)
e (012) e (021) (012) (021) e (021) e

F, F\Fy FiF, F\Fs F\Fs FyF¢ FoF FF@ FFg
e e (4 (4 e e e e
(021) (012) (021) e e (020) (021) (012)
(012) (012) e (021) (012) (021) e (012)
e (021) (012) (021) (012) (021) (021) e
(012) . e (012) (012) (021) (012) (021) (012)

Pz——_-

[ T T S O S

b

Fe  F\F, FI\F FF?® FF, FFs FiF,
e e e e 4 e e
(021) (021) (012) e e (012) (012)
(021) (012) e (012) (021) (012) (012)
(012) e (012) (021) (021) (012) (021)
e (012) (012) e (012) (021) e

~
w
!
[T T O I (I Y

Q!

FS 1?1};‘22 F‘IF‘SZIFII;‘IG2 ‘F‘Z‘F‘liZ F2F62 F4F5
e e e e e e e
(012) (021) (012) (021) e (021) (021)
021 (021) e (012) (012) e (012)
021) (012) (012) e (012) (021) (012)
e (012) e (012) (012) (021) (021) (021)
Nate that effects FiF; and FiF;? are in different alias sets where /57 ¢

P4=

I Y

{1,2,...,6} and for every selection of two two-factor effects (P;n } Pj,,)
is full rank for 7=1,2,3,4. It is clear that (X : X, is full rank.

Consider that the division is (4, 4,0,0). There is only one case:
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{F3F,, FiFs, F.Fg, F5Fg) ¢S,
{F3F2, F3Fs?, F,F¢? FsF¢*} e S,

From P,, we get the following matrix.

e e e e
021) e (012) (021)

e (021) (021) (012)
(02D (012) e (02D
021) e (21) e

A T A T T A R Y

From P,, we obtain

e e e e
021) e (02D (012)
(012) (021) e (012)
(012) (021) (021) e
(021) (012) (021) (012)

A Q” O ® ®

It can be checked that these two matrices are full rank.
Next consider that the division is (4,3,1,0). There are (‘31)><4><2=32
cases which we must check. Let us consider one case.

{FoFs, FyF,, FyF; F,Fg} e S,
{FyF 2, FyFE, FuF?) e S,
{F.F3) e S,

From ACPM P; and P, the following matrices, which are full rank, are

obtained respectively.

e e [ e
021 021) e (012
012) e (02D (02D

e (02D (012) e
012) (021) e (021)

e e e

e (021) (021)
(012) (021) e
(012) (021) (021)
(021) (012) (021)

[\ S\ S OO T Y
& ® O ® ®

Similarly, we can show that at least one of the matrices is full rank for
each case. Hence the parallel flats design T satisfies the corollary of
Theorem 2. 2.
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