Note on Stochastic Inequalities

Jong-Woo Jeon*
ABSTRACT

In this note, we establish a result which characterizes a partial ordering of probability
distributions on a partially ordered space by that of conditional distributions. This
result is then reduced to prove the conjecture made by Nevius, Proschan and
Sethuraman (1977).

1. Introduction

Let x be a separable complete metric space with clo‘sed partial ordering <.
Let Fy*(Fy") be the class of all bounded Borel rpeasurable monotone
non-decreasing (non-increasing) functions on z. Let S*(S“) be the class of
all non-decreasing (non-increasing) Borel sets, i.e., sets of which indicator
functions are non-decreasing (non-increasing). Let P and @ be probability
measures on ZI.

We say that P is stochastically smaller than @, denote this by Pa®, if
and only if [f P(dx)<[fQ(dx) for all fe F*. It can be readily shown by
a simple approximation that this is equivalent to the requirement that
P(A)<LQ(A) for all A ¢ S*.

Let X and Y be random elements each taking values in x and have
distributions P and @, respectively. We then say that X is stochastically
smaller than Y, denote this by XaV, if and only if Pa@.
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The subject of stochastic comparison has well been developed in the past
two decades and its usefulness has been demonstrated in many of probability
and statistics. Barlow and Proschan (1975) has made its excellent

applications to reliability theory.

2. Main result

For ACx, write
PA, =P {Xe Alh(X)=t} and
QAD=P(YeAlR(Y)=t}
where e F*NF".
Theorem. XaY, or equivalently Pa®, if and only if P(-,$)a@Q(-,?) for all
te T where P-{h(X) e T}=1.
Proof. Let P(-,)aQ(-,)vte T, P-{h(X) e T} =1
‘Then for fe F*,
[+f P(dx)=[r, [.fP(dx, )P-{h(X)edt}
< [rfo fQ(dx, 8) Pr{h(Y )edt)
=[,fQ(dx).
Thus, sufficiency is proved.
Now for necessity, suppose XaY. It follows from Strassen (1965) or
Kamae, Krengel and O’Brien (1977) that there exist X’ and Y” such that
P AX'<LY}=1
and
L(X"H=L(X), L(Y)=L(Y)
where L(+) denotes distribution. Moreover, since 2 e F*(\F",
PAn(X)=h(Y)}=1
and
L(h(X"))=L((X)), LAY )=L*(Y)).
Let I{-,C} denote indicator function of C. Denote also
P'(A, 1) =P {X"cAlh(X") =t}
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Q' (A, )=P:{Y’cAlR(Y") =t}
and
K(A, y)=P.{X" ¢ A|Y' =y}.
Then for any ACx and CCR,,
JeP' (A, 0) P-{h(X") € dt},
=P {X"eA, h(X") ¢ C}
=[.P{X" ¢ A, h(X") ¢ C|Y' =y} P(dy)
=[P {X'eA|Y' =y} I{r(Y"), C} P(dy)
=[c[,P-{X'eA| Y =3} P {Y'edy | h(Y") =t} P {h(Y")edt}
=[c[.K(A»)Q' (dy, ) Pr{h(X")edt}.
Thus, P'(4, )=[.K(A4, »)Q'(dy, t), for any + in T.
Now, let fe F* and ¢ ¢ T be fixed. Since K(4,, y)=1 where Ay,={x : x< 3},
Jof) P (dx, ) =[.].f(x) K(dx, »)Q'(dy, t)
=[:l 4 () K(dx, »)Q' (dy, 1)
<[ f(»Q'(@y,0).
Therefore P'(.,1)aQ’(.,¢t), Ve T, P.{h(X)et} =1 which in turn implies that
P(,DaQ(,t), VieT
where P.{h(X) e T}=1. Q.E.D.
Remark. When =R, and < is the usual linear order in R,, only functions
in both F* and F~ are constant functions. In this case, the above theorem

is trivially true. A non trivial application is shown in Section 4.

3. Majorization and Stochastic majorization

In this section, we briefly give definition of majorization for the sake of

completeness.

Given a vector x=(%x1, ..., %») In R, let xq,>x@>... >%m, denote

a non-increasing rearrangement of xj, xs, ..., %.+ A vector x is said to

be majorized by a vector y, denote this by x <y, if

J J
glx(i)égly(i); .7:]-1 27 .. 7n—1
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and
_Z xa;-:Z Y.
i=1 i=1
Note that whenever (m,..., @») is a permutation of (1,..., #) and y=

(Xep ..., %s), we have x <y and y < x. Thus majorization constitutes a
partial ordering on R. up to permutation of components. A function f which
satisfies the property that f(x)<(>)f(») whenever x <y is called a Sch-
ur-convex (Schur-concave) function. Define f(x)=—23 x; log x: where Y x;
i=1 i=1
=1, x>0, 7=1,2,..., #. The function f just defined is known as Shannon
entropy function in information theory and is Schur-convex (see Hardy,

Littlewood and Polya (1952)). It follows immediately that f takes its

maximum when x;=x,=... zxn:—}Z—.

Let X=(X,,..., X») be a random vector on R.. A comparison by

majorization among random vector can be defined as before. We say that

X is stochastically majorized by Y, denote this by lex Y, if and only if
Jre f()P(@x)<[r, f(»)Q(dy) for all bounded Schur-convex function f.

4. Conjecture of Nevius, Proschan and Sethuraman

In their Theorem 2.9, Nevius, Proschan and Sethuraman (1977) proved

the following; Let X and Y be random vectors. Then X"clx Y implies that

for each bounded Schur-convex function f,

fu.f(2) Pr(Xedx| 3 Xi=t}<[n. F()P(Yedy)3, Yi=t)

for all £ ¢ Ts where P, {Z}l X: ¢ Tr}=1. The conjecture they made is that

the set T, chosen above to be dependent on the particular Schur-convex

function f, can be free of f. This can be established by identifying i X:
i=1

by A(X) in our theorem.
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