BQUE, AOV and MINQUE procedure
in Estimating Variance Components
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Abstracts

Variance components model appears often in designing experiments including
time series data analysis. This paper is investigating the properties of the vari-
ous procedures in estimating variance components for the two-way random model
without interaction under normality. In this age of computer-oriented computat-
ions, MINQUE is found to be quite practical because of the robustness with
respect to the design configurations and parameters. Also adjusted AQV type

estimation procedure is found to yield superior results over the unadjusted one.

1. Introduction

The two-way random model without interaction can be repressented as
Z:ly+X1Q+X2§+E M
where Y is an n-vector of observations, u is overall mean, X; and X, are
known nxa nxb design matrices. The random effects a and § are assumed
to have zero mean and variances ¢, and o¢,? respectively. The residual error
term € is an n-vector with zero mean and variance ¢42. All the random
effects (a, 8 and €) are assumed to be independent of each other. Hence
the dispersion matrix of Y is given as
V*=02X1X1 + 0,2 XX, + 052 X3.X5'
MINQUE (Minimum Norm Quadratic Unbiased Estmator), proposed by Rao

1972), gives the way simultaneous estimation of 1% 0,* and ¢;® from soloing
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the following sets of linear equations with respect to o' =(01% 0% 03%),

where
$* axgy =t (W* XX/ WH*X, X))
Ugxy, ={ Y W*X: X/ W* 3}, i,j=1,2,3
wr=V*1_V* 1 (X'V*1X) 11X/ P>
x =(X1:;X;), and tr stands for the
trace of a rectangualar matrix. Here, V'* involves unknown parameter values
(01%,05% and ¢3%), and Rao himself suggested using the a-priori informations
to these parameters,
If we multiply a complete set of orthogonel contrast matrix C of dimen-
sion (n—1) Xn to bothsides of (1), we obtain
Z=CY=CX1a+CX,5+C¢ 2
It can be shown that both model will yield the same MINQUE. One appr-
oach to show this is by proving that in estimating any linear combination
of the components, the MINQUE from equation (1) and (2) yield the same
matrix, i.e. the matrix A in Y’4Y from (1) and C’4*C in A Z=Y'C'A*CY
from (2) are identical.
Using this transformed model, the MINQUE of variance components for
the two-way random model are obtained from solving the following sets of

linear equations for §=(d1,0,;)

s 9=u ©
Where S={er(W VW1V )}
U=(zWvw-iz)
And Wl=[Variance of Z] 1=[0,2(V;+V101%/05+V,0,2/052)]
where Vi=CX:X/C’" for i=1,2, 3.

Noting that (3) is invariant under the sclar multiplication of W, we can

reduce the number of unknown parameters from 3 (012,052 0,%) to 2 (012/04?,

o22/03?).
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Denoting the a-priori values of these 2 unknown parameters as ri2 and r,?
we have the estimating equation for the MINQUE of the two-way random
model without interaction as in the following lemma,
Lemmal: The MINQUE, g, of the variance components for the two-way
random model without interaction is obtained by solving the system of linear
equations,
so=u
Saxp = {Ir(RV:RV:)}
W=(ZRVRZ)
R=[Varianceof Z]1 '=g3 2 [V3+r?Vi+71,2V,]7?
=0g5 L, 1— X.Rn X

v ()
where Ru=(4r" + X' Xe) mumy and Ar—[¢ 752 1b) a sty x asby

Two types AOV estimators are:
1) row effect adjusted for column effect
i1) both effects not adjusted.
Low(1976) has investigated the properties of the AOV type estimators of
the variance components for the two-way random model without interaction,
These estimators are obtained from solving the following systems of linear
equations with respect to g* (adjusted AOV) and ¢* (unadjusted AOV).
Faot=t,,
Fuot=t.,
where #’s are (3x1) vector of sum of squares terms in AOV table and 3x 3

matrices F’s are from their correponding expected values,

2. Variances of the Estimators

Under normality, the MINQUE with correct a-priori values becomes the
best quadratic unbiased estimator (BQUE). Since the MINQE and AOV type

estimators are all quadratic unbiased, it is reasonable to compare these estima-
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tors against the BQUE. To do this, the vairances of the estimator are
obtained. Notations used here in are;
n;;; number of observations for(Z,j)th cell of the design configuration.
i =3 Mg, 05= i
X.=CX where C and X are defined in section 1,
Lemma 2 (Low. 1964): The variances of the AOV adjusted estimators,

0% = (014,0.4,034) of the variance components for the two-way random model

without interaction are:
Var (g14) =204 [ (1—b) (—1) /+ 2012 (n— k) + pr#ks] / (n— k)
Var(g,0) =20,[ (n—a) (b—1) [+ 202 (n—ks) + psks] / (n— k)
Var(gs*) =204/ f

Where
Jj=n—m+-1
ki=Xin?/n ky=2mi/n
k3= 3imii /i ko= Xinif/n;

ks=nky—23 ijnini? [ni+ X ( Cinijnin/ni)
ke=nki—23 ;.02 /n;+ X an (X jniinin/ ;)

For AOV unadjusted estimators, Searle (1958, 1971 b) gives explicit forms
for the variances. However, this invclues a considerable amount of summat-
lons and is difficult to visualize, Alternative expressions of the variance
forms are given in the following lemma.

Lemma 3: The variances of AOV unadjusted estimators of variance compon-
ents for the two-way random model without interaction are as follows,
Var (5,4 =2(f %0, (n—m) + (n J)? (R —2k—1)
—2?"ﬁ'd,,X’XAiA,,@—I—tr[A,-(Im—i—A,,X’X)]Z}, =123
where
k= (o2 Xin+p2 X ) /n
Fi=(f 34 f24 1)/ (n f13)
4= (F ) [ fidat (24 £3) /540



Huh : BQUE, Aov and Minque Procedure 101
da and 4, are (a+b) X (a+5) null matrix except the upper a(lower for
ds) diagonal elements with 1. Finally the f¥, ;=123 is the (i,j)th
element of the inverse of F* matrix mentioned in the last part of seetion 1

and this is given as

n—ky, ks—k; a—1
F“:{k‘}——kl, n—ky, b—1
n—ki, n—k;, n—I1
and k1 k,, k; and k, are as given in the lemma 2,
Using the notations 4 and p, the variances of MINQUE is given in the
following lemma. The detailed derivation is given in Huh (1978),
Lemma 4: Variance of the MINQUE for the two-way random model with-
out interaction is
Var(o:) =2(g%%){(n—m—1) +tr (M;)?}, i=1,2/3
where
M= Tn+X/XL)) (In+ X" XL,)
Li=Rp 1 [(s/(r1%s%) —1) da+ (s2/ (ro%%) — 1) ds ],
Ly=Rn"1[(p:?/r?—1) da+(p2% /11> — 1) L]
X/ X.=X'C'CX, and s¥ is the (i,j)th element of the inverse of (3x3)
matrix § given in (3).
It can be noted that p;? appears only through the ratio of p?/r? and for
convenience, denote &2=r;2/p:%
When a correct set of a=priori values are assigned, i.e,
&12=§&,2=1, the MINQUE becomes BQUE and the dispersion matrix is
given in the following lemma,
Lemma 5: The dispersion matrix of the BQUE for the two-way random
model without interaction is,
Var(g) =203*S7!

where S$71 is the inverse of § given in (3).

3. Empirical Investigation

Since the MINQUE procedure of estimation depends on the choice of the
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a-priori values, the natural question is how robust the estimatior is with
respect to the a-priori values. Analytical investigation seems impossible at
this stage. Hence empirical results for the representative designs and various
combinations of the parameters and their appriori values are given here,
The criterion used here is the variance of the estimator relative to the BQUE.
Definition1. (Robustness of the MINQUE)
Robustness of the MINQUE with a-priori values % and r,% corresponding to
the parameter values p,2, p,? respectively is defined as

0 (1,752 0.2, pa?) = Variance (MINQUE with r,2r,2)
LIZ 1 027) = Variance (BQUE | p.2, 0,%)

Hence as v(r,%,7,2] p,2,0?) approaches to 1, the MINQUE is close to the

BQUE, and vice versa. Also v(ri®, 12 1%, 0.%) is always greater than or equal
to 1. This robustness measure can also be used to investigate the inflation of
the variance of AOV type estimators relative to the BQUE.

The following two factors will be considered for the empirical studies,

i) Design configurations: this involves the sample size(n), the number of

levels for each factors(e,b) and the (mxm) matrix XX,

ii) Parameter values (p,%0,%) and their a-priori values (ri3,r%),

However from the remark of lemma 4, El=r2/p: i=1,2 will be used
instead of r,2 and r,2 This is advantageous from the comsideration that the
choices of the various combinations of the four parameters (7,%,7,% 0.2 0,%)
can be reduced by the appropriate salection of the new parameters, £,2, &,2,
p1® and p,°

To implement the disign matrix X’X into the empirical studies, a measure
of unbalancedness is introduced. Here the Eucledian norm of X’X will the
used, and define the measure of unbalancedness as in the following,

Definition2,

Define

u(X)=[(r(X’X)2—Min tr(X’X)z)/(nxlax ”(X’X)z_n;in tr(X'X)2)]

as a measure of unbalancedness for a given set of sample size (n) and number
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of levels for the main factors (¢,6). The minimum and maximum with
respect to X means that the design matrix is as much balanced (unbalanced)
as possible for a given set of parameters (n,e,b). Also tr means the trace of
the matrix,

The rationale and more deseriptions on this measure are given in Huh
(1978),
Emprical studies has shown the following,
i) 0.0<u(x)<C0.1, almost balanced
if) 0.1<u(x)<C0.3, unbalanced
i) 0.3<u(x)<1.0, extremely unbalanced.

The design configuration with p(x)=1 is as following.

n—a—b+2) 1 1. 1 ‘

and this matrix is referred to as L-type design(1963), Since the variances of
the AOV type estimators considered in lemma 2 and 3 work only for the
connected designs, the choice of the designs are constrained to the case of

the connected designs,

4, Choice of Design Configurations

Choice of the design configurations are hence based upon the factors 7n,q,b
and u(x) as;
n : (15,30,150)
ab: (3,5 7)
n(x): (almost balanced, unblanced, extremely unblanced).
The 1/9 fractional factorial experiment is introduced and the following 9
designs are selected for the empirical studies, where the numbers in the

rectangle reprensents the number of observations and blank is the empty cells.
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DI (3,3,15, 0.0) D2 (5,7,15, 0.17)
2 1 2 111
2 21 111
1 2 2 11 1

11 1
11 1
11
D3 (7,5, 15, 0.56) D4 (5,5,30, 0.0)
1 1111 2
1 111 2 1
11 11 211
11 1 2 1 1 1
11 2 1111
11
111 1 1
D5 (7,5,30, 0,22) D6 (3,7,30, 0.38)
2 11 1
2 2 2 2 2
2 2 2 3333333
2 2 3
2 3
3
3
D7 (7,7,150, 0.0) D8 (3, 5,150, 0.20)
3 333333 10 10 10 10
3333333 10 10 20
3 33 3333 20 10 20 20
3333333
33 3 3 3 3 4
33333 43
3 33 3 4 3 3

D9 (5,3, 150, 0.36)

10
10
30 30

The numbers in the parenthesis represent the values ‘of (q,b,7, n(0)).

For the parameter values, 3 different values for p? (0.1, 1. 0, 10,0) and
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5 different values for £2(0.1, 0.5, 1.0, 2.0, 10.0) For i=1,2 were chosen.
This choice will make 225 (3x3x5x5) different combinations for each 9

designs,

4. Empirical Results

In general, empirical studies has shown that when the main effect comp-
onent being estimated is smaller than the error component, the resulting
estimator gave larger sampling variance relative to the case when the main
effect component is large than the error component,

The AOV adjusted method yielded sampling variances close to those of
the BQUE while the AOV unadjusted method gave very poor estimators for
most of the cases considered.

The MINQUE method was found to he very robust for all practical pur-
poses. The robustness was especially dominant when the main effect comp-
onent is relatively larger to the error component, This is often the case in
practice,

For the convenience of the investigation of the result, the variances of the
estimators were divided by the square of the corresponding components, i.e.,
Var(&iz) Ja# for i=1,2 3. The vertical scale of the efficiency plots are base

10 log-scaled and the values are the actual ones.
4.1, Properties of the BQUE,

a) Estimating the main component. (refer to PLOT 1)

When the main effect being estimated is small relative to the error variance
component (i.e, when §2=0.1), the BQUE showed large variances compared
to the reverse case. This phenomenon becomes more evident when the sample
size gets smaller, The effect of the change of design configuration for the

given sample size was a rather interesting one. As the design approaches
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more balanced, the change in the efficiencies remained more stable relative
to the change in the effciencies of the designes with high values of u(x)
(x), i.e. more unbalanced design configurations.

b) Estimating the error component (refer to PLOT 2)

As is evident from the PLOT 2, the variance of the error component
estimator did not depend much on the magnitude of the main effect comp-
onents, As in the case of the main effect component estimation, the variance
of the estimator gets inflated as the sample size gets smaller. For the given
set of sample sizes, the estimator yielded larger variance as the sum of the
levels of row and column gets larger. This is intuitively appealing since the
degree of freedom for the error term gets smaller when the levels of the

main effects gets larger,

4.2. Properties of the AOV estimetor. (Refer to the Appendix)

For most of the cases investigated, the AOV ad Jjusted estimator yielded
better results than the AOV unadjusted estimator both for the main effect
and error component. Some specific points are:

1) For the layputs with obsevations clustered in the neighbor of diagonal
(D2,D5), it is not clear which estimator is preferable for the main effect
component estimation,

ii) In estimating ¢12 when ¢12/g2=10 for the layouts of L-type and stag-
gered type (D3,D6,D9), the AOV estimators were at least 5% off from the
BQUE. Especially for D9, the AOV adjusted was over 30% from the BQUE,

iii) When estimating ¢;%, the AOV adjusted estimator yielded smaller
variance as the ¢,? gets larger. The AOV unadjusted estimator yielded the
opposite results,

iv) For the estimation of error component, AOV adjusted estimator is
strongly recommended. The remark iii) applies also to the estimation of

€rror component,
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v) Except for the layouts of D2 and D3, the AOV adjusted estimator of
error yielded variances almost close to that of the BQUE. The BQUE of
the error component of D2 and D3 were noted to be the worst cases out of

the 9 layouts considered.
4.3. Robustness of the MINQUE (Refer to the Appendix)

The MINQUE is quite robust for the cases investigated in this work.

When ¢1%/¢3,2=10., the MINQUE of ¢:% yielded the variance almost close
to that of BQUE, When ¢:?/g;% is | or, 1, which is rarely in the practice,
the MINQUE of ¢,®> was sensitive to the a-priori values. However, the robu-
stness could be obtained by eliminating the cases of assigning the a-priori
values of ¢1%/04® (the component being estimated is ¢,%) very small or very
large (0.1 or 10.0). And the above restriction on the a priori information

is not a serious one in the practice,

5. Conclusion

For the 9 layouts investigated the MINQUE is quite robust for all the
practical purpoes. AOV adjusted estimator yielded good results except for
some ill-structured layouts, Although the caluculations involved in the
MINQUE is more laborious than the AOV type estimators, MINQUE gives
unified approach in the estimation and since the calculation is almost done
by computer (or built-in-packages), MINQUE is recommended, Further inve-

stigations on the more general models are recommended.
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Appendix

Efficiency Plots for the MINQUE and AOV Estimators of

The following 5 plots are selected from the 9 plots. Those not shown here
yielded the variances of the MINQUE and AOV estimators very close to the
BQUE regardless of the parameter values except for the AOV undjusted
extimators, The plots are drawn in the follwing fashion:

i) The 25 points in the horigontal lines for each plot are concerped with
the MINQUE and are in chronlogical order of (&2, &%) with &,?
varies first such as The combinations are (0.1, 0.1), (0.1, 0.5),
0.1, 1.0),..., (10.0, 1.0), (10.0, 2.0), (10.0, 10.0).

it) Two added points labeled as ADJ and UA]J stands for the AOV adju-
sted and AOV unad justed.

iii) The vertical lines give the efficiency of the estimators, i.e., Variance
(relevant estimator of ¢:2)/variance (BOUE of ¢1%). Those values
exceeding 1.5 are cut to 1,5 for the convenience of the plotting.

iv) For each plot, there are 3 graphs corresponding to p,?=0.1, 1.0 and
10.0, The alphabets represent the order, i.e., (A,B,C) for p:2=0.1
and p,2=(0.1, 1.0, 10.0), (D,EF) for p;*=1.0 and p,*= (0.1, 1.0,
10.0), (GH,I) for p12=10.0 and p,2=(0.1, 1.0, 10.0)
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