Control and Aggregation (II)

Sung-Shin Han*

In the last paper?, we have discussed the cannonical representation of a
dynamic linear model, on which some aggregation schemes were devised.
The relationships of those aggregation schemes with dynamic properties were
investigated. This paper tries to analyse she control strategy for the aggreg-
ated linear dynamic model and to investigate the dynamic properties of
disaggregative model controlled by aggregated model.

For the logical consistency with the last paper, all the sections and all

the equations are numbered in a sequence,

5. Control of the Aggregative Model

Before discussing the main arguments, a rationale on the control by the
aggregation of the original model is discussed. We have discussed what the
purpose of the control should be in Chapter II. First of all, the purpose of
long-run policy is the stabilization of the economic system.

The convergence of the Ricatti difference equation has been shown to be
a necessary and sufficient condition for stabilization policy. The coefficient
matrix of the lagged endogenous variables and instruments in the linear
feedback equation is only a function of the steady-state solution of the Ric-
atti difference equation. This is a function of the coefficient matrix of the
model and the weight matrix of the loss function, but not of the desired

target levels or uncontrollable exogenous variables. Secondly, the purpose of
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control is for the attainment of the target levels for short-run policy. This
is determined by the constant terms of the linear feedback equation. In the
spirit of optimization, this term is also a function of iterative matrix soluti-
ons of the Ricatti difference equation and target levels and the uncontroll-
able exogenous varia‘bles through the time horizon. But when we consider
uncertainty of target levels for the long-run and formidable prediction errors
of uncontrollable exogenous variables for long-run forecasting, the long-run
policy based on the target levels may be meaniningless. If the coefficient
matrix of the econometric model is constant over time, the coefficient matrix
of the lagged endogenous variables in the linear feedback equation should be
constant when either she moving time horizo1 or the infinite time horizon
is used. But the intercept of the linear feedback equation is not constant
anymore whatever time horizon is used. This is because of the changing
target level, uncontrollable exogenous wvariables, prediction error on those
variables, and, moreover, fine tuning or constant adjustment of the model
in each point of time. Thus recomputation of the intercept term would be
unavoidable, unlike the coefficient matrix of the lagged endogenous variables
in the linear feedback equation. This coefficient matrix should be represented
by one policy rule inflexible to the target level and another one which
depends upon the prediction ability of the uncontrollable exogenous variables.
We should note that an inflexible policy rule does not mean Friedman’s
constant growsh rate of the money supply. Suppose Friedman’s constant
growth is represented by x;=Gx;_;. When this rule is applied to model
(1. 1), the derived reduced reduced form will be
(2)=6 ~%)()
Xt 0 G J\xi,
Looking into this model, it is clear that if y,=Ay, , is unstable, the contro-

lled system is also unstable because

det((g —B6 - zz)z_det (A—AI) det (G—2I)

where det (-) denotes the determinant.
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Now returning to the rationale of aggregation for control, first, it can be
shown that the loss function on the infinite time horizon can be represented

as

@

(5.1 W= tz_ly't_l Qi1 t+x’ Raxe

T
= ( tgi}’t'_l Qye+x' R X:) +y1" K1 1.

We are discarding target levels from the loss function without loss of gene-
rality because target levels are irrelevant to stabilization policy, if there
exists the infinite time control rule. Looking at loss function (5.1) it is easy
to see that it is nothing but a finite-time horizon control problem with an
appropriate of the terminal condition, yr’K7yr. Furthermore, Chapter II
shows that there exists a time-horizon T such that the controlled system has
characteristic roots within the unit circle. This is when the feedback equa-
tion is computed with K; where tis less than T if and only if there exists
the infinte-time horizon control rule. K, also has been shown to be the
positive-definite and monotonic sequence with the finite elements for all time
¢t such that ¢ belongs to all positive integers. Though such K,’s are proved
to be unique, there may exist an approximate computation of K; such that

the controlled system has characteristic roots within the unit circle. Suppose

that the linear feedback equation is computed from the approximate K;or K.

as
(5.2) xe=—G y:_1+ g
Then we can reformulate the control problem as
T
(5.3) Min E W=Min E{3, {(De1=0*)' Q=% 1)
&t &

+ (xe—x*) ' R(xi—xe*) )+ (r—p1*)" Kr(yr—yr*))
subject to

(5.9) )’t1=A_J?t_1+th+ Jitu
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Xe—= —@y:_l—f—é:

mx1
where’*’ denotes the target level, f, denotes an uncontrollable exogenous
variable vector, 'E’ denotes expected value and u; is a white noise. With
the above formulation, the instrument vector is g, rather than x.. Though
the error term, u; exists, continuous application of Theil’s certainty equival-
ence principle in the open-loop fashion would lead to an optimum g, in the
formulations (5.3) and (5.4). Though the modified model (5.4) with the
dimension (n+m) is fairly large enough, there are a lot of computational
algorithms as quadratic programming problem on the large-scale model which
have been studied by many economists (16). Thus the main purpose of the
aggregation of the model to reduce the dimension is to obtain an estimate
of G, not g, But in general, the existence of stabilization policy on the
aggregative model does not imply such on the disaggregative model. To see
this point clearly suppose that there exists the stabilization policy on the

aggregative model, so

(5.5) [A(F—DCy) | <1
where [2( )| denotes the absolnte value of the characteristic roots,
(5.6) Gu=(R+D'KyD) 'D’'KyF,
(5.7) Ky=Qu+F' Ky(I+DR1D'Ky)1F, and
(5.8) Wuztgl (24 1.QuZ: 142" Rxt).?
The feedback equation can be derived from equation (5.6) as
(5.9 xe=—GCyZ:_,
=—GuCy: 4
Substuting equation (5.9) into equation (L.'1)
(5.10) Ii=(A—B GyC) y:_;.

From equation (5.6), equation (2.4), and equation (2.5),

2) @u Should be constructed such that C’QuC could be @ as close as possible. Thus the

least square solution would be
Qu=(CC')~t CRC'(CC")-1
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(5.11) H=A-BG,C=A—B(R+D'KyD) 'D'KyFC

—A—B(R+B'KB)"*B'KA
=(I+BRB'K)-14
where

(5.12) k=C" Ku C
nxn nxl IxlIlxn

To see the relationship between equations (5. 11) and (5.5), we can consider

a similar transformation of matrix H,
C o
5.13 H= H -t
(5.13) EOHE)
where the rectangular matrix C; is an arbitrary (n—/) Xn matrix such that
the nxn square matrix, (g) is non-singular.
1

Then, from equation (5.12),
7r_ ¢ C 1 prien-nn C -1 C C.-
G.14)  H={G)U+B R BE)) ()7 (G) 4 (@)

=GB R BE () () 4@

Let
(5.15) (@) 1=(CC)
Cl 1/2
and then the following matrix identities hold,
(5.16) CC-= I
Ixl
cc-H1= 0
Ix (n=10)
Clc_: 0
(n—=1)x1
C.C, = I
(=D x (=0

Equation (5. 14) can be rewritten as
(5.17) H= [1+ (gl)B R B'C'Ky _C(c-c—l)]‘1 (gl) A(C-C-)

_[I+CBR‘1B’C’K,, 01  CAC- CAC,-
=\c, bR B CKke 1) (Ciac- cAC,”)
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(I+CBR-'B'C’'Ky) 1 CAC- (I+CBR-B'C'K,)~1 CAC,-
—C,BR1B'C'K,CAC- 4-C,AC~ -—CBR‘lB’C’I{,,CACf+01A01‘]

From equation (2.4), (2.5), and (5. 16),

5 (I+DR‘1D'KM)‘1—H— 0 ]
. 18) B=[ U R bk b Codc Crdc

The characteristic roots of H consist of the characteristic roots of (I+
DR D'KEy)"* F=(F—DGy) and C; AC;~. In order for the characteristic
roots of H to be within the unit circle, the characteristic roots of C; AC;~
should be within the unit circle because the characteristic roots of (F—DGy)
have been asssumed to be within the unit circle in equation (5.5), Now let
us determine what is the sufficient condition for C; AC;~ to have characte-
ristic roots in the unit circle. Using the first form of the canonical represe-

ntation (I, 2),

(5,19) CIACI‘:CIPAP“l Cl-
and 71
Az,
A=| - A
A1,
0 An

assuming that [Ai] >[4 >, .. > || > A > > [ Ax] and fA1,1] <1

If C1 and C;~ are constructed by : [

(5. 20) 01:[ gn J Cr={p,....n}

where ¢; and p; are defined as in Section 1, then clearly C; AC,- would
have A,,...,4, as characteristic roots, which is in the unit circle. This is
nothing but the first example of aggregation in Section. 3. Therefore, if
the aggregative model 1is constructed in view of the characteristic vectors
corresponding to the largest characteristic roots, there would exist stabiliza-
tion policy on the aggregative model implying stabilization policy on the
disaggregative model. As noted previously, this is not realistic 'in fact, bec-
ause, in the case of the large-scale model, the computation of the characte-

ristic vectors and roots might be mecre difficult than control of the disaggr-
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egative model. We have discussed an approximate solution to this problem
in Section 4. We also mentioned the importance of the interaction between
the coefficient matrix of the lagged endogenous variables, A, and the coeff-
icient matrix of the instrument, B, because the multiplier matrix has the
form of multiplication of A4* and B. So the second form of the canonical
representation is used. Thus, at first, the second form of the canonical
representation is assumed along with the nearly completely decomposable or
weakly coupled system. Thus, without loss of generality, the following model

1s assumed,

m

o I
s LR (]

where [>m.
Suppose model (5.21) is weakly coupled or Ay, and A, are sufficiently

small and the following conditions are satisfied,

(5' 22) Ilmin(‘all) [> Izmax(Azz—Azl A/ill_]'/ilz) ’
and
(5- 23) Mmax(l‘-{zz—fizl 311_11‘112) | <1

where *< denotes ’smaller than’. Then the aggregative model to control

can be considered as ’
(5.24) Zu=Au Zu_1+(g)xt+-;112 Zot 1.

It is easy to check that the controlled system will have the following form

th>_<{I+RKM}—lA11 Azl) (th-l)

(5.25) <Zz’ B ;112 /~122 ZE
- -1

where 161 = (18 8) {_nm

i-m
Clearly the controlled system (5,25) is asymptotically stable if the off-diag-

onal blocks A1, and A, are satisfied with the appropriate sufficiently small-

ness condition. As an extreme case, all the characteristic roots are less than
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1 if the off-diagonal blocks are identically zero. In general, it will be desir-
able if the controlled system has the property of a sequentially decreasing
quadratic loss function, by the Lyapunov function theorem in Chapter II.
Now let us consider what conditions the quadratic loss function constructs
the sequentially decreasing sequence. Recalling Z.=S"!y; in Section 1, the

quadratic loss function (5.1) can be rewritten as

(5.1)" Wo=3 Z'i 18" QS Zistx' R x
=1
=3 218" QS Zi 1+ 2w G'RG Zuy
i=1
because x;=—G z1,_1 from equation (5.25), then
(5. 1) Ww:i; 710 21
=
where Q:S'QS+<G§G 8) !
1 nt "t
Separating the equation (5.25) into two parts,
(5. 25)" \=HZ, \+HZ
where ﬁ:((l—*_RK")—l‘qu .0> and H:(q A~12>
0 Ay, An 0

Furthermore, let us make the similar assumption for (5.23) for simplicity,

(5. 23), []max(AZZ) l < l
Then there exists the positive definite matrix K such that
(5. 26) HEH-K=-Q
Furthermore,
. Ky 0\ !

(5.27) K= ( ...... )

0,0/n—-1

L n-l

which is clear from equation (5.25) and Chapter II. Then the loss function
(5.1}’ at time ¢, W,,, can be written by

(5. 28) Woe=2"1Kk Z, 1.
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when A;, and 4, are identically equal to zero. Now we want to show that
even if ;112 and }121 are non-zero, AW, 1,.=W;,1,.— W ,<0, which is the
basic property of stability in the sense of Lyapunov, if A;, and A, satisfy
the certain sufficient smallness condition.

From equation (5, 28)

(5. 29) AWira=2! KEZi—2':+ 1K Zi 1

From equation (5.26) and equation (5.25)’, equation (5.29) can be rew-

ritten as
(5.29)" AWt+l;m:_Z,t_1QZt_1+Z’t_1H,EHZL.I

+ZaH' EHZ,
Using the Schwartz inequality and dividing by W,,,,

(5.30) Dtsbe _ ~Z'1QZa+ | Zea | |H| | KHZ |
tr00 Z,t..l KZt_l
+ | H| 2K Zeal®
where . denotes Euclidean ‘norm.

We have to note that A Wi,1,..< 0 if and only if

_.é.%:_w::_<0 because W;,. >0,

Now we want to show that the right-hand side of inequality (5.30) is

negative for all Z, ; under the certain condition on || H |,

(Theorem 4) AWii1,.<0 if
_ —C,+ O CE
(5.31) | H| = 2 0%23'2 12
where C= {zmin(k) }712

C,= umax(ﬂvﬁ?sz ]%—1)}1/2
Cy= zmax(j{)l/z
2= Aua(Q K7V

(Proof) From equation (5. 30),
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. ’ 3 - ’ 1/2
(5. 30)/ AWt+17m <_ Z -1 Q,Zt_l +2 ” H ” < Z t—l-.Zt_l >
th ’ Z,t-l KZt_l t-1 KZa
[ R e
2K Z VAPRY VAR

By the definition of Euclidean norm, which is defined as the square root of

the inner product. Maximizing each term of the right-hand side in inequality

W +1y 00
.30y APebe o B0 | ]2 CoCS
In order that <27/ = be negative, a=—n+2 | H|| C:Cy+ | H | ? Cr?Ce2
trca

should be negative with respect to some || I:I][ We have to note that the
quadratic equation, || ¢ | 2 C12C52+2 || H || C;C;—n=0, has two distinct roots,
because the determinant C:?C,%2+47 C12C3? is positive, Furthermore, two dist-
inct roots have opposite signs and the negative root is not interested because
I H || is positive. Therefore it is easy to see from the following graph that

a would be negative if || H| is less than

fa
o ~Cy+ VO +7 (4
- CA ] i CICBZ
X’C—zé / T l —Cy+ V0247 Cy?
e —— 1l b= CiCy?
b\ | /b, = R
vl PR b— — JUE+7 Oy
: ma 2= C.Cy2 g.e.d.

In fact, inequality (5.31) is so complicated that it is very hard to inter-
pret and, in realify, it is not easy to check whether the inequality holds or
not. All we can do in order to check condition (5.31) is the approximate
calculation of A Wi,1,. by the dynamic simulation of the controlled system
(5.25) with a fairly long-time period. Furthermore, we have to note that
the inequality (5.31) is an a posteriori condition, which cannot be detected
as an a priori condition, because K is unknown a priori. Similar phenomena
appear in the adaptive control rule of Chapter II. This is the very reason
why we have mentioned the importance of heuristic criteria, as far as the

aggregation is concerned, at the beginning of this chapter.
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So far, we have-discussed the "analysis of the canonical representation. But
Theorem 4 can be  extended to a much more general form of the modél
like the (4.1) with any kind of scheme of aggregation. Suppose that aggfe—
gation matrix be: constructed by

(5.32) - C=l{1]0}

Deafining the éggregative variables,

, (5.33) z2:=Cyi=y1: the matrix equation.
From the least sqhare solution of CA=FC, |
(5.34) F=CcAc'(ccnyt
. : .
The aggregative model will be
(5. 35) yre=Auyuat+Bixi+ Vi

where V;, denotes the aggregation error which is nothing but A4,y 1.

The quadratic loss function will be

(5. 36) W= il (05e21Quedie1+x" Rxy)
t=

where | (Qu le) l
Ql’z], Qizlz n—l
Suppose the control equation be derived as
(5. 37) " xy=—(R+B/KuB)) B/ KyAn y1: 1
‘ 0 ==Gyua ‘ ‘

Then the controlled system will be
R j1t _{ Au—BiG ‘Alz )(}’1:_1 >
G. 38) S ,(J’zt >_( Ap—B,G Ay J\ yae_1
.Now we can analyze equation (5.38) in analogy the Theorem 4, when

A4, 1s assumed to have characteristic roots within the -unit circle. Defining

cw (g L)

h V "_ O ‘ Al
a0 a=(, % )

and
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We could derive the similar condition as inequality (5.31). The difficu-
1ty with equation (5.40) is that the left bottom block of the error matrix,
I}, includes the matrix G which is unknown a priori. Thus we have to be
satisfied simply with the sufficiently smallness of the matrices A1, Az and
B; by the same reasoning as the previous analysis. Again we could rely upon
dynamic simulation of equation (5.38) in order to check whether the suffi-
ciently smallness condition is satisfied or not. In other words, if the seque-
nces of the loss function Wy computed from the dynamic simulation for
the moving longtime horizon N is decreasing, we could infer that those
conditions on the sufficient smallness, described in Thecrem 4, are satisfied

and the controlled system is stable.

6. Conclusion and Future Research

This chapter discusses the reduction of the dimension of the model by
aggreagation and the control of the aggregated model. We have distinguished
between long-run policy. The purpose of the long-run policy should be in
the stabilization of the economic system and the purpose of the short-run
policy should be in achieving target-levels. Long-run policy is determined
by the coefficient matrix of the lagged endogenous variables in the linear
feedback equation and short-run policy is determined by the intercept term.
By and large, the long-run policy is to shift the characteristic roots of the
econometric model within the unit circle. Short-run policy should be deter-
mined by the optimization techique which, though the model is fairly large,
are computationally feasible. Furthermore, we have observed in the equation
(5.1) that the long-run policy problem can be transformed into the short-
run policy problem with the appropriate choice of the terminal conditions.
It has been shown in Chapter II, that the coefficient matrix of the lagged
endogenous variables in the linear feedback equation, which determines

long-run policy, does not depend upon the target-level. From those findings,
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we have suggested a two stage computation in Section 5 for the design of the
control strategy on the unstable econometric model, even if it is not optimal,
to fulfill approximately the long-run and short-run policies as well. The
first stage is to determine the approximate steady-state solution of the Ricatti
difference equation to get the matrix K such that the coefficient matrix of
the controlled system, A-BG, has characteristic roots within the unit circle.
The second stage is to determine short-run policy through the optimization
technique, using such the X obtained at the first stage as a terminal condi-
tion weight matrix of the target variables with a finite time horizon, The
determination of the short-run policy through the optimization technique in
the second stage was not discussed in this chapter, because it has been stud-
ied by many economists so far. The main purpose of aggregation is to dete-
rmine the steady-state matrix solution K of the Ricatti difference equation
approximately in the first stage for the long-run policy, but not for short-run
policy. Ando-Simon have shown that the steady-state solution of the linear
difference equation can be approximated by the characteristic vectors corres-
ponding to the largest characteristic roots. But we have to note that the
matrix Ricatti difference equation is not linear with respect to the matrix XK.
Thus the change rate of K is not constant, but time-varying. Tt is easy to
see the Ricatti difference equation (1.7) of the Chapter III can be rewritten,
in terms of the change of K, as

(6. 1) OK:={(I+BR'B' K1) 'A} 6 K11
{I+BR'B'K,)"1}4
where ¢ denotes the backward difference operator, § K,=K, ;—K, because
the dynamic programming algorithm is computed by backward recursiveness.
The coefficient matrix of the equation (6.1) includes the K, which is unk-
nown a priori. Therefore, the aggregation of Ando-Simon by the character-
istic vectors corresponding to the largest characteristic roots and the control
parameter K, cannot be separated, but interact with each other. Considering

the main purpose of long-run control policy should be in stabilizing of the '
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economic system, or shifting the characteristic roots of A .into-the unit circle
by the control policy, we have shown in Section. 5 that aggregation by the:
-characteristic vectors corresponding to the largest characteristic roots is suff-
icient for the stabilization qolicy. This control may not.be optimal, but will
stabilize the econometric model, which implies the deviation between the
true optimal cost and the approximal cost is finite, In reality, the character-
istic vectors are difficult to compute in general and the canonical represent-
ation of Section 1 is not easy to derive. Under these circumstances, we have
discussed the approximate derivation of the model which has the largest
«characteristic roots of the original model, using such the a priori knowledge
as. in the nearly complete decomposability or weak coupling. We have also -
-discussed  the effect of control in the approximately derived aggregative
model on the stability of the controlled economic system and in Theorem
4, we have derived the sufficient condition of the approximation error to.
guarantee stability. We have claimed that this condition might not be useful. .
from a practical point of view for empirical research. So it has been sugge-
'sted to check the sequence of the numerically computed loss functional
which can be computed. by simulating of the original model and the control
-equation together with the moving time horizon. If the sequence is decrea-
;sing, the controlled economic system would be asmptotically stable by the
Lyapunov function theorem. However, Theorem 4 has broad applicability.
In other words, the error martxi of the equation (5.31), H, may include
the error from misspecification, from the estimation, or from structural shift.
Furthermore, if the nonlinear model is linearized, it could include the error
from the linear approximation. So far we have discussed the application of
the aggregation concept to the control strategy to determine the steady-state
solution of the Ricatti difference equation, K, approximately so that the
resulting controlled system could have the asymptotic stability property in
the Lyapunov sense. Thus the matrix solution, X, is utilized as a terminal

<ondition of the quadratic losss function for the short-run policy. We could
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consider the approximate computation of the matrix K in another way for.
future research. We have proposed a two-stage computation scheme both for
long-run policy and for short-run policy at the beginning of this section. At
the first stage, the matrix K is computed approximately to derive the coeff-
icient matrix Gy, of the lagged aggregated endogenous variables of the equ-
ation (5.9). The procedure of the other direction can be considered by the
similar reasoning of approximation via aggregation. (1) the computation of

G such that

(6.2) |A(A—BG) | <1
and then (2) solving the matrix equation of Theorem 1 in Chapter II,
(6.3) (A—BG)'K(A—BG) —K=—(Q+G'RG),

to get the solution, K, which will be used as a terminal condition for the
short-run policy in the second stage. If we could find the matrix G such
that the inequality (6.2) would be satisfied, then the matrix equation (6. 3)
could be solved by the simple iterations.

Rewriting the equation (6. 3)

(6.4) Kh,1=Q+G' RG+ (A—BG)'K1(4—BG)
where kb denotes the hth iteration. |

The iterative matrix equation (6.4) converges to the finite solution K
because |1(A—BG)|<1. The problem is how the matrix G could be found
such that |1(4—BG)|<1. From this author’s knowledge, there is no general
method to find the matrix G such that |A(4—BG)|<l.

Now we are going to present as an application of the theorem on dominant
diagonal matrices from economic theory. McKenzie(13) has proved the foll-
owing theorem on the stability of the general equlibrium model.
(Definition) An nxn matrix A=(a;;) is said to have a dominant diagonal
if there exist w;>0 such that w;|aii[> Z;wjiaﬁl for each i. If a; are posi-
tive for all 7, A is said to have a positive dominant diagonal.

(Theorem 5) For H, a non-negative square matrix, a necessary and suffic-

jent condition that all the characteristic roots of H lie within the unit circle
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is that (/—H) has a positive dominant diagonal.
(Proof) See L. McKenzie(13),

As a simple application of Theorem 5 by McKenzie, we could have a
weaker result when H is not nonnegative.
(Corollary 9) For any square matrix, H=(k;), define an equimodular set
of matrices as H*=(|h;;|)(18). A sufficient condition that all characteristic

roots of H lie within the unit circle is that (I—H*) has a positive dominant

diagonal.
(Proof) See Baer (7) or see Marcus and Ming (14),
For the application of the Corollary 6, A—BG can be rewritten as
b1
(6.5) A—BG=(ayaz....a)—| % | (G1,G,....G)
b
where A= (ay,ay,...,a,) for nx1 column vector a;
by
B= b:z for 1 xm row vector b,
b
and G=(G,G,,...,G,) for mx1 column vector G,

Let an arbitrary weight matrix w be

wieee 0o 0
(6.6) w=| 0 w, For w,>0
0eevennens w,

Define the equimodular set of matrices of 4 as

(6.7) A*={]ai;|} ={a1*,a,%,...,a,*}

Without loss of generality, suppose that the last (n—!) columns of A* are
positive dominant diagonal or

(6.8) wi(I—|aii| ) > iz_ w;| —ay|

i=l+1,...,n and j=1,2, ..,n

Then it is easy to see that matrix G could be constructed by

(6.9) G={G1,G,,...G,, 0...0)

Now let us consider the ith column of A— BG,
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b1

(6. 10) (A—BG)i=ai—| b, | G for i=1,...,1

)
bn
From the definition of the dominant diagonal we can compute G such

that |A(A—BG)| <1,

(6 11) w,(l— Idii-—b,'G,'])> Z wj] —a,-;—{—b,-G,-[
i*1l
=Y wila;i—b;G;|
i*1l

i=1,...,0 and j=1,...,n

Rewriting inequality (6. 1),

(6 12) w,‘> lejlajf—bjGi]
i=

Clearly inequality (6.12) is a sufficient condition the |A(A—BG)|<1, In
fact, it is not easy to find the mx1 column vector G; to satisfy the inequa-
lity because the right-hand side of inequality (6.12) is a sum of absolute
values. A sufficient condition that the inequality be satisfied has to be cons-

idered for the practical application. From the following inequality,®
(6.13) n }:1 w,-{(aj,-—bjG,-)}zz(_Zl w;la;i—b;Gi|)?,
i= i=

a sufficient condition for the inequaliy (6.12) may be rewritten as

n

(6. 14) w>n X {w;(a;i—b;G:))?

we.
or 'h)z > (a:— BG;)'w?(a;— BGy)
The minimum of the right-hand side of inequality (6.14) can be interpr-
eted as Aitken’s generalized least square where G; is a column vector of the
parameters to be determined. From the formula of the generalized lease

square,

3) - .
73 XA (2 X)= (X~ X)*=0
i=1 i=1 ivi

or " »

r 3 X205 X)?

i=1 i=1
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(6. 15) G,=B'w?B) 'B'w?a;

Substuting ecitiatién (6. 155 into inequality (6.14) and us:ing the idempot-
ency of (I—B(B'w'B) 1B'w?), we can rewrite inequality (6.14) as

(6. 16) ””f Sa/Qai=1,2,...,1
where Q =w?*(I—B(B'w?B) 1B'w?).

Clearly inequality (6.16) is a sufficient condition that |A(4—BG)|[<l.
Moreover, this is easy to test if the column of B or the number of instru-
ments are fairly small enough. In case of the' distributed lag model, the
foregoing ad hec method for stabilization is not easy to apply in general.

Consider the state variable form of the distributed lag model.

(6 17) Yt A Az A; Ji_1 B W Xt
1 0 .
i1 = 0 I 8 Vi 2 + 0 J mx 1
Vi_ ksl 0 0 I0 Yt k& 0

(nk)x1 (nk) x (nk)  (nkx1l) (nk)Xm

When the control equation is in the form of

(6.18) xe=—(G1y: 1+ Gy ¥t _a+...Gr i 1),
the controlled system will be
(6. 19) . A—BG, Ay—BGy-As—BGy\ (e
L Yees
Vi ksl 0 0 e 10 Vit

where Gi’s are mxXn matrices.

It is very difficult to find out the nkxnk weight matrix, w. It should
make as many columns of the dominant diagonal of the coefficient matrix of
the Jagged endogenous variables in equatiaion (6.17) as possible in theory,

we could choose some weight matrix as

(6. 20) wi 000
p— 2..!
wiat © 0 wswitis0
0 0.t

where w’ is a nxn diagonal matrix and @,/ is the ith diagonal element of w’.
By an analogous analysis to the single lag case, we can derive a sufficient

condition for the stabilizability, as in inequality (6.12), which'is
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- , .
(6 21) Zﬂit> Z willa’ij—biG,-l[ +wi“1
7= S ,
or wi—wH > Y wl|al;—biGit|
i=1
where al; is the 7, jth element of A,

b; is the ith row vector, and
G is the jth colum vector of Gi.
In the analogy to the foregoing analysis, we could derive another suffici-

ent condition as

(6. 22) wil_;?i”_llz_ :a;l'Qail
where Q= (u))2(I—B(B(w")2B) 1B’ (w')?)
and 2;'is the ith column vector of A,
and

(6.23) Gi=(B'(w')?B) 1B’ (w!)%a
where G is the ith column vector of G,

Again the generalized least square interpretation of (6.22) and (6.23)
implies

(6. 24) Min(ai!— BG#)’ (w')?(ait— BGY).

Gil

From expression (6.24), it is easy to see that, given an arbitrary weight
matrix w!, the same analysis as in the single lag case can be done with
respect to each lagged coefficient matrix A;. Another useful inequality to
satisfy this inequality is.

. _k
(6. 25) wit—wt> 0 Y (¢t Q al)l
) 1

Because we can consider w;* to be arbitrarily small, the inequality (6.25)

can be rewritten as

(6. 26) _(f’%'i)i> {lgk:l (aiu Q ai‘)1/2}2
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Comparing (6.16) and (6.26), the right-hand sides of both ineqalities
have the similar expression. As mentioned before, this is not a general
method, but an ad hoc method oriented to practical applications. Thus some
research remains to be done for the equation (6.2). If not, some method
of choosing the weight matrix w must be devloped. Future research in this
area is potentially useful. Another interesting point of the above ad hoc
method is that the weight matrix w has the similar characteristics with the
matrix K of the Ricatti difference equation, except that w has been restricted
to the positive definite diagonal matrix while X being the general positive
definite symmetric matrix.

What is the most important for the futur research is the control 6f the
structural form prior to the transformation to the reduced form because the
derivation of the reduced form of the large scale model is very difficult.
Most of the methods discussed in this chapter assumes the model is in the
reduced form, though we did discuss the structural model in Section 4’ (see
the equation (4.23) by means of equation (4.31). If we consider the appr-
oximate derivation of the reduced form 4 might be very useful. Thus Cha-
pter 5 has focused on the application of Theorem 4 in its generalized form
when the reduced form is unknown. The unknown reduced fcrm* may
happen, due to nonlinearity in the structural form or due ‘to computational
difficulties in the linear large-scale model. ’

As we mentioned in the introduction of this chapter, all the analysis of
this chapter may be directly applied to stochastic models ‘With additive error
terms of white noise. The aggregation method in the stochastic coefficient
case remains to be solved. Example 3 of Section 3, which is a method
suggested by W. Fisher (8) may be useful, because the quadratic criteria of
the loss function of the aggregation can be considered as the expected value,

or EL=tr E(F—A)’(F——A) From equation (3.19).
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