Mixture of K Normal Distributions
by Dyar’s Law
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1. Interoduction

The problem considered in this paper can be defined as follows. Consider
observations x;,x,,...,x, which are assumed to come from a mixed population

of the density function,

) =3 pafax)

k=1

where m is the number of subpoulations and p; is the proportion of subpo-
pulation £ such that ij pr=1, 0<g<l, and where fi(x) is the normal
Em1

density function with mean a® ? u and variance «*%* Vg2 The problem
then is to estimate on the basis of the observations xj,x,,...,x, the unknown
parameters a, u, ¢ and pp, k=1,2..., m

The application of this formulation can be found in entomology where
X1,Xg,--.,%, represent the length of the larva, and m is the number of larval
stages and e¢* 1y is the mean size of larva at the £ stage with variance
a2~ g2 Dyar’s law has been confirmed for a wide variety of insect species
(Forbes, 1953: Hoxie and Wellso, 1974). An Algorithm to estimate the
parameters is suggested based on the following scheme. After the observations
are clustered into m groups, the estimates of a and u are found by least
square (LS) method, and the MLE of ¢? is obtained as function of the
estimates of 4, u and pi. An example from a real experiment is demonstrated

in Section 4,
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2. Estimation of Parameter

To reduce the difficulty of the problem, the estimates of the parameters
are derived for a simpler problem in which it is assumed that the observat-
ions of each group after clustering are the sample from single population.
As one can easily recognize from the characteristics of the problem, the
estimates of a and # are compromising well with the assumption while there
exists the obvious bias in the estimate of ¢? such that aAZ<02.

It will be assumed that m cut-off points for clustering are given, T, T,
..o, Twm_y such that nearly all of the sample of the £** subpopulation lie bet-
ween T3, and Ty whereT,=-—occ, Tp=cc, Thus we write the observations:

X = (xp,%9,..., %)

:(xll!x127"')x1"n X215 v s X2ng x31r"'9x”m-)

where
m
2 me=n
k-1

and (xgp,Xgs,--.,%kn,) is the observation of kt** group. It will hereafter be
assumed that £ always ranges from k=1 to m and that / always ranges
from i=1 to nz when not specified.

Suppose that the obsefvations of k£t group is the sample from the kb
subpopulation only. Thgn the density function of xz; is N(a* 1y, a?%"Vg?),
B)'r taking the loé-transformation of the random variable, it can be easily
showh that In x;;— (k—1) Ina has the same distribution for all /c ,vyith mean
lnu. Accordingly, we have the linear regression function. |

| In x‘ki:lnu—}—(k—l)lna%—eki. ‘ (H
After the LS estimates of /nu and Ina are obtained we have the est}mates of

u and a by taking exponential of them such that

;:[](”xki)—(k_l)n_)v‘,”y
B (2)

u=JT (Ixy)~ B DN NN
R
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where

M= (k=m,
Ny,= ;(k-—l)znk,

N=nN,— N2

The MLE of ¢?is obtained from the derivative of log likelihood function;
N 1 -~ A -
ot=— ‘v;: ;(xh-—a‘k'l’u)z/az“““. (3)

However, in practice, the cut-off points T: are not known, nor is .
Therefore the following iteration scheme is suggested to resolve this problem.
1. Determine n: by looking at the data or from the prior information.
2. Estimate a and u using (2). A
3. Estimate n; by the midpoint of two population means, i.e., find n,

such that
$n < (1 0PV 2 s 1,
Repeat steps 2 and 3 until they converge.
4, Estimate ¢? from (3), and obtain the estimates of pp as A:nb/n.

3. Properties of Estimates

To investigate the properties of the estimates in the previous section the
expectations and variances of the estimates are derived. :
Let T% be the dividing point between the k* and (k4 1)* group, i.e.,
from step 3 of the Algorithm. ' ‘
Ty=(a*+a*NHu/2, k=1,2,...,m—1. (C))
Let Th=o00, and '
zy=(Ty—a*"tu)/(a* o)
=u(a—1)/(20),
zp=—(Ti=a*u)/(a*0)
=u(a—1)/(2a0),
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and write

0,=0(z), D,1=¢(z1),

0:=0(22), ¢:=¢(z2).

Suppose that the populations are separated enough to assume that the sample
from k™ subpopulation is only compounded with the (k+1)* and (k—1)t*
group, and not compounded with any other groups. One can easily see that
this assumption is not unrealistic in practice. Accordingly, we assume that

O ((Ta—a**Vu)/(a**Dg)} =0,

{(Ta—ak*tu) [a%*Vg)} =0,

O {(Trn—a0) /(a%10)} =1,

O {(Tr1—a* )/ (a* 10)} =0, k=1,2,..., m—1,

“Thus, the moments of the random variables of each group become

Ee)= | { o exp (~ G0/ 20Y)

-0

P xp {—(x—au)z/(Zazaz)}}dx/CPl

;27ra0'
= [{( 101+ £2a(1— O))u— (prghr+ paadhn) 01 /CPy
E(xx ) =a*2[{(—pr-1+p2a) D1+ a( pa—pr,18) (P2 — 1) + a1} u
+ {(r1—p40) 1+ (s Prsa)ags) o] /CPY, ®)
k=23, ... ,m—1,
E(xn)=a"2[{pn-1(1—01) +pna®;}u+ (pn_1$1+pnag,)0]/CPu
‘where
CPy=p0:+p,(1-05),
CPy=(—pr_1+L2) D1+ (fr—pas1) (Dz— 1) +pr_y,
k=2,3,... ,m—1, )
CPr=pn_1(1—D1) + puD,.
Similarly the second moments of the random variables are
E(x: ) =[51(—C1$1+C30,) +p2{ —Ca,+a*C5(1—0,)} 1 /CPy,
E(xn?)=a?*2[(pr_y—a*ps) (C1¢1—C39,)
+ (br—*pr.1) {Copy— a*Cs (1 — D) } + pr_1C5] /C P,
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k=23 ...,m—1, (®
En )= "2 [ pn_1{C1$1+C5(1 —01)} + pa(C2ps+a°C30,) 1 /CPn,
where
Cr=ou(a+3)/2,
Cy=aou(3a+1)/2,
Cy=0%+u2
The expected values and uariances of estimates are obtained utilizing the

Taylor’s Theorem of Kendall and Stuart(1977, page 246), From 2 and u of
(2),

E(a)=¢a [1@1 "k{zgé{*];gx’;ffl} { (k=D —¥, —I}V(xk.)J-i—O(n‘l)»

o2 [ ] Ve

°N — o m{—(k—DN +N,}) —(k—D)N,+ N,
E(“)—g"[lﬂa . IN{E (x))? { N —1} V("“}

+0(n7),

76y=a & SRS Ve o0,

and from ¢ of (3),

E@)=— & m[ E@)—E@1E®] /(E@) 40,

V(@) =2 £ ¢ Vi +¢'d (a)+. V(i) +20 g Con(a,u) +0(n)

where the moments, E(x.) and E(x%.), are from (6) and (8), and
V(xe) =E(*) —{E(x) )5

and where

ga= ﬁ {E(Xk-)}nh- (k-1)n—N/N
k=1

gu= ]']" {E(xk.)}nk“ (B-1DN,+N,/N
k=1
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& a=mE(xp)— {E(t;)}"‘lE(uA)z/{E(a)}4(h—1)

gz—‘*i’ii{z meE(en) | BGu) — (@) 1EG) ) /{E(ZI)}“-I}

n

g:ni{z m [ E(a)— (E@)EW | /{E(a)}“}

A A m M . m ,
Cou (a’ u) :142=1>{Tn€;-k)-}-2. (Mk_ l)h{{l {nk’E(k,) }u‘ ’

Mi={—KN,+ (k—Dn+N,} /N
4, Example

The method of estimation, described above, is utilized in the following
example.

In the Coleoptera (Pissodes nemorensis included) all growth occurs during
the larval stage. Due to the fact that certain parts of the body are enclosed
by an inflexible exoskeleton as the larva grows it must molt to accomodate
its increased size. A given linear measurement of a portion of the rigid
exoskeleton (such as width of head capsule) increases in a series of discrete
steps. Females of P. nemorensis lay eggs under the bark of susceptible pine
trees and the entire larval development occurs there. There is no way to
follow the progress of an individual throughout its development since expo-
sure results in death. Table 1 show n=2382 measurements of individuals of
different ages by Atkinson and Foltz of Entomology and Nematology depa-
rtment, University of Florida.

As one can easily see from the Table 1, such is the case when m=35, i.e.,
there are five subpopulations. Foliowing the algorithm given in Section 2,
we determine the starting values of n, as

n,—= 98 up to width 12
n,= 72 up to width 17
ny= 46 up to width 22
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n,= 30 up to width 30
n;=116 up to width 45,
Table 1. Frequency of head capsule width of Pissodes nemorensis larvae

reared at 25°C in slash pine bolte, Oct. 1978 to Jan. 1§79.

Width Micrometer

Units Frequency Width Frequency
7 27 10
9 48 28 2
10 55 29 5
11 7 30 1
12 1 31 2
13 14 32 1
14 27 33 4
15 18 34 9
16 7 35 13
17 6 36 21
18 9 3 17
19 17 38 20
20 13 39 14
21 5 40 5
22 2 41 5
23 6 42 2
24 8 43 1
25 8 44 1
26 10 45 1
TOTAL 382

Table 2. Expected values and variances of the estimates of a,v,q?

Parameter Estimate Expected Value Variance

1. 402 1.401 0. 00001

u 9.588 9.598 0. 00221

o? 0.413 0.422 0.03512

The finale stimates converged after several iterations and the expected values
and variances of the estimates of a, u and ¢? are shown in Table 2, The
estimates of ny’ k=1,2,,.,5 are 97, 67, 57, 50, 116 which result in the

estimates of p, such that
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£1=0.254 $,=0.175, p,=0.136, p,=0.131, py=0.304.
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