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The Nonstationary Vibration of Asymmetry Shaft carrying

two Discs Passing through Critical Speeds

(Analysis by Perturbation Theory)

Bo-suk YANG*

The nonstationary vibration of a rotor carrying two discs with a limited driving torque is studied

theoretically by using the method of the perturbation theory.

The influence of the asymmetry, torque, damping and phase difference in passing through a

critical speed is studied in detail, considering the interaction between the driving source and the

vibration system.

Introduction

In many installations of modern high speed
machineries, the running speed of the machine
is in excess of the resonant of the system, and
so starting up or stopping the machine could
result in the vibration with large amplitude.

The approaches for this problem are devided
into two categories. One is the approach
assuming that an energy source is one which
acts on the vibration system, but does not exp-
erience any interaction from the system. The
other is the case that the characteristics of
the energy source must be considered because of
an appreciable interaction between the energy
source and the vibration system.

The former has been tried by many authors
since Lewis(1943), Dimentberg(1961) and Fern-

lund(1963). The latter has been tried with a

linear and nonlinear system by Kononenko(1964).

W. Hiibner(1965) studied analytically a simple
vibration model. Kawai, Iwastsubo(1974) reported
on the case of a vibration of asymmetry shaft
carrying a disc. Nonami, Miyashita(1978) repo-

rted the problem of rotor passing through critical

speed with gyroscopic effect.

These investigations have not been treated
the nonstationary vibration of asymmetry shaft
carrying two discs systematically.

In this paper, the author describes vibration
characteristics of asymmetry shaft carrying two
discs during passing through its critical speed.

The analysis is made using the method of
Bogolyubov’s perturbation theory. The numerical
calculations are done with digital computer(FAN
AFACOM U-300).

Nomenclature

0-xyz : fixed rectangular coordinate system

%1, %15 %2, ¥2 ¢ coordinate of geometrical center of
the rotor

%16, Y165 %26, Y26 ¢ coordinate of gravitational cent-
er of the rotor

my,m, : mass of the discs

I: moment of inertia of the rotor

C115 €12, €2 ¢ stiffness of the shaft

2dcyy, 24css, 24¢5 ¢ differences between maximum
and minimum values of ¢, €13 €3

ki, ks : coefficient of the external damping

d,,d, : coefficient of the internal damping
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&, &, : eccentricity of the discs

¢ : revolution angle of the rotor

o, : the first and second critical speeds
M—Sé : driving torque

R¢ : resisting torque of driving source
B : angle between & and &

Equations of motion

The derivation of the equations of motion is
shown in the Appendix.
12 e 2y 0102y = m EidPeid— (ki +d,) 2, —id bz,
— Ay 2168t — fc 20214
MyZytCoszatCrazy = myEseiOFA) — (ky+dy) 2,
—id 2y AC2,7,%¢ — fc1 12 0%i¢
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+2,2,)81n 2¢0—(2125+212,)COS 2} veenrecenseees €Y
We are interested in the vibration of the sys-
tem in the neighbourhood of the resonance, the-
refore it is worthwhile to transform the first
and second terms of eq. (1) into principal coor-
dinates and thus represent the system as simple
oscillators, interacting one with another and
with the driving source. By substituting the var-
iables z;=#,+u%,, z,=54;+5s4, into eq. (1), the
transformed equations are obtained.

2
w‘my—cC,
where s;= -S40t
€12
.= wlmi—cyy
s C12

and w;, w, are the natural frequencies of the
system,
The transformed equations are expressed as

follows:

it oty =1~ (Di51Dp)
1

;2z+m22“2=712—(Dl+SzDz) .................. reeeen(2)
where

uy=my+s2m,

ua=my~+$.2m,

Dy =m\E @i~ (dy+k) (g +u) —id (s +u,)
—den Gy tu)etio— Joyy (5,8 +s42) €249

Dy = moE o2 9+ — (dytky) (5131 +558)
~—id (st +522) — A2, (51814 5.5) €%
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Approximate equations

In this paper, we will apply the method of
Bogolyubov’s perturbation theory to obtain an
approximate solution of eq. (2).

It is convenient to introduce the substitution

;= A, cos -+ B, sin ¢

u,=A,cos ¢+ B, sin ¢

# =—Aw; sin ¢+Byw; cos ¢

$y= — Ay, SN P4-Boiw; COS P wvvverrmnrvrsvunerens (3)

Where #;, u, is the from for the solution of
eq.(2) for the x, y coordinates, the complex
quantities A4,, B;, A, and B, are determined as
unknown functions of time so that eq. (3) satifies
eq. (2).

Eq. (2) is transformed to

=B
(A1, By, A, Bz, Al; By, Az, By, ¢, $)sin ¢
= (p—e) At
(A, By, 4,, Bz, A,, B, A;, By, ¢,4)cos ¢
2 o (o) By
dt By .
(Ay, By, Ay By, Ay, By, Ay, By, ¢, $)sin ¢
Y e
(A, By, A, B,, A,, B,,4,,B,,¢,d)cos ¢
vereeeen(4)
where
d1=Di+s5,D,
¢=D,+s,D,

It is worthwhile to consider it in the form
Ay=a,4+EE,(t, a, by, a5 by Q)
B=b+E Ey(ty a1, by, ay, b,y Q)
=04 E,(t, a1, byy 85 by Q)
By=b,+E E(t, ay, by, ay b2, Q)
¢=0+E Eg(t, a1, by, @z b, D) ereerscssnnnnns(5)
@, a4z b, b; and Q will be slowly varying
function of time, while &E,,, EE,, €E,,, EE;,
and & Eq will be small periodic function.
e, az b, b, and Q, are determined from the
equations of the first approximation.
In the region of the first resonance, resonant
vibration close to the frequency o, are characte-

rized by a fundamental varjation of the coordinate
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z; in the this region.

The averaged equations are expressed as foll-

ows:

_%‘= - (-Q-"‘“’l)bl""—z—“—ta {(il’u-‘Plz)Q2
+quw18;—ig;, le—é—(kl+2k2)ﬁl
o Gk 2605,

-—%bt—’- =(Q—wa+ 5 lm, {(Pu'*'il’lz)ﬂz
"‘qu"‘lbx—iq:zmx—é- (k1 +2k5)b,
— 5 U221

d

—d'?'—= ———‘—M'—&ﬁ"‘ R¢+—“’quz(albl -a3by)
—-2-9412(4131 +5:81) +K {du(ay—a))
+dyz(a,e'8— a1e-i8)) "‘Zl- {dyu(B1+b)
Ady(bei8+byemiR)) +-é—.dfu {2(ab+a1)
+i(a2—b) —i(a;2—b2))
g e 57 2aibi+a15) +i(@ =)
—i(a,2—b,2)} +ZI-AC12 si{aby+aiby
—a,a,-+b;b,) }] .............................. (6)

where
pu=mE+s5,m,E; cos B

Drz=5mE;sin B

qu=(k+d)+s52(k+dp)

q12=d\+5%d,

dy =& (cn+si612) +E:(c12+s1622)cos B

d13=&(¢12t51622)8in B

n=dcn+s:® ez

r2=M4c1z 5
By substituting the variables a,=a;,+ia,,,
by=by+ib1z, ay=a1—ia); and b =b,;—ib,, into eq.

(6),then the equations are expressed as follows:

dau
dt

{—Plzﬂz"l‘qu“’xau +lhzﬂb|z+-;- (ri+2r)(bn "‘ﬂxz)}

=—(Q— byy—
( w)byy D,

day, ___ o bro—
at @—en) biz— 5

{Puﬂ’ +41191612-¢12001, "'-5— (r1+2r2) (an +bu)}

ddbt" =(Q—w)ay+ ——

214 1@
{Puﬂz—Quﬁ’lbu—mzmnz—%— (r1+2r5) (an+b12) }

by

T (Q—w)a; +

2;4 @y
{Pnzﬂz—mlwlblz'i'qlzanﬂ”‘—é- (ri+2ry) (bn'—alz)}

d .
d?_: } [AI—SQ—RQ+(411b12—bu¢112)‘01412

—%(1129(“1124“1122+b112+b122) +é—dualz
——21—411’711'——;—‘112{ (bs1—ayz)cos B

+ (a1, +by2)sin B} +%Acu(0ubu—alzblz—
a)18;2+b11b12) '|'%—Aczzslz(aubn"alszz—‘anaxz
+b11512) +-5—A01251 {andii—a,5b,,
*%—(au’-i-alz’—bu’-—buz) )] .................. %)

Moreover, to simplify these equations, the

variables v, =@, —b;2, v=by1+a1, viz=a,+bp

and v,,=b;—a,, are introduced. eq. (11) become

d 1

% =—(Q—w;) v;— T, (@uo v +41:0v1)
d 1
:;2 =(Q—wy) v;— o, (gn@10)2—q1220;2)

—*——d;tls =~—(Q—w) v+

2&;1

{25120 —querv13+¢1:Q013— (11 +272) V14 }

dvie _ 1
_——_dt =(Q—w)vys Zaror

{25102 441191914~ q1:Q01+ (r1+272) 3}

dQ
dt

=~71—[M—Sﬂ‘—'Rﬂ+zl-qlz(“’1—9)("13’+dx4z)
—(@;+Q) (V12 +v12P) }'—%-dn”u"‘é—dzzvxa
+-§-71U13”u+%720u(2012‘—013+"14):| """"" @®

On the other hand, the approximate solution
of eq. (2) in the region of the second resonance

is a similar to that used previously

L::l— =—(Q— w)vy— #zwz (@219021+42:002)
dv,,

(421‘01’/22"‘4229”22)

1
—?i't‘— =(Q"""2)vﬂ - Py

Ao o (Q— w) vz —— 2“ on
{2/’2292_421“2”23""1229”23—
8V ey
7 (Q— w)v3+—5—— 2“ ”
{ —202.0% 4 g21w2020— 22024+ () 42727025}

=3[ M—50— RO+ Faul (0r— ) (ast )

(r'+2r v}

dQ
dt

~(w2+Q) (v2,2+v22?) ) "%—

d2Va
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Since the approximate equations (8) and (9
cannot be solved analytically, they can be solved
numerically. Considering the stationary vibrati-
on for eq. (8) and (9), the following stationary

solutions are obtained.

012=-11- (132 +v14?)
a,? =-é— (V252 +v24%)

v
1[/'1 = tan"’-———‘3
V14

Yo=tan-l— VB e (10)
Vo
where
v =_______1J12K3-—-1>11K4 v, =M
PTTRAE: TKIK,
o= P1KsthaKs Vo= P2 Kgt020Ko
1 Ki*+K, Ke*+-K;

Ki=2u0,(Q—wo)

Ko = (r142r)2+ (gno,—412Q)?
K3=2(g119,—¢q1.Q) Q?

Ky=20%{2p 01 (Q—w) +(r1+2r2) }
K =202 2p01(Q—w) —(r1+2r2) }
K =2py0,(2—wz)

K, =(r)+2r2")t+(g2102—g2202)*
Kg=2(g210,—g222) Q?
Ko=202{21,0,{Q—w) + (! +272"))
Kio=2Q% 220, (Q—wp) — (ry+2r") }

Nonstationary vibration during passing
through critical speeds

The approximate egs. (8)and(9) was calculated
with digital computer (FANAFACOM U-300)
by the Runge-Kutta-Gill’s method for the initial
conditions of eq. (10).

The steady state at 0.9 times the critical speed
are chosen as the initial conditions.

The driving torque used for the calculation has
a limited power.

Fig.1 shows the comparison of the amplitude
between the stationary and the nonstationary
motion in the neighbourhood of the resonance.

The critical speed is higher and maximum am-
plitude is smaller than that of the stationary state.

The resultant angular accelaration through the

critical speed is smaller than that of the ideal
driving source.

The amplitude characteristics after passing

through the critical speed made periodic cycle
to the stationary amplitude.

A
wer
—— tatationary vibd
ration
—.— |nonstationary

? 1:0 1.1 1.2 1.3 1.4 %1-,5
Fig. 1. Comparison of stationary state and

nonstationary state.

° 0.8 1.6 2.4 3.2 4.0 t

Fig.2. Interaction for very limited power.

Fig. 2 shows the characteristics of the amplitude
and the rotating speed of the rotor for very
limited power.

Due to the interaction between the driving

torque and the vibration system, the speed cha-
racteristics varies.

The acceleration becomes smaller in the non-
stationary vibration to the maximum amplitude

and becomes larger in the period of decreasing
amplitude.

These relations are more remarkable in smaller
torque M, larger slope S, and resisting torque R.

Fig. 3 shows the influences of the torque M at the
values of S=—0.0168, k;=0.005, k,=0.8k,.
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\ T 3u=0,0
2.4 - tpm0,02
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\ £:40.005
2.0

0.8

Q.2 O.4 0.6 0.8 1.0
Fig.3. Influence of driving torque.

For M=2.14, because of resisting torque in
the neighbourhood of the resonance is greater
than the driving torque, so rotor could not passing
through the critical speed.

When the driving torque has very limited
power, much time needs to pass through the
critical speed and the expands the unstable state.

a
1.4
YA\ —1p=0,0
. ;o — 10,02
-2 \ =004
\ ¥x1.05

$2-0,004
\ #x0.005

Fig.4. Relation of driving torque and
maximum amplitude.

Fig.4 shows the characteristics of the maximum

amplitude for the variable driving torque.

When the torque increases gradually, the
maximum amplitude decreases and then become

nearly constant,

p=0.0 7
#,=0.005 ." 1.15
§=-0.01 68‘

11,10
1.05

1 1.00

20 40 60 80 100
Fig.5. Influnce of asymmetry of the shaft.

The influence of asymmetry of the shaft is
shown in Fig. 5.

Under the condition of M=1.05, k&,=0,005,
k,=0.8%, when asymmetry of the shaft incre-
ases, the maximum amplitude in the neighbour-
hood of the resonance increases rapidly, and

rotating speed decreases.

a .
— :£-0.0

1.0} —-—: £,%0.005
—— 1§, =0.025

=4
5=-0.0168

p=0.0

0.6

0.4 / — \

SNV

\
\ Q\ﬂ/\

. — =

o N L " A
20 40 60 80

Fig. 6. Influence of damping.
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Fig.6 shows the influences of the external
damping at M=4.

Taking a smaller values of %, the maximum
amplitude increases rapidly, and nonstationary
state will be more longer.

For k=0, the amplitude after passing through

Geax
\ — ,M=1.05
2.0 .
—e— :1M=0.95
$=-0,004
pn=0,02

0.008
B (#2= 0.3k )

0,002 0.004 0,006

Fig. 7. Relation of damping and maximum
amplitude.

Homax
o

—-~ tR=0.04
\ M=1,05
2.0 \ \ §==0.004

f— 1p=0.0
—-~ 3pu0,02

Q.41

0.002 0,004 0,006 0,008 .. 0.01
£1(R2=0.80)

Fig. 8. Relation of damping and maximum
amplitude.

1%
u=0,02
&t € <£20,06
£, £=0.0075
6
Pl
2}
El 0.5% T ,‘
LSt g 2

Fig. 9. Influence of angle (8) between &, adn &,.

the critical speed decreases very slowly.

Fig.7 shows the characteristics of the maximum
amplitude at M=0.95, 1.05 when the damping
varies.

Fig.8 shows the damping influences when
asymmetry of the shaft varies. ,

These are coincides with those of Iwatsubo’s
results, i.e., when damping is small, asymmetry
of the shaft and the interaction between driving
source and the vibration system are much influ-
enced respectively.

In comparisons of Fig.7 and Fig.8, Torque
and damping influences similarly in with max-
imum amplitude. Fig.9 shows the influence of
8. The maximum amplitude in passing through
the critical speeds is the largest at B=u.

It is caused by the relative motion of eccentricity
and coincides with the characteristics of the

stationary state.
Conclusions

In this paper, the analyses in nonstationary
vibration through a critical speeds are made as
follows;

1) The characteristics in passing through the
critical speeds of the rotating shaft system
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with two discs are similar to those of the
rotating shaft system with a disc.
The characteristics in the neighbourhood of
the first and the second resonance are coin-
cided with quantitive.

2) The interactions between the driving torque
and vibration system are more remarkable in
smaller torque, larger slope and resisting

torque.

3) In the system with a very limited power, the
maximum amplitude in passing through a
critical speeds decreases with a decrease of
asymmetry of the shaft, and decreases an incr-
eases of damping, torque, and is the largest

at B=n.

Appendix : Equations of motion
For the purpose of simplicity, the following
assumption is set in the analysis, i.e., the rotor
is rigid and has a weightless shaft.

The external damping forces are assumed to be
proportional to the velocity of the center of the
discs, while the internal damping forces are
assumed to be propotional to the velocity of the
bending deformation of the shaft. It can be ne-
glected that the torsional vibration of the shaft
and the gyroscopic moments. ‘

The kinetic energy of the rotor is

T= %‘&(mm’+mm’) +%’”‘1( (x1—&i$sin ¢)?

+0r+E16 €08 8} +5 mal{r—Exd sin (¢
+B) V{9242 cOS($+B) 1] eorvemeeners (A-1)
The potential energy due to flexure in the

shaft is

V= -%-'-‘ u(x 240D e (xixa-ty1y2) +%—sz (x22 422
+1/2 ey { (x12—y12)cos 2¢+2x, ¥, sin 2¢} _
+4c12 (2122~ 3132) €08 29+ (315 +-31¥2)sin 2¢}
+1/24c2;{ (2,2 —y,?) cos 20 +2x,y, sin 2¢) .- (A-2)

The dissipation function due to viscous forces is

W=%-k1 (K22 +~%—kz (fzz+yz’)%-d1 E24+n?)
+%—d2(x.22+j’22)—Zdlqs(xlj’l—x.lyl)

—2d,P(Xayp—TRgyg) roesererronssnsensrraraarasanians (A-3)
To express the equations of motion of this

rotor system, we use Lagrange’s equations

d aT )_ aT aw aV

= =0
dt 9qx +

3q, 3¢, | 94qa
(n=1, 2,-+,5)--(A-4)

where q1=x1, @:=¥i, 3=% §=Y2, 4%=9
The equations of motion are
Mx 01Xy € 1% = E,$ cOs ¢— Chi+d )z —didy
— deyy (xy cos 24+, sin 2¢)
— Ac12(%, cos 2¢+y, 8in 2¢)
myiteuyteny, =mE ¢ sin ¢— (kytd)yi+digx,
— Acyi (%1 sin 2¢—y; cos 2¢)
—dcpz(xz sin 2¢—y, cos 2¢)
My%p+Cog%a+C12%1 =1,E,9? COS(9+B) — (K +-d) 1,
—dypy,— Ac22(x, €OS 2¢+y, 5in 2¢)
— dci2(x, coS 2¢+y; sin 2¢)
MaYa-tCaryatciay =mEsd? sin(p+8) — (k2 +d2)y.
tdypxs— Acz2 (%, Sin 2¢—3; cos 2¢)
— ez (x; sin 2¢p—y, cos 2¢)
Ip=M—S¢—Rp—c, & (%, sin ¢—y; cos ¢)
—€1261 (%2 8in $—y; €08 ) —Cz2 E2{%, 5in(¢+85)
—¥2 €os(p+B)} —c12€; (%1 sin(¢-+8) —y1 cos(6+8)}
—d\ (x,31—31%1) —d3(%2Y2— y2%2) —dl¢(312+ylz)
—dyp(x224322) + den (22— 7)sin 2¢
—2x1y1 cos 2¢} +Ae1z) (F1x2—y132)8in 2¢
— (x122+y132) €08 29} +Acz2 {(£22—y,P)sin 2¢
—2%7y5 COS 2] sereersessrrrisienssiistinanntasariens (A-5)
These equation can conveniently be represented
by the complex variables z,=z;+iy, 22=2+iy
My benzy+cioza =mEi¢? e — (b +di) 2, —idi$2,
—decnz; €219 — fcrgz, €700
MaZsHCorzy+Croty =y €i+8) — (ky+-dy) 2 —id 2,
— 222, €21 — fcyp2, €219
Ip=M—Sp—Rj— 5 {cubi(are-io—Fe'®)
+c1261(2,6710—2,6%¢)
02,8, (226~14+E) —Z,pel446))
C12E, (2,0 D) —Z,6it+ED)
'—dl(l-_lzr—zlzl)”dz(§222—227z)1
—d1¢zlil—d2¢2222
g den (@2 +Esin 29
+i(2,2—2%)cos2¢)
+—%—Aczz {z:2+2,%)sin 2¢
+i(2,2—12,%) cos 2¢}
+-5—Afnz {(212,+2,2,)sin 2¢
—(212;F2,2,) COS 2} eevrereennes (A-6)
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