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Modifcation of Reconstruction Filter
for Low-Dose Reconstruction
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Abstract

The reconstruction problem in a low dose case requires some compromise of resolution and noise
artifacts, and also some modification of filter kernels depending on the signal-to-noise ratio of
projection data. In this paper, an algorithm for the reconstruction of an image function from noisy
projection data is suggested, based on minimum-mean-square error criterion. Modification of the
filter kernel is made from information (statistics) obtained from the projection data. The simulation
study proves that this algorithm, based on the Wiener filter approach, provides substantially improved
image with reduction of noise as well as improvement of the resolution. An approximate method
was also studied which leads to the possible use of a recursive filter in the convolution process of

image reconstruction.

Introduction

The deblur function for the convolution-back
projection technique is of well-known form{1]
lwt, lwl< o2

¢(w)={0 jwl>

]
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where  should be larger than the bandwidth of
the image to be reconstructed. This filter function
of Ramachandran and Lakshminarayanan[” with
linear interpolation in back projection provides good
reconstructed image for high signal-to-noise ratio. As
is known, it is sensitive to noise. Shepp and Loganlz]
developed a filter with less sensitivity to noise and
this has also less ringing artifacts at edge of the image

with only minor loss of sharpness. Recently, Tsui
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and Budinger[al

proposed non-stationary deblur fun-
ction for low dose reconstruction. In this paper, we
will consider the formation of stationary deblur
function.

As mentioned above, there is a need for a trade-
off between resolution and noise. It depends on the
application situation. The general form of the re-

construction filter can be written as
() = {0l H(w,8) oo (2)

where H(w, 0) is an apodizing function. In this paper
the problem of minimum-mean-square error will be
considered. For the image, minimum-mean-square
error criterion can be achieved with well-known
Wiener-filter. [ 4 51

HY (w,6) Yo(w, §)
IHy (w0: 017 ¥ 5(w,0) + Yp(w, 0)

H(w.0) = - (3)
where w and 6 are spatial frequencies of image in
polar coordinate, Hy(w, 6) is transfer function of
sampling process, ¥ ,(w, ) is power spectral density
of image, and ¢, (w, 6) is noise power spectral density
function. The concept of filtering the projection data
with 2-D Wiener filter was first suggested by Cho and

tel Their method needs more than two

Burger.
reconstructions and requires estimation of power
spectra of image and noise from the noisy reconstruc-
tion image. Recent work of Tsui and Budinger[‘”
utilizes the projection data for the power spectra
estimation. They use different filter functions at
each projection. A slightly different approach is to
construct a filter function from data of the first few
projections and use this filter function for filtering
successive projection data. With this method, consi-
derable computation ‘time can be saved and some
statistical advantage can be gained in some noisy
image reconstruction, e.g. in nuclear medicine CT
where poor signal-to-noise ratio might require different
type of filter kernel than conventional ones.

II. Filter Implementation

The minimum-mean-square-error filter for recon-

struction from the projection data is of the form[3]

lwlHT (w, 0
$(w,0) = with ©.9) e (4)

lHl(w,O)‘z+ﬂV J (o, 0)
2 PTOV

where Vp is the average variance of projection noise.
Eq.(4) is a slightly modified form of Eq.(3) for the
transverse section reconstruction, i.e. the noise power

Jo!

spectrum is replaced by V,,. In the case of !
b

2w
deblurring of stationary independent projection noise,
the noise power spectrum is the variance of projection
data multiplied by the absolute value of spatial
frequency.[”

In our filter implementation, a Markov field is
assumed. The assumption of 2-dimensional Markov
field has been widely used in digital image processing

[8-11]

(restoration and compression). The auto-

covariance function for the 2-dimensional Markov

process is[ 5]

K(x,¥) = Ry exp [-a(x? +y?)" |

where Rg is an energy scaling constant and « is a
scaling constant. Sometimes we refer to p = exp(-®)
as a correlation coefficient. The corresponding power

spectrum is

2r AR,

Vo (wy, wy) = -
X y (a? +w;+ w;)alz

where wj} + w;, = w? (for more details, refer to

Appendix). As a simplifying assumption, the Markov

process is assumed to be of seperable form with an

autocovariance function

K1 (%, ¥) = Ry exp [~0q Ixl = Iyl]. v @)

The projection procedure can be easily modeled by
Eq.(7), but the filter implemented with Eq.(7) is
different at each projection direction, i.e. non-
stationary. As a consequence the image parameters
Ry, &y were estimated using Eq.(7) and the filter is
implemented with Eq.(5).

The projection data are the weighted sums (or
integrals) of image function (density). So we can
assume that the noise of projection data be the sum

of distributed noise. With this assumption, some

—24—
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correlation occurrs between the noise of projection

data as shown in Fig. 1. But if sampling width is

Pi,n

]
_—

Pi,n'

A

Correlated noise

region of P; nand
Pj,m
e
Fig. 1. Correlation of Noise.

small compared with the image size, this correlation
is small enough to be neglected. The noisy projection

data is given by

42
Pyn= S f;:_;} [0(x, )+ €0,y | dxdy

where 0(x,y) is image function, A is detector size,
Let us

assume that the image function 0(x,y) has some

€ is projection length, and €(x,y) is noise.

constant mean and the variation term, i.e.

0, y)=I+a(x,y)

where I is image mean value. Then the Markov

assumption of Eq.(7) gives

E[a(x,y) ax’,y)] = Reexp[=-0y [xx'|-
LT 2 | P 10)

Assuming no correlation between image and noise

functions, Eq.(8) and Eq.(10) give

E[P;,n] =P AT Q4 R, Fay)+Vp

E[P; P nek] = I°A" €7 + Ryexp(-a1 kb)G(0y)
....... pereemesisrieneneesens (12)
where

4 1
F(a1)=a—;[A-—-—[l-exp(—alA)]]

¥ 1

1
[Q-aTU'eXP(‘“lQ)H

2
G(oy) = —Oﬁ»-[cxp(c‘tl A) Fexp(-a, aA)-2}

3

1
(- —[1-exp(~a, Q)]]
al
and b is the sampling interval. Rearranging Eq.(12),

we have

E{PjnPin+2] - AT

ELP nPyper| -1 87 0

exp(-0y b) =

. ElBjpPips3] -1 &7 €
o e T 2 EThTTT
E{P hPjne2] -1 & ¢
And when oy A < 1 as the real case, we can see that

X (T o € 2 TSSO (16)

From Eqgs.(11)-(16), we can see that the projection
data is also Markov process if the image field is
Markovian. To implement a sy mmetric filter function,
Eq.(7) is fitted to Eq.(5). The best fitting is achieved

when

o =

Using Eq.(11)-(17), the image coefficients Ry, o can
be estimated from the projection data.

Then the minimum-mean-square-error filter is given
by

wl

o(w) = |w|Vp

T 4n* aRg
where only noise filtering is considered and transfer
function of the detector blur is assumed unity, and y
is a factor to prevent over-smoothing of reconstructed
image.

Let us consider an approximate implementation of
Eq.(18).
proximate Eq.(18) as

Usually « is very small, and we can ap-

= leﬁ‘ 19
o(w) s (3“ D N
where 5‘ is given by
a 4’ « R,
B = e e (20)
va
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And R, is given by

E{Py]~m? -V
R, = [Pinl-m P, @
F(oy)

where m is the mean value of projection data and
F(ay ) is given by Eq.(13). When o; A < 1, Eq.(13)
becomes

2 1
Floy) = L [Q-—[1—exp (=a; D] I....c. 22)
(o 2] ¢ 5]

When ¥ is sufficiently large, Eq.(22) can be approxi-

mated as
. 2 1
Fay) ™ —(R=—0). e (23)
03] oy
Then Eq.(20) becomes
. Vool g -mt -V,
B T e e R B (24)
Y Vp a, - Q

Usually the correlation of projection data is large, and
ap is 0.02-0.06, when the sampling interval is nor-

malized to unity. Then Eq.(24) is approximated as

0.05M -1

where M is number of rays per projection, &y is set
0.05, v is set 0.05, and I' is a multiplication factor.
And S is effective SNR of projection data, which is
given by

where the numerator is the r.m.s. value of projection
data. In Eq.(25) M is used instead of £, because the
projection length £ can be approximated as the
number of samples in each projection when the
sampling interval is normalized.

One interesting aspect of Eq.(19) is that the filter
can be easily implemented with recursive form using
{12] when 64
is small, i.e. the noise is high. In recursive implemen-

well-known impulse invariant transform

tation, two recursions are required, i.e. forward and

backward, to get the zero phase condition. The

condition for the recursive filtering is given by

ie.
IS < 0.2214 M =4.429  covnvrnneninriennanne (28)

where the critical value of g* is chosen such that the
frequency response at w = g is -40 dB.

In convolution - back projection algorithm, the
main burden of computation is back projection. The
computation saving with recursive filtering, therefore,
is not so large but still appreciable. The use of

recursive filter may appcar useful in some cases.

III. Results of Simulation

In simulation, the exact form of Eq.(18) was used,
and vy was taken to be 0.05. The algorithm was
implemented by following steps;

1. Get projection data, add noisc, and write in

data file.

2. Read a few projection data and estimate image
parameters.

Construct Wiener filter.

Read the first projection data.

Perform FFT of projection data.

Multiply the results of step #3 and those of
step #5.

Perform inverse FFT.

oo s w

.

8. Back-project.
9. Read next projection data and start at step #S5.
In the above rilter implementation, the frequency

sampling technique{ 12]
(5]

was used. To smooth the
truncation effect, the sampled frequency response
was inverse-transformed and windowed with some

window function,[ 12]

which can be chosen by input
parameter in the program, and then it was re-trans-
formed.

Phantom used for the simulation is shown in Fig.
2. The left-sided numbers are diameters of circles in
units of pixel when the image size is 64 x 64 pixels.

The diameter of the large circle is 60 pixels. We used
two simulation phantoms of same shape but of

different contrast. The lower-sided numbers are the

contrast of two phantoms, where the contrasts are
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Fig. 2.

Fig. 3.

Phiantom used for the simulation. The left
sided numbers are diameters of circtes in

pixel units, when the imuge size is 64 pixels
X 6d pivels. The lower-sided nuinbers

are contrasts ol circles in two phantoms.

Shepp and Logan

0.45%

1.4%

4.5%

defined as (signal level)/(background). The density
of the large circle was set to unity.

In simulation, the projection is approximated by
the strip integral. For each projection data, the noise,
the vartance of which is proportional to projection
data, is added. The noisc standard deviations are
0.45%, 1.4%, and 4.5% of square roots of projection
data, respectively. For high contrast phantom, simula-
tion is also performed with noise standard deviation
of 14.1% of square root of projection data. In
simulation, the projection data are sampled at 128
points and 256-point FI'T is performed, for 64 x 64
reconstructed images.  For comparison, the recon-

structtons are alse performed using Shepp and Logan’s

Wiener

Reconstructed images of low contrast phantom. The numbers represent the quantity

of noise. The noise standard deviations are the numbers multiplied by square roots
of projection data. The images are recon structed using 100 views over 7 and 128

samples per each view.
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algorithm.  The Shepp and Logan’s filtering was contrast phantom, and in Fig. 4 for high contrast

carried out in spatial domain via discrete convolutions. phantom. To observe the fine details of reconstructed

In both cases, the linear interpolation is adopted for images, grey levels are sliced at suitable levels. For

back projection. the comparison of two pictures, same dynamic range

The simulated results are shown in Fig. 3 for low of grey levels are used.

Shepp and Logan Wiener

0.45%

1.4%

4.5%

14.4%

Fig. 4. Reconstructed images of high contrast phantom. The numbers represent the quantity
of noise. The noise standard deviations are the numbers multiplied by square roots
of projection data. The images are reconstructed using 100 views over @ and 128
samples per each view.
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IV. Conclusions and Discussion

One possible way to filter noise has been shown
in the reconstruction problem based on minimum-
mean square-error sense. As can be seen from the
simulation results, the filtering effect is promising
when compared with the unfiltered versions. Up to
4.5% noise, the Wiener filter approach gives con-
siderable resolution improvement. An approximate
method was also given as well as the possible use of
a recursive filter. As mentioned above, some saving
of computation time with recursive filter implementa-
tion can be seen.

It should be mentioned also that the minimum-
mean-square error is not always an optimum criterion
for all the applications. Sometimes more noise can
be endured with other techniques, if noise and re-
solution can be compromised. More study is needed
on these points.

Our study was limited to noise filtering of con-
volution — back projection algorithm. For optimum
noise filtering, the direct Fourier transform techni-

[13]

que can also be efficient, since this method does

not require back projection. In this case, the image
and noise power spectra can easily be estimated
directly from the reconstructed image, and using
this information conventional two-dimensional image

restoration can easily be performed.

Appendix
Power Spectrum of 2-Dimensional Markov Process

The power spectrum of a stationary image is de-
fined as 2-dimensional Fourier transform of its auto-
covariance function. The Fourier transform of Eq.(5)
is

volwx,wy) = [J Roexpl-at® +y)”)

expl-i{wxx + wyy)] dxdy - (A-1)

where j = «/~1. Making transform to polar coordinates
in both x - y plane and wx - wy plane, i.e.

_29“

X =TCOS¢p
y=rsing

p= SEEYT [ e (A-2)
= tan™! (2

¢ = tan (y)

wyx T w cos o

wySwsing (A-3)

w =wi twy

= tam! (X
f = tan (Tay) )

we have

o T
Yolwh)= fo f: R, 1 exp(-0r) exp[~jwr cos(p-0)}]

dpdr. e (A-4)
Using the Bessel function identity
1 2m
Jo(a)= -Z;f0 exp[~ja cos (g=6)] dg werreers (A-5)

where J, (-) is the zero-order Bessel function of the
first kind, then Eq. (A-4) becomes

volw) = ZWRof:r exp (~ar) Jo (wr) dr

where the angle @ is omitted, because the dependence

of the transform on angle 6 disappears. R.H.S. of
Eq. (A-6) is the zero-order Hankel transform of
27Re exp (-ar), which is given by %
2n0R,
Yolw) = T T TR s (A-7)

Substituting Eq. (A-3) in Eq. (A-7), we have Eq. (6).

Acknowledgement

The author would like to express his sincere
gratitute to Dr. Zang-Hee Cho for his grateful sug-
The author is also indebted

to the reviewers, who made many helpful suggestions

gestions and guidance.

to improve this paper.



1980 &£ 28 BFILBEE H1TH F1H#

References

G. Ramachandran and A. Lakshminarayanan;
“Three-Dimensional  Reconstruction from
Radiographs and Electron Micrographs: Ap-
plication of Convolution Instead of Fourier
Transforms,” Proc. Nat. Acad. Sci. USA, Vol.
68, pp 2236-2240, 1971.

L. Shepp and B. Logan; “The Fourier Recon-
struction of a Head Section,” IEEE Trans.
Nucl. Sci., Vol. NS-21, pp 2143, June 1974.
E.T. Tsui and T.F. Budinger; ““A Stochastic
Filter for Transverse Section Reconstruction,”
IEEE Trans. Nucl. Sci., Vol. NS-26, pp 2687-
2690, April 1979.

H.C. Andrews and B.R. Hunt; Digital Image
Restoration, Pretice-Hall, Englewood Ciiffs,
N.J., 1977.

W.K. Pratt; Digital Image Processing, Wiley-
Interscience, New York, N.Y., 1978.

Z.H. Cho and J.R. Burger; “Construction,

Restoration, and Enhancement of 2 and 3-
Dimensional Images,” IEEE Trans. Nucl. Sci.,
Vol. NS-24, pp 886-899, April 1977.

J.P. Stonestrom and R.E. Alvarez; “Optimal
Processing of Compted Tomography Images,”
Proc. Int. Opt. Computing Conf. *77, in Ap-

10.

11.

12.

13.

14.

plication of Digital Image Processing, SPIE Vol.

119, Soc. Photo-Optical Instr. Engin., Belling-
ham, Wash., 1977,

A. Habibi; “Two-Dimensional Baysian Estimate
of Images,” Proc. IEEE, Vol. 60, pp 878-883,
July 1972.

A.K. Jain and E. Angel; “Image Restoration,
Modeling, and Reduction of Dimensionality,”
IEEE Trans. Compt. Vol. C-23, pp 470476,
May 1974.

D.P. Panda and A.C. Kak; “Recursive Least
Square Smoothing of Noise in Images,” IEEE
Trans. Acous. Speech Sig. Proc., Vol. ASSP-25,
pp 520-524, December 1977.

J.W. Wood; “Markov Image Modeling,” IEEE
Trans. Automat. Contr., Vol. AC-23, pp 846-
850, October 1978.

A.V. Oppenheim and R.W. Schafer; Digital
Signal Processing, Prentice-Hall, Englewood
Cliffs, N.J., 1975.

R.M. Mersereau; “Direct Fourier Transform
Techniques in 3-D Image Reconstruction,”
Computers in Biology and Medicine, Vol. 6,
pp 247-258, October 1976.

L.N. Sneddon; The Use of Integral Transform,
McGraw-Hill, New York, N.Y., 1972.




