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Abstract

The problem of nonlinear time-invariant system identification by estimation of Wiener

kernels is studied for discrete time systems with inputs having symmetric probability

distributions. G-functionals are constructed in the time domain, and two distinct methods

for identification are presented. It is further shown that under idealized conditions, these

seemingly different techniques yield the same results. The results of identification of

asimulated second degree system is presented.

I. Introduction

Volterra (16) represented the input-output rel-
ation for a class of nonlinear time invariant sy-

stems as

sty =kot [ ki(u)alt—u)du
+f_°;f:° Eoe,up)x(E—un)x{t —uz)durdu,

+f_:f:f_zks(ul,uz,u3)x(t — )z —us)e

x2(t—us)duidu,dus+ - 1.1
which is known as a Volterra series. We will
call &,(u1,u,,...,1,) the “nth order Volterra kernel”
when the «;s are independent variables, and if
Foen(tty nsttnim)=0 for m>0, we will call the sy-
stem an “zth degree nonlinear system” {or simply
an “ath degree system”).

Wiener [7,17) reformulated the Volterra series
representation into sums of multi-dimensional
convolutions constructed in the following way.
Define the nth order multi-dimensional convolution

with kernal 2,,;,i<n
W Calth3 = o[ bt eese)
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#I2E S 108048 9] 12

x(t—wy)...x(t—us)du,y...du, 1.2y
where z(¢) is a zero-mean white Gaussian process..
Let G,(h,,z(t)] be a linear combination of these-
convolutions

Gulhn )= 3520, W,

subject to the condition that
Gl 2(1))G oL, 2(2) =0 if m+Fan,

1.3y
where “ indicates the time average over the-
interval (—o, =), The functional G, constructed
in this way is called the “ath degree G-functi--
onal,” and it is orthogonal to all functionals of
degree less than #. The kernel 2, is called the:
“ath order Winer kernel.”
The first four G-functionals are given by

Golhoz(t)I=h,

Gilhy,z(8)] Zf:h;(u)x(t—u)du.

Galhaa®3=[ [ halus,ult—10)-
z(t—uz)durdu,— A j:lzz(u, u)du

Gshs, z(t)] :J_mm~-f_i}la(ul,u;,zta)x(t~—u1)x(t — )
x(t—us)dududus

— 3AJ': f_: Puslury, tha,205) >

x(t—u;)dulduz. (l.4\/
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where the power spectrum density of the zero
mean white Gaussian process z(¢) is @XX(f)=A.
Using the G-functionals, the output y(¢) can be

represented as

y(t)=?::'# G, (h,,z(8)). (1.5)

Generally the kernels &, in Eq. (1.5) are diffe-
rent from the %, in Eq. (1.1). However both sets
are assumed symmetric to guarantee uniqueness.
Due to the orthogonality property of the G-fu-
nctionals, the Wiener series can be truncated
after » G-functionals, giving the best nth order
polynomial approximation to the system response
in the sense of the least integral square error if
the input z(f) is a sample function of a zero mean
white Gaussian process. Higher order G-funct-
ionals are independent and can be added later
without affecting the estimate of G-functionals
already found. Thus for systems representable
via Volterra series, identification becomes the
problem of determining the Wiener kernels.
Several methods have been presented to find
Wiener kernels of a continuous causal system
from the given input and output pairs. Wiener
(7) suggested expanding the nth order kernel
ha(ta,...,u,) as a sum of Laguerre functions /.(u),

h-(“l,...,u,)zi-..icu:‘

m1=0 m,=0

" lml(ux)... l’"n(un)

and using phase shift networks to determine the

coefficients ¢m;, ... », This method requires exces-

sive computation and is not widely used. Later

Lee and Schetzen (8) introduced a method using

cross correlation techniques to compute Wiener

kernels. Their formulae for the kernals are
ho=3()

hi(u) =% y{E)x(t—u)

holus,u,) = '2711—2- y()x(t —uy)z(t—us)

where ;7 u, (1.6)

ho(ttr,enntin)= ’711-‘ M)z (E—ur).eoz(t—u,)

where w,7u; for i#j
where A is the power spectrum density of the
white Gaussian input process =z(¢) and y(Z) is the
output of the system excited by z(f). Hower es-
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timates of A.(u1,...,u,) for wi=u; {({#Jj) are very
sensitive by this method.

Krauz (6) was interested in identifying biolog-
ical systems that are excited by random impulse
trains. He used a Poisson process as the input
z(t) and built a set of orthogonal functionals {G,
Chaa(t)]}, and a method of identifying Wiener
kernels h,. Krauz obtained essentially the same
formulae as Eq. (1.6) except that the power
spectrum density A 1is changed to the mean
arrival rate in the Poisson process.

French and Butz (3) proposed calculating Wi~
ener kernels in the frequency domain using FFT
algorithms to reduce the comutaptional effort,
and later (4) suggested Walsh functions as a
means of computing the kernels. They used a
white Gaussian input process, but the derivation
of their formulae (3] involved some difficulties.

Marmarelis {12,13) suggested using a “constant-
switching-pace symmetric random signal,” which
changes its amplitude every constant time interval,
for identification in the time domain. This process
has finite power, but when used as an input to
continuous time systems, leads to “approximately
orthogonal” functionals instead of the orthogonal
G-functionals. It should be clear that the kernels,
which we called Wiener kernels when the input
is a zero-mean white Gaussian process, will change
form, depending upon the particular input.

Palm and Poggio (14) and Yasui (18) have
written highly mathematical treatises exploring
the connection between the Wiener and Volterra
nonlinear system representations, and many papers
2,5,6,8,9,10,11,13) dealt with the actual com-
putation of the Wiener kernels (mostly up to
second order).

In this paper we consider the construction of
G-functionals for nonlinear discrete systems and
then demonstrate two methods for identification
of Wiener kernels in the time domain. Section
III reports the results of identifying a simulated
second degree system with adjustable parameters.
For more detailed presentatron, see Choi [1].
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I1. Identification in the Time Domain

A. G-functionals for Discrete Systems

In this section, G-functionals for discrete sy-
:stems will be constructed using a Gram-Schmidt
type orthogonalization procedure, similar to Wie-
ner’s approach for continuous systems. Let T be
@ unit time interval and z(;T) and y(;T) be the
input and output of the system at time :7T. We
will only consider causal systems with finite
memory NT. The resulting restrictions, on the
kernels, &,(u,...,2,) of such systems are

Fottyen,ua)=0 if any wu;<0,
and £.(us,...,u,)=0 if any w,>NT.

The corresponding Volterra series representa-
tion (Eq. (1.1)) for a discrete system is

WiT)=kot 35 bUi=NTI2(T)

+ O3S SS R—i)Ti—i)T)

j=i=N+1 j=i-N+1

2(J1 D7 T)+ . @1
To avoid an unnecessary proliteration of sym-
bols, when it is obvious from the context, we
will eliminate 7 in the arguments of =z, v, &,
etc. Also when the bounds of the summation are
clear from the context, we will omit these as well.

There are an uncountable number of different
ways in representing k, (»>>2) in the sense that
all the different representations give the same
input-output relations. When k, is not symmetrical
with respect to its arguments, Wiener (173 sugg-
ested that one can always make it symmetrical
by simply taking all the permutations of its arg-
uments, adding them and dividing by the number
of permutations. From now on the kernels &,
(or h,) are assumed to be symmetrical.

We mentioned in the previous section that
Wiener kernels change as the input changes from
a white Gaussian process to a Poisson process.
Hence describing the characteristics of the input
precisely before finding the G-functionals is esse-
ntial. We assume that the input z{iT), i=--,

—1,0,1,2, -« has the following properties:
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1) Random variables (¢ T)’s are mutually inde-
pendent;

2) Random variables 2(; T)’s have identical p.d.f.;

3) The p.d.f. 7X(.) of 2(:T) is an even function;

4) E(2™{T)) is bounded for all n.

The first two assumptions allow us to conclude
that the process is ergodic and hence time aver-
ages and ensemble averages are the same. Ass-
umption 3) allows us to solve for the form of
the discrete time G-functionals in a straight-
forward manner, while the last assumption guar-
antees that our procedure will remain well-posed.

”

As we denoted the time average with “7— ",
we denote the ensemble average with *{ 3", lL.e.,
{zy=E[z). Also we denote the variance and nth
(n>2) moments of =({) by A and ¢,Av%

A=<z
LAY E={"({)) 1=2,4,6,... (2.2)

From these relationships we can always compute

A and ¢, if we know the p.d.f. FX(-). Note that

a Gaussian distribution function is one of the

p.d.f.’s which satisfy third assumption on z(é).
The assumptions on the input process yield the

following lemmas which we state without proof.

Lemma 1 : {z(i)z(7,)...2())...2(¢.)>=0 if there ex-
ists £, such that 7,%{; for all j#E, or an odd
number of arguments are equal.

Lemma 2: The set D generated by(¢y,7:,75,4.) such
that a(i)x(f,)x(f)x(7)p701s D=A,NA.NA:NB
where

Ar={(t1,i 0,05, I1=12,E3=0 81715}
Ar={(f1,2,85,04) | 11=13,82=04,5151,)
As={(i1,42,85,04) | E1=204,82="01,0171,}
B ={({v,i2 45, 0) | ir=i=iy=10,}.

Lemma 3: {a({,)x(i,))=Ad:,i» where dii, is a
kronecker delta (§i,i,=1 for 7,=4,, zero othe-
rwise).

Lemma 4 : {x(7,)x{i,)zx(f:)2(d ) =A%{8ir,i5 bisipe
(1=841,59)+8isyis Big,ig(1—8ty,1,) 011,54 Gin,is(1—0iy, i)
Fcydis, iz Oiyy iz Oin,iy).

Let us now build G-functionals consistent with
the orthogonality requirement using a Grahm-Sch-
midt orthogonalization process. For notational
convenience we will use y,{(7) to denote G,lh.,

z(4)], as it might be considered the output at
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time 7T arising from the nth degree G-functional
system. With this notation Egq. (1.5) can be

written as

)= 23 (i), @.3)

Using the ergodicity of the input process, the
orthogonality requirement of G-functionals in Eq.
(1.3) can be replaced for discrete systems by

(G a(Pmy(£)) Galha,z{d)3y=0 if m¥#n. (2.4)

‘From this requirement and with the previous
lemmas, the first few G-functionals for the dis-
crete systems are found to be

yoli)=ho
)= I,Ehx(i —j)z(7)

2.5
(2.6)

‘yz(i)=§3hz(i—~j:,i—‘jz)x(fx)x(jz)—A%IIhz(j,j) 2.7)

ityiz

ys(t')= Z h:(i—jhi_J.zyl'—ja)x(jl)x(jz)x(ja)

71,4273

—8AS7 hali—j1,i —Fai—i2)x{J1)
ityiz
I1sd2
—c A jz:hs(i~j1,i—j1,i—j1)x(j,). (2.8)
1
We realize that yoé),y(f) and y.(¢) in discrete
systems have basically the same form as the
corresponding G-functionals in continuous systems,
with the only difference being the replacement
of integrals by summations. But ys(#) in Eq. (2.8)
does not have the same form as G; in continuous
systems. When x(¢) has a Gaussian distribution,
¢e=3 and Eq. (2.8) becomes
'ya(i)=i % k(i —f1,i—Foi —Fa)x()x(i2)x(Ja)
1:42y73

—34 E h;(i—jx,i'—jg,i—‘jz)x(j,),
f1pda

(2.9)

which is the same form as G, in continuous sys-
tems. When z(7) does not have a Gaussian dis-
tribution, generally ¢.#3 and y(i) does not have
the same form as Eq. (2.9). In general we cannot
get G-functionals for discrete systems simply by
changing the integration signs in G-functionals
given in Eq. (1.4)

"We can continue to build higher degree G-fun-
ctionals in the same way, but the algebraic work
increases rapidly. In the next section we will
present a method of finding Wiener kernels in

the time domain.

B. Cross Correlation Method of Computing
Wiener Kernels (Method T1)

We will assume that the system is time invar-
iant, causal, has a memory NT, and yields finite
output for finite input. Writing the last three
assumptions explicitly,

D hulis,...,i,)=0 if ;<0 for any j

2) hu(i1,...,5,)=0 if ;>N for any j

3) | halis,e.,da)l <M for any set of (i,....7,),
where M is some positive number.

By using a scheme such as pictured in Fig.
(2.1), we canrelate y(i)z(¢) to the Wiener kernels
using the orthogonality properties of the G-fun-
ctionals.

x(i)

y(i) vzl
‘ ? -

z(i)

Fig. 2.1. Scheme for time domain identification.

Let z(i)=i for all 7, and note that z(i) has the
form of G,, ie. is a zero degree G-functional. If
we take the ensemble average of y{(7)z(i) using
Eq. (2.3) and the orthogonality of G-functionals,
we have

¢ y(i)z(i)>=<yo(i)z(z‘)>+<g} pu(D)z(i) =P

Since x(¢) is a strictly stationary process, ¥()
is a strictly stationary process (15). The ensemble
average in the above equation can be replaced
with a time average using the first two assum-
ptions on z(f), and we arrive at

ho=H(7). (2.10)

In order to find A:(¢), multiply y(i} in Fig.(2.1)
by z(é)=z(i—i,) where #,(20) is fixed. Note that

z(z’)=j25i_ihix(j) (7, 1s fixed). 2.1

Comparing Eq. (2.11) with Eq. (2.6), we see
that z(¢) has the form of Gy, i.e. is a first degree
G-functional. Taking the ensemble average of
y(n)z(n) using Egs. (2.3), (2.4), (2.11) and Lemma
1, yields

<y(i)z(l')>=i2h1(i—j) Cx(f)z(i —i)y=Ahi({1).
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If we replace the ensemble average with time
average as we did above, the previons equation

becomes

I(i)="L% Y21 H=01,..,N=1.(2.12)

In order to find k.(i,,7,), we multiply the output
(i) in Fig. (2.1) by =2()=z(i—i))x(i~1,), where
i, (>0) and 7,(>0) are fixed. We note that z(¢)
can be written as

2(f)= Z J

and thus has the form of G, except for a constant

z2(J1)x(d,) (2.13)

i=iy iy dmig, i

term (see Eq. (2.7)). Following the same proce-
dure as before

)z (E)) = o D)2(d)> -+ an()=(E)>
+ 2D+ )= (2.14)

We note that any nth degree functional W(7)
with kernel %, can be expressed as a sum of or-
thogonal G-functionals of degree less than or
equal to z,with the nth degree G-functional having
kernel A,=k, Lower order G-functionals in the
sum will be chosen accordingly. Hence we can

write
W(l)= -Z:o aquEhmx(i)j-

As G, is orthogonal to G, for r>m, it follows
that W(:) is orthogonal to all G-functionals of
degree greater than n. Since z(¢) is a second deg-
ree functional, the last term in Eq. (2.14) is zero.
. After some algebraic manipulatons using the
previous lemmas, Eq. (2.14) reduces to

(A= Aho= AT KIS,

‘: - .
+AN 3 "2("‘]“"“’1)";,..-2'

j1=i-N+1
(14 (ca—1) Giryi-ir}
A 2hy(71,£,)(1—841,12)]. (2.15)
Replacing the ensemble average with a time

average when 7,74, Eq. (2.15) becomes
hz(gl,,'z):.},’(_l_)ﬁf(_‘;zlz_;"ii’ﬂ i1,57=0,1-, N—1.
i (2.16)
When ¢,=7#,, Eq. (2.15) becomes
<y(i)z(i)>=(Aha—-A’§i_—', ha(4.00}

ARBAE H29% H115 19805 11

+A2{th(i '—‘jl,l.—jl)

i1
+(eo—Dha(iy,i,)}
=Aho+(ca—1)A%h:(71,74).
Replacing the ensemble average with time ave-

rage, the previous equation becomes

Ilz(il,il):y(i)x(i "(‘::i)f(li)‘—‘llzl) —Aho

6,=0,1,...,N—1. 2.17)

We do not have to worry about the case ¢,=1

in Eq. (2.17), because ¢,>1 except when fX(r)
=1/28 (r—/ A)+1/28(+ +/ A).

C. A General Method of Comupting Wiener
Kernels
We now present another method of finding
Wiener kernels by solving simultaneous linear
equations and show that these solutions lead to
Egs. (2.12), (2.16), and (2.17) under an ideal
situation.
Let us consider the case of the first order ker-
nel. In the derivation of Eq. (2.12), we had
<y(i)x(i~i1)>=lZ hy(j) Lxli—f)z(t—i))

(235 ya)z(i—i). (2.18)

Let{y(t)z(t—¢:)>, {x(—i)z(E—i), and(33 ya(f)

z(f—i1)) be replaced by r(7,), p(f1—7), and e(s,),
respectively. Rearranging Eq. (2.18), we have

:‘z;oip(i— Pha()y=r(i)—e(dr) 11=0,1,, N—1.
(2.19)
Let 5(2), #(), and &(f) be estimates of p(s), (¢}
and e(7) respectively. In a real situatin we can
deal with only a finite number of samples, so (¢),
#(é), and &(f) are in general different from their
corresponding theoretical values. We can compute
p(z) from the input processes and 7(f) can be com-
puted from the input and output processes. Since
we cannot compute é(7), we assume that &(¢)=e(s),
ie., &(7)=0. Then Eq. (2.19) becomes

g‘,ﬁ(a—j)hx(j)ﬁ(i,) 10,1, N—1. (2.20)

which is a set of N simultaneous linear equations
with N unknowns.

In deriving this equation, we only assumed that
&(¢) is zero for all i, and we did not assume that
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$(i)=Ad;,.. Hence, it is natural to expect that the
ssolution of Eq. (2.20) will be better than the one
«©obtained by Eq. (2.12). If we assume that p(¢)=
p(i), then it is easy to see that the solution of Eq.
(2.20) conforms to Eq. (2.12).
In the same way as ahove, consider the case of
the second order kernel. Note that
(i) —11)x(f— i)y = holxl(i — i) 2(E — 1))
+30h(Jn,d2) {xld—j)z(d —a)

i1yiz

x(l—ll)x(l—lz)>—AZj:hz(J:]) .
lx(i—iz(i—is)) +§zyn<i)-

x(i —i)x(d—1.)) (2.21)
Let {y(f)x(i—ix(i—7)), {x(f—i)x(i—i.)p, {x(¢
—i)zx(t—j)zx(i—i)x(i—i,)), and <”ZO,}2 ya8)z(i—11)
Z(i—1,)) be r(i1is), s(iy—1i5), p(J1,Jsi1,E:) and eldy,7,),
respectively, and each of these estimates with
finite samples be #(iy,4;), 8(5,~172), P(j1.jz%1,12) and
W£(£,,1,), respectively. Then with finite samples,
Eq. (2.21) becomes
32 {B(Undets, i) —AS(i —i2) 5:’;,:'2} he(J,J2)

i1yiz
=#(i1,05) —hodli,— ;) —&(i1,12)
£,=0,1,-,N—1
£,=0,1,--,N—1. (2.22)
The terms p(jy,jz¢1,72), i, —12), and #(4,,7,), can
“be evaluated from the input and output processes,
:and we assume that &(7,,7,)=e(f,7,) 1.e., &(¢1,72)=0,
.as we did before, If we substitute for h, the
computed value A, from Eq. (2.10), then Eq.
42.22) is a set of N?simultaneous linear equations
wwith N? unknowns. The kernel hy(i;,7,) can be

A% o1 [ 70,0 #(0,0)—Fe
1 2h,(0,1) | 7(0,1)
1 2h,(0,2) #(0,2)
1 (0, N—=1)| | #(0,N—1)
c—1 ha(1,1) F(1, 1) —ho
1 2h,(1,2) #(1,2)
co1 BN N-DY L FON-L, N1,

(2.23)
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found by solving these equations. Replacing $(J;,
Jaf1,%2) and $(7,—7;) with each of their theoretical
values using Lemmas 1, 3 and 4 and then noting
that 4.(f,7,) is symmetric with respect to its
arguments Eq. (2.22) becomes Eq.(2.23).

This method can be applied to finding the
higher order kernels, but the computational effort
increases geometrically.

III. Simulation Results

A simulation was performed to estimate the
zero, first and second order kernels of a model
using the method 71 presented in the previous
section. It was hoped that the simulation might
provide some insight into how errors are affected
by the relative powers of G-functionals and how
many data points should be used to get good
estimates of kernels.

The model used as an unknown system to be
identified is of second degree with the following
Volterra kernels:

k=0
ky(f)=s.077%i718 sin(—zl%—i-) i=0,1,-,15
: i D . [ 2=i
ko(f1,8,)=e " Grtipiie sin(—:iGL )sm('—l—éz—)
£,,0,=0,1,--,15.

Note that ku(i),i,)=£k(i)k(i;) when s,=1. We
varied s, from 0 to 5 changing the relative power
generated by each G-functional. In this model
the system memory N is 16, T is 1.

The simulation was performed with 4800 data
points. The input was generated by the IBM
pseudorandom number generator RANDU (see
IBM Scientific Subroutine Package), and these
random numbers were shifted and scaled so that
they should have been distributed uniformly on
(—+3,+3) with zero mean, unit variance and
¢.=1.8. The sample mean of these sequences,
however, was not zerd, and it was necessary to
subtract the sample mean from these sequences
to achieve zero mean data for the simulation
input.

We also studied the convergence of the kernel

estimates as the number of data points increased.
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Letting s,=3 we generated three additional sets
of 4800 point input and output sequences. We
then repeatedly computed the kernels, adding
one more data set to the data sets already used.
The simulation results were studied based on
several different criteria. Let wv,{f) and wv.(?) be
the output at time ¢ due to the first and second
order Volterra kernels respectively, and define

P CAOIL
LD CX0) Ly

S CIOLAG)
LD X0 L

pu1 is the relative power generated by the first
order Volterra kernel with respect to the power
generatéd by the second order kernel. p,, is the
average crossproduct of the outputs due to the
first and second order Volterra kernels with
respect to the power due to the second order
kernel. p,; theoretically, should be zero. p,, is
plotted in Fig. (3.1). Note that v(7) is propor-
tional to s, while wv,(§) is independent of s,.
Hence, the parabolic nature of the p,, curve in
Fig. (3.1) and the linear p,, curve in Fig. (3.2)
is to be expected.

The error criterion used for the »th order
Wiener kernel is

___[l'l,..-,in {hn(il:-.-:iu)—'ﬁ-(ily-":iu)} 2]1/2
o= . p ,{hn(iu---riﬂ)}z

tl!""zl

Figure (3.3) shows that e, increases with » for

@GB.1)

n=0,1,2, In general the identification of a kernel

P

A 1 1 ! L

0 1 2 3 z. 5 s

Fig. 3.1. Relative power generated by the first
order kernel.
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~ 0.1 }
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Fig. 3.2. Average crossproduct of the outputs:
due to the first and the second Volterra:
kernels normalized by the second order-

kernel.
€n
.6
&2
0.4 ¢
0.2
\\‘__‘———.91
: : )
0 1 2 3 4 5 S5

Fig. 3.3. Relative error of the Wiener kernel.

€t

0.3}

0.2 \\‘
0.5 f

Fig. 3.4. Relative output error.

becomes more accurate as the relative power~
generated by that kernel increases.

We used another error criterion, ¢, which me--
asures the square of the output error due to the-
errors in the estimated kernels.

U Gulhn (N =35 Gulhna(@}®_
“= {32 Golln, 203V

/2

(3.2)
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~where £, is the estimate of h,. For the second
-order system under investigation, the numerator

inside the square root in Eq. (3.2) is

(ho—ho)*+ A$ {h(D)—Fu(2)}?

+4A23 5 ho(iy,22) “ﬁz(ix,iz)] 2

i i

ea—1) APST{REL D) —Auls D))

As s, increases, the first order kernel generates
more power and its estimate becomes more accu-
rate while the estimate of %, becomes less accurate,
From Fig. (3.4), as s, increases, e, decreases.

Figures (3.5) and (3.6) show how errors in the
kernels estimated decrease as the number of data
-points, increases. In real situations, we do not
know the exact Wiener kernels; only estimates
.are known.

As more data areprocessed, new kernel estimates
are obtained. We can compute the equivalent error
©of the (/—1) th estimate of the Wiener kernel A,
by assuming that the /th estimate is the true
“Wiener kernel.

TR (s f) =B, o 0))
=

]m (3.3)

Figure (3.7) shows the errors based on Eq. (8.3)

Finally we compute the relative output power
P generated by the system G composed of kernels
estimated with respect to the power gererated by
the original system. Figure (3.8) shows that G
generates output power which is very close to the
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Fig. 3.5. Relative error of the Wiener kernel.
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Fig. 3.6. Relative output error.
enle)
c.2 L
0.1 t+ e,(2})
e () 2
eo(ﬁ)
ey e
1 2 3 4 2

Fig. 3.7. Estimates of relative errors.
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Pig. 3.8. Relative output power generated by the
computed kernels.

output power generated by the real system even
though the estimated kernels have big errors.
Hence, P of the system G is nat a good criterion
to evaluate the estimates of the kernels.

IV. Conclusions

Two different methods have hLeen presented
for identification of nonlinear discrete systems
in the time domain., It was shown that these
seemingly different methods are the same under
ideal conditions.

(749)



It is conceptually clear how to extend the ide-
ntification techniques to higher order kernels.
However, the extensions involve handling very
and the
effort increases with the order of kernel.

complicated formulae, computational

A simple example was presented to give some
insight into the actual identification problems.
Up to 19,200 (4x4800) data points were used for
identification of a second degree nonlinear system.
Dividing the number of data points by the total
number of unknown elements in the kernels
yields more than 100 data points per unknown
element.

Still the error in the second order kernel esti-
mate is more than 10%. This attests to the diffi-
culty of obtaining accurate estimates of even low
order kernels in relatively simple systems. The
errors of the estimates ars mainly due to the
finite length of the data and the nonwhiteness
of the pseudorandom numbers. The estimation
of kernel errors remain an important research

problem.
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