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A Computer Algorithm for Implementing the Multiple-
Output Switching Functions

(Dong-Sub Cho - Hee-Yeung Hwang)

Abstract

This paper is concerned with the computer design of the multiple-output switching

functions by using the improved MASK method in order to obtain the paramount prime

implicants (prime implicants of the multiple-output switching function) and new algo-

rithm to design the optimal logic network. All the given minterms for each function are

considered as minterms of one switching function to simplify the design procedures. And

then the improved MASK method whose memory requirement and  time consuming are

much less than any existing known method is applied to identify the paramount prime

implicants. In selecting the irredundant paramount prime implicants, new cost criteria

are generated. This design technique is suitable both for solving a problem by hand or

programming it on a digital computer.

1. Introduction

One of the major areas in switching theory
research has been concerned with obtaining
suitable algorithms for the minimization of Boo-
lean functions in connection with the general
problem of their economic realization. A solution
of the minimization problem, in general, involves
consideration of two distinct steps. In the first
step, all the prime implicants of the function
are found, while in the second step, from this
set of all the prime implicants, a minimal subset
(according to some criteria of minimality) of
prime implicants is selected such that their dis-
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junction is equivalent to the function and from:
which none of the prime implicants can be-
dropped without sacrifying equivalence. Many
different algorithms exist for solving the given
problems.

In finding the prime implicants of a single-ou-
tput switching function the algorithms described
by the authors [1]—[10] is more straight-for-
ward and simpler than that of a multiple-output
switching function. Many combinational design
problems have two or more output signals that
are to be generated from the same set of input
variables. The simplest approach to the multiple-
output switching function is to consider each
output function separately. Each one of the
output functions is minimized and implemented
without regard to the other output functions.
To avoid this disadvantage, the sharing of~

(678 )



HT 2N EW REtol AL HAM Az

logical capability between output functions is
introduced. The method of finding the prime
implicants of the multiple-output switching func-
tion (the paramount prime implicants) is more
or less similar to two steps described before.
But it requries a time-consuming labor to imp-
lement the optimal logic circuits.

In this paper, tabular method is developed for
a more efficient generation of all the paramount
prime implicants starting from the minterm-type
expression represented in decimal mode. The
improved MASK method is used to obtain the
paramount prime implicants without generating
the entire set of the paramount prime impli-
cants. And then a new approximate minimization
algorithm is developed in order to design the
logic network with the cost very close to the
minimum,

This algorithm contains two new and efficient
cost criteria for selecting the paramount prime
implicants that assure a very suitable automatic
generation of the paramount prime implicants.
The minimal subset of the paramount prime
implicants is selected without difficulty by the
improved MASK method and the cost is much
close to the minimum. This paper aims to
remove this disadvantage by developing an imp-
roved algorithm for the identification and selec-
tion of the paramount prime implicants. Manual
application of the minimization algorithm is
possible only when n is small, where n denotes
the number of the functions. When n is large,
the algorithm is automatically applied on digital
computer. A switching function is generally
represented in a digital computer by the binary
codes or the decimal codes.

II. Definitions and Theorems

In this section some basic definitions and the-
orems are introduced
Definition 1: F(xy,x2, -+, z,) is the canonical form
of Boolean function in the » varia-
bles z;, 1=1,2,---,» and ¢ denotes
any prime implicant, i.e.,

— %3

0i( @1 22y, )= M(2)70'=0, 1,2,
j=1,2,+,m where m is the number
of the prime implicants.
Assumed that
(z)'=1, (z:)'=z;, (z)*=z; and [
denotes the conjunction of Boolean
expressions.
For example, from the canonical
form of Boolean function F(zi, x:,
0y L) =1 Ty Tst B1ZoZy + T1L2Tsy WO
prime implicants are obtained,
01( 235 23, 23) = (21)*(22)* (23) ' =215
D= {1, X2, T3) =(—7’3)1°(-22)1 (zs)'=z23.
Definition 2: Let the irredundant set of the
prime implicants be F*(x,, zs, -, x,)
in connection with canonical form
of Boolean function F(z,z,,+,2,).
The set of the irredundant prime
implicants F*(zy, x4, -, 2,) is given
as follow,
F*(xy, 24,0, xn)=§¢*k(xly Zzy e Tn)
where ¢*, stands for any irredun-
dant prime implicant and s denotes
the number of the irredundant
prime implicants.
Example 1: Let us find the set of the irredun-
dant prime implicants for
F(x1, 22y 20) =1 8123+ 212385+
TZ X3
The following three prime implicants
are generated according to the re-
duction property z,z.+x:%,=2;.
O1(X1, L2y 23) =212,
D2(x1y T2y Z3) =225
D3(x1, T2y Tg) =275
From above set of the prime impli-
cants the selection of the irredun-
dant prime implicants generates the
followings.
%1 (1, 225 23) = 2173,
O*: (21, 22, T3) =217,
Hence, F¥(x,,x,,zs) =2,25+ 2125
Definition 3: Let {commonality of any prime
implicant of the multiple-output
switching function be C;, Jj=1,2,
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If the number of the given switching func-
tions is / The commonality is defined as

c,(,fl,fz,-~-,f1)=g<f,-)’-'~' r=0,1,4

1if »=0
where(f)'=; fif r=1
I 1or fif r=4.

For instances, the commonality, of the prime

implicant @; fifs, can be expressed as,
Cilfufos ) =)' (D (f =L fe.

And for the case of r=4%, Ci(fi,fofe)=(F1)!
(f2)*(fs)° implies the don’t care term f,, thus it
can be reduced to f; or fif..

From Definition 1 and Definition 3, the multi-
ple-output paramcunt prime implicants are ter-
med as Pi(9;, C;). The irredundant paramount
prime implicatns are denoted by P*(%.*, C.*).

The paramount prime implicants P; have the
following property.

Theorem 1: (The property of the paramount
prime implicants) The paramount prime impli-

cants Pj{g;, Ciare valid only when ¢,==1 or C;##1.

The proof of Theorem 1 is very obvious in
that the paramount prime implicants must have
at least one variable and one commonality from
the Definition 1 and Definition 3.

Definition 4: The multiple-output
function is given by the form of the zero cube

switching

paramount prime implicant.
Example 2: Given that the multiple-output
switching function is
=3-m(0,1,2,5)
Ty, Loy 23) =T1Tdz+ T18sXs + 210,23
=Ym(0,1,6)
SaZ1y Zgy X3) =T180 T3+ T2, T3+ 217072
=3m(0,2,5).
The zero cube paramount prime implicants are
generated in connection with their commonality.
Pi(21Z2%0, Fifof4)
P.(&15:x5, Jfif2)
Ps(-i‘lx_zi'ay flfa)
P(x1Z2x4y [1f3)
Pylz12:35, [2)
_ Thus, the multiple-output switching function
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of this example can be represented as showm
below.

MOSF (Multiple-OQutput Switching Function)

=P+ P;+Ps+ P, + P,

From the algebraic expression of the zero cube-
paramount prime implicant of Example 2, a new
table called the intersection table is intro-
duced as in Table 1. The relations between min-
terms and output functions are mapped into this
table. In Section III all the higher cube para-
mount prime implicants will be generated from
the intersection table which contains the zera.
cube paramount prime implicants listed in asce-
nding order of its decimal value.

Table 1. The intersection table of Example 2

[ Cavered | @; o5

Cube | P; | ‘ .
Minterm R \ 2, ' Z | fi ! fa l i
| P, 0 2| 21 2 1’ 1] 1
P, vz 2| 1| 1] 1 l 0
o | P, 2l 2| 1] 2| 1 ‘ 0] 1
P, s | 1t 2| 10 1] of 1
P, 6 1] 1] 2] o ’ 1] 0

the MASK method
[1] is improved for the multiple-output switching

Using ahove definitions,

function. The paramount prime implicant, P;
has the commonality part which characterizes
it. The left part ¢, is identified by using the
MASK method for the single-output switching
function and the right side C; is particularlyi
generated only for each paramount prime impli;
cant. ‘ !
Theorem 2: Given that 2" minterms are re-
ducible to @;, the commonality C; is found by t>he
following algorithm. on '

4 ”7'-',:'
Cj(fuf:y"'sfx)zzl((fi>’:l
Proof: The commonality of 2" zero cube para-

mount prime implicants are

Cl(fl,f?.’ "',fl)zl_lzl(f.‘)r""
Cz(fufz,“'=f1)={17=§f;-)':‘,2

1
Con(frsSes s S0 ;:I{(fi)"\zﬁ-
To extract the possibility of commonality,
first each function is checked. And then combine-
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them by using Definition 3.
Ci(fisfos s ) =((f) 1,071,2"1,2%),
((f)Te,z T2,z "2,27) -+
m
((fl)u,pu,z...r,,z")=‘.}=11((fi)i1=71rl—, »H Q.E.D.

Example 3: Determine the commonality bet-
ween P; and P, in Table 1. Their commonalities
are,

C’x(fufz,fa)=(f1)l(fz)'(fs)l
szfufz,fa)=(fx)x(fz)l(fs)o-

Using Theorem 2, C* may be found to be,
C*¥( fus Lo [ =D DD = (U (fa)°

=f fa.

Definition 5: If the given set of the zero cube
paramount prime implicants is arranged in
ascending order of binary representation of ¢;
regardless of the commonality C;, the lowest and
the highest terms are denoted by LM and HM,
respectively.

Computer algorithm for finding the paramount
prime implicants is developed from Theorem 1
and Theorem 2.

Theorem 3: (Computer algorithm for finding
the paramount prime implicants) The paramount
prime implicant which eliminates » variables can
be identified from the given set of the zero cube
prime implicants if and only if the followings
are hold.

(1) LM .AND. HM=LM where AND operation

is bit-by-bit operation.

(2) Let the result of LM .EX—OR. HM be
MASK, which shows the eliminated variable
positions. Check if the value of OR-masking
between MASK and LM through HM is same
as HM. The number of the same values must
be 2.

(3) C; satisfy Theorem 1.

Theorem 3—(1) and (2)are proved in reference
[1] and Theorem 3—(3)is derived from Theorem
1.

In selection of the set of the irredundant pa-
ramount prime implicants two cost criteria are
used. They can be simply calculated by examing
the relation between ®; and C;. The theorem
connected with cost is given below.

Theorem 4::(Selection.of the irredundant par-

‘and the AND gates in the first level.

_ 75 —
amount prime implicants with the minimum cost)
The minimum cost is démanded when the par-
amount prime implicant covers the entriés of
the commonality in the zéro cube paramount
prime implicants as many as possible. And if
the commonalities covered by each paramount
prime implicants are same, the paramount prime
implicant which has the minimum number of
the remaining commonalities should be selected.
Proof: The zero cube paramount prime impli-

.cants have the relations between the given can-

onical minimizing the hardware implementing

cost, these relations are corresponded to the

connecting wires with the constraint of two
level logic network. Hence, without :the loss of
generality, the maximum covering which has
the maximum relations all through C; part of
P; is preferable in order to minimize the hard-
ware cost and the number of AND gates requi-
red in the first level. Cost is defined as the
number of the relations covered by the corres-
ponding paramount prime impIicant. And if there
are the paramount prime impli_canfs which have

‘the same cost, as is the case with the single

output switching function, the selection of the
paramount prime implicant should be pointed on
the maximum covering of the given minterms,
which reduce the number of the input variables
This is
easily done by evaluating the number of the
remaining relations of C; without counting the

‘entries covered before in ,'estiméting cost. The

number of the remaining commonalities is termed
as subcost. Thus the minimum subcost yields the

lower hardware cost.

II. Generation of the paramount prime
implicants

To obtain . the multiple-output switching
function, - abbreviated .to -MOSF, the improved

‘MASK ‘method in ‘Section II can be applied to
‘the .intersection table. ‘The. intersection table
‘consists of the zero ¢ube : paramount prime im-
‘plicants ®y:and ‘their commenality  C;. " Let the
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MOSF be the following,
Filzs, 24 23y ) =3m(0, 2,8,10)
Je(@1y 2y zay ) =2m(0,1,2,11)
falzry x5 23, 2) =1m(0,1,2,4,8).
The intersection table of above MOSF is as
shown in Table 2.
Table 2. The intersection table of the MOSF
given by
f=3-m(0,2,8,10)
f=¥m(0,1,2,11)
fi=3xm(1,2,4,8)

ICovered ' 0; Ci
Cube .

Minterm | z, | z, ‘ P | x| .fz I S
P, o |l 2{ 2| 2] 21 1] 1] 0
P, 1 { 2| 2] 2[1)of 11
P, 2 21 2 1 211 1 1
0 P, 4 21221 a]1
P 42| 1] z2]z2{0]0]1
P, 10 1] 2 1]z2|1]0fo0
P, m | 12| 1y1f{oj1]|o

Referring to Théorems in Section II, the higher
cube paramount prime implicants are identified
in any subset of the zero cube paramount prime
implicants by the following steps.

Step 1: Read ¢; and C; of the zero cube para-
mount prime implicants.

Step 2: Select the subset of the zero cube pa-
ramount prime implicants.

Step 3: Applying Theorem 1,2 and 3 in Sec-
~ tion II, the higher cube paramount prime im-
plicant is generated from the chosen set.

Step 4: If all the paramount prime implicants
are identified, go to Step 5. Otherwise, go to Step
2.

Step 4: Stop.

The flow chart for computer program is des-
cribed in more detail in Fig. 1.

According to the flow chart there can be 3
possible paramount prime implicants as in Table
3. They are listed in order of generation by
improved MASK method. And the corresponding
C; parts satisfy Theorem 2. On the left side of
the paramount prime implicant table the P; are
divided in the order of the cube. The third
column from the left signifies minterms covered
by P;. Later these are used to evaluate the cost

(682)
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START

READ EJ AND Cj IN DECIMAL

PORMS
t

[ DECIMAL-TC~BINARY cowmsu;)

FOR I =1 TO N-1
FOR J=N TO N-I+1

MB(I )=MB(J) . AND.MB(I) >

MASKA.= MB(J).EX-CR«~ MB(I)

N=THE NUMBER OF 1's IN MASKA
*=2" _‘-’( )

| C=ALL {i's

Fig. 1. Flow chart for generating the para-
mount prime implicants.

L LIST THE NDWLY IDENTIFIED Iﬂ‘}

Fig. 1. (Continued}
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-and the subcost.

Table 3. The paramount prime implicant table

Cub P Covered o; C;
ube £
Minterm Zy l Z3 I Zy ‘ Ty || S t S| fa
P, o 2zl el z2]z2]1]1fo
P, 1| 2] 2|2l 1]o0]1]1
P, 2 | 2l 21 1] 2] 1] 1|0
0 P, ¢ | 2 1] 2] 2] ool
Py s | 1) 222 1]o0l1
P, 10 1] 2]1]/2]1{0]o0
P, 1 12 1| 1fo]1]o0
z | P )o,z,s.1q[ of 2| o | 2] 1] o] o
P, 0.2 | 2 o] 2l 1 0
1 Py 0,1 || 21 2| 2| o] o} 1] o

IV. Selection of the irredundant para-
‘mount prime implicant

In Section III, all the possible paramount prime
‘implicants are identified and construct the par-
amount prime implicant table used in this sec-
tion. From this paramount prime implicant table,
the irredundant paramount prime implicants are
selected with the optimal cost by using Theorem
4. To computerize the selection procedure, the
following steps are given.

Step 1: Evaluate the cost and the subcost for
-each paramount prime implicant.

Step 2: Using Theorem 4 the irredundant pa-
ramount prime implicant is selected.

Step 3: If all the cost are 0, go to Step 4.
‘Otherwise, go to Step 1.

Step 4: Stop.

The program evaluaitng the cost and the subcost
is shown in Fig. 2, and this subroutine is named
‘CSG (Cost and Subcost Generation).

The detailed flow chart for the computer pro-
gramming is shown in Fig. 3.
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‘ START )

\
FOR I=1 T J

{

COST(I) =THE NUMBER OF THE
TRUE TERMS COVERED
BY THE CORRESPONDING
PARAMOUNT FRINE
IMPLICANT

SUBCOST(I) =THE NUMBER OF
THE REMAINING TRUE
ENTRIES IN COVERED ROWS

i

NEXT I

A
( RETURN )

Fig. 2. The subroutine CSG (Cost and Subcost
Generation).

START

]

CAIL CSG

l SELECT THE MAXIMUM COS’I‘J

1

120 ™
NAXTNU COST

—

HE NUMBER OF
HE SAVE MAX. COST

=1

KO

SELECT THE HIGHER CUBE P‘1
IF ANY

[ SELECT THE MININMUYM smscosq
DELETE THE COVERED EN’I‘RIES}<———-—-

il ALL THE ENTRIES ARE

COVERED
YES

Fig. 3. Flow chart for selecting the irredun-
dant paramount prime implicants,
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Table 4. The selection of the paramount prime implicant by using cost and subcost

Covered o; C; |
Cube P; . o Cost | Suhcost
: Minterm z | z Z3 . l z, fi ! fa l fa
0 2 2 2 2 1 1| 0y 2 0
1 2 2 2 1 0 1 1} 2 0
2 2 2 |1 2 1 1 o ! 2 0
4 2 1 2 2 0 0 1 1 0
8 1 2 2 2 1 0 1 2 0
10 1 2 1 2 1 0 | 0 1 0
11 1 2 1 1 G 1 | 0 1 0
2 | | 0,2,8,10 “ 0 | 2| o] z| 1 | o ] 0 ” s 3
0,2 2 2| 0 2 1l o 4
1 0,1 2 2| 2 0 0o 1 0 ‘; 2

By using procedure in Fig. 3, the first cost the cost and the subcost. Table 5 shows the follo-
and subcost table is constructed on the right wing cost and subcost table and the selected

side of the paramount prime implicant table. P* In Table 5, the number located on the
The symbol ‘V’ means that P,* covers the symbol ‘V’ denotes the covering sequence.
checked entries. These are illustrated in Table For instance‘\”,’ means that the correspond-
4. P,* a selected has the maximum cost and ing entries are covered by selecting P;*.
minimum subcost satisfying Theorem 4. If one The given MOSF is as follow.

P,* is selected has the maximum cost and mini- M.O.S.F.=P ¥+ P ¥+ Py*+ P+ P* + Pg*.
mum subcost satisfying Theorem 4. If one P* For the exact solution above function must be
is selected the covered entries in intersection rearranged to eliminate the redundant common-
table must be deleted for the next evaluaion of ality discussed in following Section V.

Table 5. The selection of the baramount prime implicants

Covered D; < } SUB. SUB ‘ J
Cube | P; cosTPYS: |cosTSYB- lcosTSUB- lcosT/SUB-
Minterm| 7, ‘ z, l - l P Y ' A | COST; COST COST COST
: . i
P, ol 2| 2| 2| 2 l1vl1v]o 2| o o] o 0ol o 0 lo
P, 1] 2| 2 2| 1o |1v|1%) 2| o 2| of 2| olpx*
P, 2zl 2 2] 1] z)1vl1ile 2| o o] ol ol o 0|0
0o | P, ¢z 12 2)o0 |0 |1 vl 1] o 1] o 1] o 1| 0P
P, 8| 1| 2| 2| 2{1vio 13 2z o0 21 0 1] o 1 | o0pg*
P, 10 14 2 12120 |o 140 1] o o | o 0o
P, 11 1 2 1 1o 1y |0 1.0 y 1 0 1 0 1 | 0P*
Z[P,,H)bz’s’ o|2]oi2H1|o‘o‘4{3”2}1“&*
Pl ooz | 2| 2] 0] 2 1 ’ o 4] o P !
Lbpeiot| 2| 2| 2] o Lol v of 2] 23 1] 1 1] 1| ol e
the second level. First, let the .selected par-
5. Consideration of the including rela- amount prime implicants P;* and P,* be given
tions in commonality _by the followings, '
Px*(QlaC1)=P1($11?zy f:fz)
In this section, the elimination of the wire PH(D,, Co)=Pyz12:%3,f1f3).
connections which arises in the multiple-output From above two paramount prime implicants,

switching finctions is discussed, This results in @, and @, have the including relation such that
the reduction”of the input lines of OR gates in ¢:O0.. This relation is valid only for the func-
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So function fi has not the terms x,x. and
Finally they can be reduced to

tion fi.
Z1Xaxes DUL.Z1Z2.
P (zizay f112)
PX(z1zizs, 1) .
Computer programming for applying this inc-
luding property ®,D0, is straightforward. Their
relations are checked by the operation
o2 AND. ¢'2=¢z.
Graphic representation of wire connection is

shown in Fig. 4.

"X ) £ X ) fi
D '

e b

X X .
% D*L nd O
_)_/fo X3 L.jD“'Ei

—79 =

In order to find the including relations, P,
are listed in increasing order of % with their C,*
lo¢ated on the right. And then the covered
minterms are checked as shown in Table 6.
have the
be elimin-
From the
‘be written

The two entries encircled twice
including relation and would rather
ated for decreasing the design cost.
Table 6. the solution of MOSF can
as:
Si=(x20)%(2:)(x) (2P =122,
Jo= () ¥(22)* () (22 + (1) 2 (22) (22)* (z)° +
€z (M (z2)* (2 (D! : -
—x1x2x¢+x,x2x3+xllz.r3x4 o
o= (2 (@) ¥ (=) () + (z20)3()! (-f:s) (z)? +
() (x2)*(29) 2 (24)? -
=5Zp 85+ F1 X Ty Tt 21 FaFs Ty

Note that both f; and f; have ;the common

©) ® term £,%Z.%;. Fig. 5. illustrates the hardware
implementation of this MOSF
Fig. 4. Elimination of wire connections by the .
including relation. l i
Table 6. Elimination of the including relation
P C,* f Covered Minterm
P ‘
) Zy \ Iz ‘ Z3 l Ty S l Sz ’ fs } 0 \ 1 ‘ 2 [ 4 l 8 l 10 l 11
P 2 2 0 2 1 1 0 v v
- Py 0 2 0 2 -1 0 0 v v v v
Py* 2 2 2 1 0 1 1 v
P 2 1 2 2 0 0 1 v
P 1|2 2 2 1 0 1 v
P 1 2 1 1 0 1 o | ' v
LT . s .
QH 6. Consideration of the incompletely
g, T specified MOSF
X1
%’ I In MOSF design, the -incompletely specified
A minterms can also be included. So far MOSF are
. §1 implemented without taking into account the
% incompletely specified minterms, but the proce-
§‘z dures presented in Section [ and IV can also
iﬁ be applied to this section in a same way. The
o great differences are the notation on the intersec-

T
-

Fig. 5. Hardware 1mplementat10n_w1th respect
to Table 6.

tion table and generation of the cost of the pa-
ramount prime implicants that cover the don’t
care or incompletely - specxfled entnes From the
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Definition 3 in Section II, the don’t care entries
are denoted as the number 4. And they are
treated as true minterm when selecting the pa-
ramount prime implicants. But they need not be
.counted in evaluating cost and subcost, since
they will not influence overall system cost.
As an example of the incompletely specified
MOSF, the followings are given:

Jilzrs a2y T3y 2a) =2m(2,8,10) +d(0)

folz1, T2 T3y 2)=2m(0,1,11)+d(2)

EXBELE B29% F109 19804 107

JolZ1, Zoy T3y ) =om (1, 4,8) +d(0)

The solution of this example is illustrated in
Table 7 and Table 8. From the inclusion table
(Table 7) the given incompletely specified MO
SF can be written by using sum-of-product re-
presentation;

fi=Z,%,
Je= 1 Zo T s+ 21 F0 5%

Js=E1ZaT s+ ToTs Byt F1 T304

Table 7. The prime implicant table for incompletely specified MOSF

Covered % Ci SUB SUB sUB SUB SUB
[+
21 Pi |Minter- COST COST COST| COST COST
6 m z l z ‘ 3 I ze || £ J A ‘ fa COST\ COST ‘COST COST COST
P, 0 21 271 2| 2 4 [11v 4 1 0 0 0 0 0 0 0 010
P, 1 | 2| 2| 2| 1) o |11v|11v] 2 0 0 0 0 0 0 0 0|6
P, 2 [ 2] 211 2]12v| 4 0 1 0 1 0 0 0 0 0 010
o| P, 4 | 2] 1] 2|2 0 0 f14v| 1 0 1 0 1 0 1 0 0|0
P 8 1( 2} 2 2112v 0 [13v 2 0 2 0 1 0 0 0 010
P 10 1] 2] 1 2(12v 0 0 1 0 1 (] (] 0 0 0 0|0
P, 1| 12l 1] 1| o j15v] o 1 0 1 0 1 0 1 0| 1 |op
2|PB}‘1’62'8']9|2 of z| 1| o] o 3| 2] 3| 1| P
P o8 |olz]zlz2] 1] of 1 2| 1 2| o 1] o | P
 Pol 0afzlof 22} 0] o] 1 1] 1 1 0 1] o 1 P
Py, 0,2 2] 20 2 1 1 0 2 2] 1 0 0 0 0 0 0 I 0
Py 0,1 21 2] 2] 0 0 1 1 3 0 P*
Table 8. Solution of Table 7
[ Cy* Covered minterm
Pyx
ol m| wl| a| Al 5] A o | 1| 2z | 4| 8] w [ n
Py* 2 2 2 o f o | 1 1 v v | [
P¥ 0 2 0 2 ‘ 10 0 v v v v
P* 0 2 2 2 ‘ 1 ] o 1 v v
Py 2 0 2 2 !0 ‘ 0 1 v v
Py 1 2 1 1 o | 1 0 v
3 £
b 1 .
f‘% 7. Conclusions
Xz —
203
% - L‘_@— f2 In order to synthesize a two level multiple-
2‘Dj output logical network this paper presents a
§. D—L_ ) A computer algorithm which leads to the optimal
3 — . . “ e . .
i — ? cost. Optimality here means minimization of the
%‘z ED__ number of the gates and the number of the con-
3 . . . .
X3 nections with the constraint of two level logic
Fig. 6. Hardware implementation of the incom- network. No fan-in or fan-out is limited. Finally,

pletely specified MOSF in Section VI

the advantages of the presented computer algor-
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ithm are concluded as follows:

(1) The identification of the paramount prime
implicant can be easily done by the improved
MASK method described in Section II.

(2) The incompletely specified MOSF can be
also synthesized by wusing the same algo-
rithm,

(3) The proposed computer program can be
applied to the single-output switching func-
tions if modified.

(4) Two new cost criteria, cost and subcost,

result in the minimal design cost.

(5) As the input variables increase, computer
program will be run more efficiently.
(6) The FORTRAN version of this program

can handle the 5 input variables and 10

outputs MOSF

Acknowledgment

The authors wish to express gratitude to Prof.
Park Young Moon of Seoul National University
for his helpful discussions and valuable sugges-
tions in improving the presentation of this paper.

Appendix-Computer Program

The FORTRAN version of the proposed algo-
rithm is listed. For the execution of the compu-
ter program, the following example taken from
reference [11] is solved.

fi(A,B,C,D)=xm(2,4,10,11,12,13)
J.(A,B,C.D)=¥m(4,5,10,11,13)
f:(A,B,C.D)=>m(1,2,3,10,11,12)

It is noted that this program cannot handle more
than 5 input variables and 10 output functions.
If designer wants to treat more input variables
and output functions, some parts of the program
should be changed in relation to problems.
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