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I. INTRODUCTION

In may simulation applications, it is required to generate
‘bivariate random variables which have identical marginal- distribution.

For example, in reliability problems, the assumption that two
components have independent exponential failure times is very often
unrealistic, and much effort has gone into dériving bivariate
exponeitial random variables to handle these situations (Gaver (1972),
Plkin § Marshall (1967), Downton (1970)). Now exﬁept in very
specific physical situations it may be difficult to specify the
complete bivariate distribution of life time of each component.
However, it may be realistic to épecify the marginal distributions
and some measure of dependence (usually the correlation coefficient)
between the life tiﬁe of each component. In this kind of situation,
we can use bivariate random vectors having given marginal distribu-
tion and dependence to solve the problem in simulation. To generate
these vectors, there exists some previous works but most of these

previous work is specific to specified marginal distributions and
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uses inverse transformation methods ds a basic concept.
An example is the recent work by Johnson and Tenenbein (1979),
to generate a bivariate random vector (X,Y) which has marginal

distribution Fj(x), Fy(y) and correlation o, by a weighted linear

combination method.

Define
X = Fil (Hy (U))
Y = @)

or
Y = Bl - Hy)

where H; and Hp are the cumulative distribution functions (c.d.f.)

of U and V respectively and
u = U
Vv = cU' + (1 - )V

where U', V' are i.i.d. random variables with probability density
function g (). In this procedure, Fil, Fgl, g( ) and C are
specific to the marginal distrib@tion and correlation desired. The
functions Fil and F§1 are difficult to compute in most cases and

the weighting factor ¢ is also difficult to calculate. Moreover

most of the work in univariate ranaom number generation has been
aimed at avoiding having to calculaté inverse cumulative distribution

-1 -
functions such as F1 {.) and le(.). These are the reasons why many

~186-



- it O M woseeee

proposed methods are specific to a specified marginal distribution.
Again special properties of certain random variables such as
infinite divisibility have been exploited to give easily generated
bivariate random variables, often though Qith limited ranges of
dependency. One very clever scheme by Gaver (1972) to generate
bivariate exponential random variables uses the fact that the sum
of a geometrically distributed number of exponential random
variables (Y) is exponentially distributed and that the minimum of
this geometrically distributed number of independent logistic random
variables (Z) is exponential. Clearly when Y is large, Z is small.
This scheme is of course very specific to exponential mafginal

- distributions and, via an exponential transformation, to uniform
random variables. To avoid these kinds of limitations and to make
the generation of bivariate random variables simpler and more
automatic in simulations, we develop here the general mixture trunca-
tion method which requires only that a method be available fop{generaﬁng random
variables with the desired marginal distribution. Also we showed
.the procedure for generating bivariate exponential random variables

~ as an example. Finally, I would like to note that this report is
the part of my thesis for Master's Degree in Operations Research

at the U.S. Naval Postgraduate School.
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II. GENERAL MIXTURE-TRUNCATION METHOD

Denote by (Y,Z) the bivariate random pair, where each has
identic¢al marginal continuous distribution F(x), and-denote a
general random variable from this distribution by X. The argument
is not specific to continuous random variables; this aspect comes
in only in the computation of the correlations and can be develobed

in a parallel fashion for discrete marginal distributions. Let
al 1—&1
1—-(1’2 a2

with stationary vectors

and let X; be an X truncated to the left of a fixed point x,, X,

be an X truncated to the right of x5, so that

F (x) <

F(Xo) if XS K,
Fxl(x) = P[X;<x] =

1 if X > X,
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— 0 if x‘S X,
FXZ(X) == P[X2< X] =
F (x) ~F(x0)
- if X > X,
1 — F (x;)
In addition we set ﬂ1==F(xO), 79 = 1—=,; ‘and choose

Y and Z as follows.
i) Choose Y from Xy with probability 7; and then choose
Z from X, with probability @y, or from Xé with probability
1 - @a;.
ii) Choose Y from X, with probability #;, where 7; +7p=1,
and then choose Z from Xj; with probability 1-ag, or

from X with probability a,.

If we choose (Y,Z) as in the above procedure, then we can make

the following two theorems.

A. MARGINAL DISTRIBUTIONS

Theorem 1.

The marginal distribution of (Y,Z) becomes F(x) for both Y and

Proof

1. Marginal distribution of Y

By definition Y is the mixture of X, and X; with probability

T1s T2 respectively. That is
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b4 F(x) P 0 if X <X

1 F(xo) 2 >~ “0
F —F { .

g0 L4, ()i)—F(xt)X)O) if X > Xq

But since we define =, =F (x,) : 7g=1—n,=1—F (x,) we have

F
L (%) =F (x) if x < X,
71.'1 -
FY (X)=
F — .
771+7r2—_.(:) 1 = F (x) if X > X,
= F (x) in all cases.
So Y has the marginal distribution F {x),
2. Marginal distribution of Z
If Y is from X;, then
le(x) = a; Fxl(x) + (1—a) FXZ (x)
F (x) .
+(1—a,) -0 f
UF () £ S
F ~F
a; -1+ (1—a1) 1()~(—)F (XO()XO) if X > Xq

if Y is from X2’ then
Fzz (x) = (1 —ay) Fx1 (x) + ay sz(x)
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F (x)
(1—ay) F—(x—o) +oa, - 0

F (x) —F (xq)
1—F (%x0)

(1_“'2) . 1+a2

SO
Fp (0 = = Bz (0 + 7y Fz )

F (x) F (%)
Flxg) T 7207 %2 ) Fixy)

T al

F (x) =F (xq)
1 —F (xq)

my(ap+(1—ap)

F (x) —F (xp)

g ({1 —ag) + = 1 —F (%p)

and we defined T and T, as follows.

1'““2
R 1 —a; +1—ay

1_‘0'1‘
1—a1+1—a2

From this, we know

i
I_Q’ZZQE(l—al)

if

if

if

O WMD) eoveone

X < Xq

X > Xg

X > Xg

If we use this relationship, then Fz(x) =F (x) in both cases. So Z also

has the marginal distribution F (x). The result is a consequence of the

fact = is defined to be the stationary vector associated with P.
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B. THE,PRODU_CT_—MOMENT CORRELATION
Theorem 2.

The correlation coefficient between Y and Z becomes.

o =M,
where
—1<f=a;—(1—a,) <1,
and
M. —_ (/‘21-#2) 771 ”Z/UXZ,
where
X0
F (x)
- I
= 9T (k)
b F —F
#2 = d (x) . (Xg)
Xo 1 — (Xo)
X F (x)
2 _ 0 L2 2
of= [ x¢td—m—em—r
1 0 F (x4) 1
o F (x) —F (x4)
2 2 (o] 2
= d —
72 Xq X 1 —F (xq) 2
0,2= [ x2 dF(x) —E[X]
0
= 0% mytap? mpt (e )P m
Proof
Y/
Py7 - cov [Y,Z]
% °z

_ E [YZ] —E[Y] E[Z]
= 7y o7
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E[YZ]

where

Further
EL[Y]

by Theorem 1,

—eemianes O R (] eweme

— BS[E[YZ|Y,Z¢ S]]

= E[YZ{Y; Xy, 2e XJPLY e Xy, Z ¢ X]
+E[YZ|Ye X, Ze X PV e X5, Z e Xpl

+E [YZ|Ye X,, zexl]P[Yexz,ZeXﬂ

+E [YZ|Ye X,, ZEXI]P[YEXZ,ZExzj

— BIX] E[X]) 7 a)+E[X]] BIX,) =) (1—a))
+E[X] E[X;] 7y (1—ay) +E Xl ELXg] 75
=ﬂ12 ay myF #y Hy (1l —ay)m

= ES[E[Y|Ye S]]

— E[YIYe X P [Ye X1 +ELY[Ye X, P [Ye X,]
= EIX] =) +EIX,] 7

= Hym + Hy ﬂ2=E[Z]

Also 'by Theorem 1.
2 _g[Y2 — (E[Y])?

= °x2 = "ZZ

oY

If we put together these formulae into

we get

and let

then

E[YZ] -ELY] E[Z)

o =
Y, Z 7y o7
_ (lul _'/"2)2 ”1”2;(0’1 —(l—az))
Py, Z —
O'X2

ﬂ:al_(l_‘az)
M= (#) —#y)2m ny /042
o = B M.
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C. GENERAL ALGORITHM
We give here three algorithms for implementing the‘ bivariate
mixture-truncation method, which we call the FXO method, the UXO
method, and the TXO method. All of these methods are exactly the
same except in how the algorithm chooses x,, the truncation point,
from the x, range (x, , Xy). The first procedure, called the FXO,

t

chooses X as a fixed point from the range [Xy, Xyl and uses the same 'XO
during the entire‘routine. The second procedure, called the UXO, chooses
X, uniformly from (xg, Xy) and repeats this step in every routine of
the algorithm. The third procedure, called the TXO, is the same as
the UXO procedure except in that it uses a triangular distribution
instead of uniform. It is necessary to fix these choices of xj
becuase in general there is more than one X, which will give a
bivariate pair (Y,Z) with the given marginal distribution and given
correlation. The first procedure, FXO, is defective in terms of
their discontinuity of distribution while the second and the third,
UXO and TXO, are satisfactory in this respect. The choice of the
midpoint of the interval (xg, xy) for x,in FXO is based on simulation
experience . Note that the algorithm described here is inefficient in that it
generates the truncated variables Xl.and Xo by comparing random variables

X to Xp uAntil one which is respectively greater than or less than Xp 1is
found. More efficient methods can be found in special cases such
as the exponential, but the present algorithm requires only a

generation of univariate random variables X without regard to the
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method used to do this.

this is specific to each marginal distribution.

3.

General Mixture-Truncation Method

(Initialization)

1)

ORI D womene

Of course initialization is required and

For given marginal distribution F(x) and correlation

coefficient 2 find x ranges (xg, xu)

Define

*

*

*

FXO
i)
UXo
1)
ii)

TXO

ii)

truncation point x,

method

method

Generate a uniform (0,1) random variable V1

Xg = Xxg + (X, —Xp)

method

*Vl

Generate two uniform (0,1) random variables Vy, Vj.

Xo = Xg +t X1 + X9

where

Xy = B(xg o+ X,)

Xy = (xp— xp) ¥ vy

xp = (xy -x) YV,
Compute parameters value, T2,

71‘1’
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4. Choose type for Y
i) Generate a uniform (0,1) random variable U
ii) If U< =y, goto9
5. Y is an X3
i) Generate a random variable X- from F(x)
.ii) If X > X,» Set Y < X and go to 6
iii) Otherwise return to 5. i)
6. Choose type for Z
1) SetU — ((U-z)/(0 - )
ii) IfU < 1 - ay, go to 8
7. Z is an X,
i) Generate a random variable X from F(x)
ii) 1I£f X > X, set Z < X and go to 11
iii) Otherwise return to 7. i)
8. Z is on X1
i) Generate a random variable X from F(x)
ii) If X S;xo, set Z « X and go to 11
iii) Otherwise return to 8. i) |
9. Y is an X1
i) Generate a random variable X from F(x)
ii) va X < x, set Y <X and go to 10
iii) Otherwise return to 9. i)
10. Choose'type for Z
i) Set U < U/ 7
ii) IfU < , go to 8

iii) Otherwise go to 7
-196 -
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11. Deliver (Y,Z) and go to 4 for the FXO method, or go to 2 for
the UXO and TXO method until a sufficient number of random

vectors are obtained.

D. BIVARIATE DISTRIBUTION FUNCTIONS

From Theorem 1, in Secon II-A, we know that if Y is from Xl,

then
FZ (z |y) = a FXl(Z) + (1 —a’l) FXZ(Z)

F(z)

“1 T (%) if z 'ﬁxo
) a;+ (1—ap) F(i{:%ii:?) f z>x%
and if Y is from Xz, then
Fzlzly) = (1=ap) Fy (2) + ap Fy (%)
(1—ay) % if 2z <x¢
— (1—ay) + ay F(Zl')-—j-FP(‘j(:())) itz >

-197-
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By using these we can define the bivariate distribution function as follows.

F(y,z) =P[Y<L<y, Z2< 7]

where

— 00

Y
f P[Z<z|Y=u]ldp[Y<u]

P[YS<u] =F(u)

— I};E:) if d<xy,2 <xg
~ o+ (1—a;) F(j):g((;(;))) if u<xy,z >xg
- (1—ay) FE;))) if u>%xy,2 <Xp
L (1 — ay) +ay Fiz—)F—}in));O) if u>x5,2 >Xg

so,if we put these together, integrating with respect to dp[Y < u], we get

the final

PIY<y,z<z]

result :

— F(z) F(y) if y<x4,25x,
1
(1—‘11)
- {a; + [F(z) —F(x0)11 F(y)
2 if y<x4,2>Xq
| ey + ) [P (5) —F (%)} F(2)

2 if y>xq,2 <xq

Sy (1) [F(2)=F (x0)] 21

-198-
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+ {(1-ap) +22 [F (2) —F (x0)] } [F(y)-F (%,)]

"2

if y>x5,2>%,

For example , the expression™ (Il -D-4) is obtained as

F(y,z)

y
= [ P[ZLz| Y=

%o

= [ P[Z<z| Y=

y
4+ § P{ZLz|Y =
X0
(l‘al)

=:{a —+
1 Tq

LF(z)

u] dF(u), vy > x4, 2 > X,
u<x,] dF (u)

u>xg] dF (u)

— F(xo)1} F(x0)

+ (1 -ap) +7§— [F (2)—F (x4 )1} [F (y) =F (x,)]

"It is easily seen from (Il -D-2) that when z >
P[Y<y,Z<w] =F(y):from (II-D-3) that as y —o,
P[Y<w,Z<z] =F(z) and from (Il -D-4) that as y-—seo,
P[Y<w,Z<z] =F(z) and that z —»w P[Y<y,Z<«] =F(y).
In particular from ( 1-D-4) we have that, as y— o,

Fly,z) »a; F(xg) + (1—ay) [F(2)—=F(xp)] + (1—ay)z
1 2 2’"2

+ay [F(z) —F(x)]

aiF(Xq)+—(L~a2)ﬂ2—+ [F(z) —F(x4)]

F(z) +‘(1"a2)"2 — (1

—a;)n; =F(z)

where at the last step we used the facts that F(x,) =7i1 and 7y (l—a;) = 7y

(1_“2) .If F(x) is absolutely continuous with probability density function f(x)

then the joint p.d.f.for the bivariate pair (Y,Z) is

f(y,z)=

“1(1—“1)

ey ) f(2)

~Niy) fe)

Lt (y) £(2)

—Z f(y) f(z)
79

if y<x, 2<% (I1-D-5)
if y 'S. Xg,Z >Xg : (II-D-6)
if y>x5,2<xq (I1-D-7)
if y>x5,2>%, _ (II-D-8)
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Note that there is a discontinuity in the density funcfion as one
crosses the boundaries of the four quadrants defined by the lines

Yy = Xy 2 =X,. The density is the same in the first and third

quadrants. The multipliers of f(y) £(z)/ 7, are the same in all
four quadrants iff there is independence. This occurs when
a - al) = ay SO that z; = a, and £(y,z) = £(y)£(z) for the whole

range of y and z.

[, BIVARIATE EXPONENTIAL GENERATOR

Bivariate exponential random variable is one of the most
interest random variable in simulations. The cumulative distribution
function and probability density function for the exponential are,

respectively,

and
f(x) =1e4X X220

The expected value of the exponential distribution is
E[X] =11

and the variance is

VAR [X] = 1.22.
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The problem of generating exponential deviates reduces to one of
generating ''unit" exponentials, i.e., those with A= 1.0, and then
multiplying the result by whichever 1/2  is necessary to give the
desired distribution. That is, if the réndom variable E has the
exponential ( i = 1) distribution , then X defined as E X %
also has the exponential distribution with 2=n_ Thus, in this section,

we will consider only ‘unit exponentials as a marginal distribution

for bivariate pairs.

| A, DETERMINATION OF PARAMETERS IN THE EXPONENTIAL MIXTURE-
TRUNCATION METHOD

Because X1 is an exponential ( 42 = 1) truncated to the left of

X, and X, is also exponential ( 2= 1) truncated to the right of Xg»

we have
E[Xl] = # = Ofxo x d ggi(),)
_—_1~—_:_f_ Xo ;
VAR [X]] =0 = Ofxo x2 d ggzl) —ﬂ12
= 1- ;z Xo ;

-201-
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VAR[X,] = | 2

and from definition,

1 —ag
l_a1+1—a2

(III-A-1a)

(IIT-A-1b)

If we use these formulas in Theorem 2 in Section II, we get

_ "2 2
M= T X0
-
B = 7 (a; 771)

and

-202-
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&4 —7 .
p = 1 1 x,? (111-A-4)

7

For given correlation coefficient o, we can compute «, as a

function of x, from the formula (III—A—4j as

o1
a1= 2+“1
Xo

= (1+-2,) (1—e "%0)

and we know that o, = ] —21 (1—a;) from the formulas
I
2

(II1-A-la) and (III-A-1b). From this,

"1 (1—ay)
az—l-*—-;r—z— al

R
0

These a and a, are probabilities, so they have to be greater

than or equal to zero and less than or equal to one;

0 < (1—e T0) (1+—’12 )y < 1 (III-A-5a)
%o
0 < e X +e¥o (1—e "%0)2 ._.'0_2 < 1 (III-A-5b)
; ‘X

From these two inequality equations, (III-A-5a) and (III-ASb), we
can find the X, ranges for given correlation coefficient o .

To solve these equations, we can divide into two cases, one for
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positive correlation case and the other for negative correlation
case. If correlation coefficient # is positive, then both equations
are always positive. Thus we only need to find the X, ranges which
makes (III-A-5a) and (II-A-5b) are less than 1. Form the equation
(III-A-5a), for the ™1 case,
a; = (1—e ~%0) ( £, <
1 = € )1+‘——‘)—1
X0

becomes

and let

y1=X02 Y2=p(exo-—1),

»

Because of the first derivatives of Y1 and y, are always positive,

we know that these two functions are monotone increasing functions.
Thus we can find X, ranges which satisfy Y1 = Y2 by the Newton
Raphson method. When using the Newton Raphson method, let y =y -
y2 = 0 and find an approximate solution, byvapproximating exponential

series, which we can use as a starting point. That is,

on XOS
21 31

y =y,— Vg = %2 — p(1+%5 + —1)

=L x2 _ (1—=L)x, +0 =0
_6X0 ( 2)0

~-204-
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Then

o 5 2.1/2
1 —_— —_ —
( 2)i(_l o 12;0)

Xg =
1730

Starting with this approximate value in the Newton Raphson method,

we can find x, range, say (xp L’ xul), which satisfies 0 < @) < 1.

And for the « 5 case,

ag = e o 4 e X0 (1—e “¥0)2 <1

o
V 2.
X0
becomes

p(eXo — 1) < x42

This result is exactly the same as the «; case, that is, at the
same range «3 and ap satisfy constraints o«; < 1 and ap < 1.
Thus we can use xel and xul as the lower bound of x,, Xp s and the
upper bound of xo; X,+ 1f correlation coefficient o 1is negative,
then the equations (III-A-5a) and (III-A-5b) are always less than 1.
Therefore we need to consider only one constraint which makes

ay >0, @, > 0. From the «, equation (III-A-5A), solve the
inequality equation

0

0< ap = (1—e o) (14—,
X0

)

-205-



weeesee ] MORS-K' O

since 1 - e X0 is always positive, we See that to.satisfy the

0o
inequality 1 + — should be positive, i.e.,

In the « , case, from equation (III-A-5b),

0< ag=c¢€ %o + e¥o (1—e%0)2 _?
X0

or, equivalently, we have
X2 = -0 (e¥o —1)2

As in the positive correlation case, we can find a starting point
by approximation to solve this equation by Newton Raphson. The

result comes out as
0
XS:( _p+p)/(——2—)

with this starting point we find another bound of x, which satisfies
0 £ a,. This becomes the upper bound of x,, X, and from the «,
case, we have a constraint Xq > /-0 which becomes the lower

bound of x,, i.e., xe=J: . The lowest and highest correlations
- 206-



- - ~ O AR [ voveer

available for bivariate exponential pairs in mixture-truncation
method are approximately -0.480 and 0.647 respectively. By
comparisoﬁ note that the most negative correlation available for
_bivariate exponential pairs with identical fixed marginals is

n2

1 - (More (1967)). Gaver’'s (1972) negatively correlated

pair has correlations in the range (-0.5, 0). The table (III-1)
shows the lower and upper bound of X, in the mixture-truncation

method with identical marginal exponential and given correlationm.

Tablelll- I : The lower bound and upper bound of X
in the mixture-truncation method with
identical exponential marginal distributions

X, range for each correlation

0 XL xu 1Y Xy, X,
0.1 0.106 5.832 -0.1 0.317 1.984
0.2 0.225 4.723 -0.2 0.448 |- 1.439
0.3 0.362 3.990 -0.3 0.548 1.103
0.4 0.527 | 3.395 -0.4 0.633 0.855
0.5 0.741 2842 -0.45 0.671 0.751
0.6 1.082 2.223

B. GENERATING PROCEDURE

We developed here all of three procedures, the FXO method, the
UXO method, the TXO method for genmerating bivariate random vectors
whose marginal distributions are unit exponential and correlation

coefficient is #

- 207-
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As we mentioned in section IT, all of these methods are exactly the

same except in how Xo is choose from the x, range (xe R xu).

And we also showed an efficient procedure for gemerating X; and X,

This Efficient procedure can generate X

1 and X, directly instead of

‘comparing random variables X to X, until one which is respectively

greater than or less than x

o is found.

Exponential Mixture-Truncation Method

1, (Initialization)
i) For given -0.48 < o< 0.64, find X, and X,
2. Define truncation point X,
*  FXO method
1) x5 = H(xp + xu)
*  UXO method
i) Generate a uniform (0,1) random variable U;
ii) X, = X, o+ (xu-— xé;) * Uy
* TXO method
i) Generate two uniform (0,1) random variables Vi, V3
i) x4, = Xp + Xy * X
where
xp = (xp +x,)/2
xp = Xz -xp) *Vy
X, = (xy - xp) * V2

- 208-
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3. Compute parameter values
-X
0
] = F(xo) = 1-e
™o =1-7r1
o
ayp = 7T1(1+—-—2)
o
3
ay, =1 - 1 - a4)
) 1

4.  Choose type for Y
.i) Generate a uniform (0,1) random variable U
ii) If U < =y, go to 9
5. Y is an X,
i) Generate an exponential random variable E;
ii) If E; > x4, set Y < E; and go to 6
iii) Otherwise, return to 5. i)
6. Choose type for z
i) set U< (U - =z9)/( - =)
ij) IfU <1 - aj, go to 8
7. z is an X,
i) Generate an exponential random variable E,
ii) If Ey; > x,, set Z < E, and go to 11
iii) Otherwise return to 7. i)
8. Z ig an X1
i) Generate an exponential random variable E,
ii) If E2 < X4 Set Z « Ey and go to 11

iii) Otherwise return to 8. 1i)

~209-
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9, Y is an Xl

i) Generate an exponential random variable Eq

ii) If E;, < xo, set Y < E. and go to 10

1= 1
iii) Otherwise return to 9. i)
10. Choose type for Z
1) Set U « U/ =y
ii) IfU < ay, goto8
iii) [Otherwise go to 7
11. Deliver (Y,Z) and go to’4 for the FXO method, or go to 2 for

the UX0 and TXO methods until a sufficient number of random

vectors are obtained.

For the exponential case it is possible to give a more efficient
algorithm in which X1 and X, are generated exactly. The algorithm

is as follows.

Efficient Exponential Mixture-Truncation Method

1. (Initialization)

i) For given -0.48 < o < 0.64, find X, and x
2. Define the truncation point X,

* FXO method

X = 1/3(X€ + X

0 u)

*  UXO0 method

i) Generate a uniform (0,1) random variable U1

i) x5 = Xp + Xy -%xp) * Up
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i) Generate two uniform (0,1) random variables Vis Vp

ii) X, = X XX,
where
Xy = (xp +x,)/2
X} = &y — Xy ) Vv
xp = (xy -xp) OV

Compute parameter values

_xo
T = F(xo) = 1-e
T, = 1 - m
ap = T1(1+ pz)
, X,

7]
(12 = 1 - - (1 - dl)

T2

Choose type for Y

i) Generate a uniform (0,1) random variable U
ii) IfU < 7y, go to 9

Y is an X,

i) Generate an exponential random variable Ej

ii) Set Y « x, + Ep
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6. Choose type for Z
i) Set U < ((U-7)/Q -71))

ii) IfUSlaaz,gotOS
7. Z .is an X2

i) Generate an exponential random variable E,

ii) Set Z <« x, + Ey and go to 11
8. Z is an Xl,

i) Generate a uniform (0, 1) random variable W2

ii) Set Z

1

In (1.0 - Wy, * 74) and go to 11

9. Y is an X1

i). Generate a uniform (0,1) random variable W,

ii) Set Z < - In(1.0 - W_ * _ )

1 71
10. Choose type for Z
i) Set U < U/ 74
ii) Ifu < ay> 80 to 8
iii) Otherwise, go to 7
11. lDeliver (Y,Z) and go to 4 for the FXO method, or go to 2 for
the UXO and TXO methods until a sufficient number of random
vectors are obtained.
Note that to compute Xy vand X, in step 1 of both algorithms we use

subroutine BOUND which is used the newton Raphson method to find

Xp and X,
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Schmeiser (1979) has used the regression of Z on Y = y to fix

the parameters in his bivariate gamma distribution.
we investigate this for the mixture-truncation method case.

regression is different depending on whether Y <

Consequently
The

Xg or Y > Xg-

We consider two cases here, one for fixed Xg and the other for X,

having uniform distribution.

E[ZIY'——-y,yS Xo] =

"2

=l—{—XO—-a1XO(1+ ”1

Substituting the value for «,
0
then we have

EZIY=y,y =

=1— —

X0
And ify > X then

EZIY=y,y >%X,1 =

-213-
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Substituting the value for a,

— 1 "1
ay =1 —7;2‘(1——011)
T
=1._7r1(1__n1 pz)
2 X,
then we have
T 0
E[ZIY=y,y >x0] =1+—L._—
Ty Xp

Thus the regression is constant over (0, xo) and changes for y > xg.
This is not surprising in light of the joint distribution given in
Section II-D. For uniformly distributed x,, the computation 1is

diffcrent for different ranges of Y. If y < x,, then we have

Xu
ElZIY=y]l = § E[ZIY=y,X=x%5,5 =%1{(x)d%o
X
£
X
u
= I (1—£2)e'xo dxg
X g X0
Xy e %o
= e Xu e Xp-p I 5 dxg
X, X0
-X -X 1 -x 1 ~Xg
= e ¢ —e “utp(— e U ——_ &
Xy X,
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If
X, <y <xy
then we have
y
E[ZIY=y]l = | E[Z|Y=y, X=x,, ¥ 2x,1f(x,)dx,
XL,
Xu
+ f ERZIY=y,X=x,5< %011 (x0) dxq
y- :

- 1 -
= 2e y+20y~ﬂ(x€+xu)+p(~———e Xu _le—}’)
Xy y

+pln—X—u—
y

If vy >x,, then we have

¢

u
EZIY=y] = J E[Z|Y=y,X=x,,y >x,11(x5)dxg
Xy
X
= I (1+ﬂ p)e Xo dx,
X, Ty %o

= eXg—e*u + o(y = Xy)

By making x, uniformly distributed over the available range of x,
for given correlation, we can get smoother behavior for the regres-

sion function.
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V. CONCLUSION

The mixture-truncation method is a general methed which can
generate bivariate random vectors having any theoretical marginal
distribution and allowable correlation. The generating procedure
is very simple and doesn't need much computation for defining
parameter values. In this respect, the mixture-truncation method is
a very attractive method for generating bivariate random vectors.
A price is paid'for this simplicity and general.ty in that the
Frechet bounds of correlation for the bivariate distributions
specified by the marginal distribution given by Moran (1967) are
not always attained. Also there is some discontinuity in the
bivariate distribution. However this discontinuity can be decreased
by giving some distribution to the truncation point over its range
for given o . Thus the mixture-truncation method is very attractive
for simulation studies invol#ing only partly specified dependency
structures. The mixture-truncation method may be extended to
generate bivariate random vectors having negative values. Another
extension may be made to use grade correlation or rank correlation
which are invariant under transformation instead of using the

product moment correlation.
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