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ABSTRACT

In medical follow-up, equipment lifetesting, various
military situations, and other fields, one often desires to
calculate survival probability as a function of time, p(t).

If the observer is able to record the time of occurrence of
the event of interest (called a '"death"), then an empirical,
non-parametric estimate may simply by obtained from the frac-
tion of survivo?s after various elapsed times. The estimation
is more complicated when the data are truncated, i.e., when
the observer loses track of some individuals before death
occurs. The product-limit method of Kaplan and Meier is one
way of estimating p(t) when the mechanism causing truncation
is independent of the mechanism causing death.

This paper proposes Jjackknife estimatérs of logistic trans-

formation and compares it to the product-limit method.

* ) Office of OR/SA, ROKA HQ
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A computer simulation is used to generate the times of

death and truncation from a variety of assumed distributionms.

INTRODUCTION

In medical follow-up,equipment lifetime testing, various
military situations, and other fields, it is often desired to
estimate. the probability of survival as a function of.time, p(t),
from empirical data. In many situations, the analyst has no prior
knowledge of the functional form of p(t), and a non-parametric
pstimator is required.

In fhe medical field, one might wish to estimate the
probability that a patient survice 1, 2, 3, ... years after a certain
surgical procedure for cancer. In electronics, one wishes to estimate
the probability of continuous failure-free operation of an equipment
for various time durations. In the military, one might be interested
in the probability of conducting a certain mission, under specified
environméntal conditions, without detection by the enemy. The event
of interest may be a human death, and equipment malfunction, or a
sonar detection. However, following Kaplan and Meier, refefence
(1), this paper will refer to the event of interest as a 'death."
The test elements in the sample population may be a human, a radio,
or a submarine. This paper will refer to the test element as an
mindividual." The observations of the data are '"complete' if the
observer is able to record the time of death for evefy individﬁal
in the sample. The observation may be "truncated" if the observer
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loses track of some individuals at known ages before death occurs.
In the medical example, a surviving patient might move away from the
area. Iﬁ the electronics example, the radio might be destroyed in
an airplane crash before any of the components had malfunctioned.

In the military example, the exercise might terminate at a pre-
planned hour before the submarine had been detected.

If the observations are complete, then the estimation of p(t)
is straight-forward. With complete observations, the most obvious
estimator of p(t) is simply the fraction of individuals in the
~ sample who had not died by time t. However, there are other
estimators for use with complete data. When the observétions are
incomplete, it is necessary to consider whether the mechanism causing
death and truncation are independent. In the electronics example,
the mechanisms would be independent if the aircraft crash was
definitely not due to radio failure. The mechanisms would be
correlated (not independent) if the cause of crash were unknown, but
possibly due to radio failure.

If the mechanisms are not independent, then the construction
of an appropriate estimator can be difficult. This paper is confined
to estimators based on data with independent mechanisms for deaths
and truncation. The product-limit estimator of Kaplan and Meier,
reference (1), is an accepted method of deéling with the problem of

truncated data.
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THEORY

To consider survivability as a function of time it is convenient
to define a hazard function, h(t). For a test element surviving
at time t, h(t) gives the probability of failure per unit time.

Thus,ithe cumulative survival probability may be found by solving
Ps(t+dt) = Ps(t) . [1-h(t)dt] _ 9]
Assuming 100 percent reliability of starting elements,

Ps(o) = 1, and (2)

t
e~IOh(x)dx

Ps(t) = (3)

gives the general expression for survival probability for a single
‘element. Without assuming a specific analytic form for h(t), it is
possible to estimate Ps(t) empirically.

There are two approaches to the problem:

(1) To estimate the probability of survival to an arbitrarily
selected set of tiﬁes, or (2) to estiﬁate the survival probability
at the time of observed failures. In either case one must make
point-wise estimates of the survival curve. Only if an analytic
form of h(t), or Ps(t), is assumed can an estimate of the entire
curve be derived.

In the first case, one merely divides the number of entries by
the number of survivors at the appropriate time. The second approach

is more useful if truncated tests are included in the data. The
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second approach provides a distribution free estimate of survival

probability subject to one restriction on h(t):

Jpw = - ®

This restriction is a mild one for many situations of interest. If

N test elements start at time zero, then the probability of all
1

surviving to time t is [NJ.OMX) 4] The probability of a
e

failure in the interval (t, t+dt) is Nh(t)dtin the limit of small
dt. The expected value of Ps at the time of the first failure, t',

‘'is thus

[oe]

t
—‘[Nj h(x)dx]

E(Ps(t) = | Ps(D)e 0 Nh(t)dt
0
The change of variable
t
« = | h(dx
0
leads to
“ — (N+D«
B(Ps(¥) = Nf e )
0
and
E(Ps(¥)) = —— | (6)
S TN+t
Reference (6) state with proof the more general relation
N—r1 +1
AN — _ 7
E(Ps (1)) N+1 (M
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Where t' here is the time of the TR observed failure. Equation (6)
suffices if there are no truncated data.

If all aborts and late entries occur at the time of failure (as
might be assumed in the case of grouped data), then at the time of

nth failure (tn)
n
Ps(tn) = I (——) (8)

is the appropriate estimate, with Ni the number of elements starting

the time interval terminated by the ith failure.

The variance associated with the estimate in equation (8) is

n Ni n Ni
[ P = _) — _—)°
Var L Fs (tn)] TR’ — B %)

If truncated runs begin or end at times other than when a failure
occurs, equations (8) and (9) are not quite correct. If Ps(t) is
assumed to follow a simple exponential decay curve with the
understanding that Ni is the average number of surviving test

h

elements in the interval between the (i-l)th failure and the it

failure.

THE JACKKNIFE ESTIMATOR

We will assume that we observed, or have generated in a
simulation, a survival probability p(tj), j=1, ..., n, from
various sample sizes. Furthermore we have some parameter oOr
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characteristic>p(tj) of the sample size which we wish to estimate
with an estimator S(tj). The jackknife estimator P(t,n) described
below is an approximately unbiased estimator of p(tj). A modifica-
tion of it has other useful properties.

ﬁji (t,n-1) is the estimator from the sample of n of the Xi's

with the i*® value deleted from the sample.

Pi(t,n) = nP(t,n) — (n—1)P_1(t,n—1) i=1, =, n

~

~ —1
Pi(t,n) = nP(t,n)——
1 n

P(t,n) = %;.
i

i M=

n ~
ZP_1<t,n_l>
i=1

the Pi (t,n), called the PSEUDO-Values.

The PSEUDO-Values can be used to obtain variance estimates of
F(t,n) and to set approximate confidence limits, using Student’'s t.
The idea is that the PSEUDO-Values will be approximately independently
and normally distributed. The jackknife estimatof‘g(t,n) is a sample
average so we form an estimate SE

p(t,n)
following relationship (Miller, 1974):

of its variance given by the

Zﬁz'(t,n) — ni (ZEi(t ,n))’?

n—1

©

By

2w

This procedure is particularly useful if the number of data points
is small, but it must be used with care. Note, fhat the estimator
‘E(t,n) is designed to eliminate a %.bias term in the estimator
F(t,n). Of course the computational aspects of the complete jack-
knife can be quite onercus, especially if‘E(n) were, say, a
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complicated maximum likelihood estimator. Miller, reference (4)

has shown the product limit estimator is its own jackknife.

LOGISTIC TRANSFORMATION

Although one can legitimately jackknife the Kaplan-Meier
estimate direhtly, there is some reason to believe that a preliminary
transformation will give improved results. Consequently, consider
the transformation

Plt)

gz:gn(l—ﬁm)

and notice that where the range of F(t) is from zero to unity, the

above transformation makes the range of / run from —o to

The procedure utilized will be as follows.

(A) Compute the overall estimate at a time point t, using all N
data points, and using a 'continuity" correction that has the
effect of removing the effect of a zero in the logarithm (see

D.R. Cox, Analysis of Binary Data, Methuen Monograph):

Bt + 5

ZN = 2 ( ~
1— BN (0 + 5y

(B) Compute the / -values by leaving out each data point in turn
when computing P(t):

fori =1, 2, ..., N.
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~ 1
PN-1, -i W+ =1y

1
2(N—1)

IN-1.i = ¢n ( =
1— PN-1,ift)+
(C) Form the PSEUDO-Values

Z; = NgN_(N—l)gN—l,—i

(D) Compute Z, sg

(E) Put approximate confidence (1- « ). 100% limits on E [{] as

A

follows L E[¢] = H

SZ
where HL) = 2+ Ot g (N—1) /=&

(F) Transform bash to obtain

el eH

1+eb nd e
The true value, P(t), should be enclosed between these levels for
roughly (1-a ). 100% of all samples. The coverage properties of
this procedure will now be checked by simulation: Successive sample
of size N will be selected, the jackknife limits H and L will be
computed for each, and a check will be made as to whether

el et

< P(t) £ ——F or not.
1+el 1+eH
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COMPARISON OF THE PRODUCT-LIMIT ESTIMATOR AND JACKKNIFE

ESTIMATOR OF LOGISTIC TRANSFORMATION
A hypotetical data base, consisting of five individuals, is

used to illustrate each of the estimators. This sample data base

is as follows:

Individual Time of Death Time of Truncation
A 1 -
B Unknown ( ) 2) 2
C 3 -
D Unknown ( ) 6) 6
E 7 -

The data have been arranged in time sequence of the death and
truncation events. In the medical example, the data might indicate
that patients A, C and E were observed to die exactly 1, 3 and 7
years, respectively, after their surgery. However, B and D moved
away or otherwise became unavilable to the observer at these times.
Further, the cause of the unobservability is unrelated to the

patient's health and life expectancy.

1. The Product-limit estimator,“ﬁ, ()"

P1(t) is the product-limit estimate. Kaplan and Meier, reference
(1), have shown that this is the maximum likelihood estimator. The
observed events, both deaths and truncations, are arranged in
increasing order of occurrence: ty, t3, ..., tns; where N is the

number of individuals in the sample.
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Let p(ti) denote the cumulative probability of survival of an
individual from time zero to time ti. Let p(t/ti) denote the
conditional probability of surviving to time t (>ti), given that

the individual has already survived to time ti. Then,

P1(ti) = PI(ti-1) . P1(ti/ti) (E-1)
If we define to = 0 and p(o) = 1, then
~ i
P1(ti) = 'HlPl(tj/tj—l) (E-2)
]:

The product limit estimator is in the form of equation (E-2) with

Ny if the event at t; is
Ni truncation
g E-3
Py (tj|tj) = (E-3)
Nj—1 if the event at tj is
N;j a death
. Here Nj is the number of individuals observed surviving in the

interval tj_1<t<tj. This formulation causes the product limit
estimator to be insenéiti ve to the exact time of the censoring events.

The estimator is unity from time zero to the time of the first event, t,
reflecting the fact that all individuals in our example are observed to live
until at least tifne tq-

- If the event at time t; is a truncation; then the
estimator remains at unity at least time tp. Again,
no deaths are observed in the sample before t;.

- If the event at time t; is a death, then the estimator
drops to (N-1))Ny. This drop reflects the observed death
of 1/N of the survival sample just prior to t;.
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Values of the estimator Pl are calculated iteratively at successive,
values of ti(i=1,2,...,N).

The size of the survival sample declines as truncations and deaths
remove individuals from observation. For the hypothetical data base

listed above, one obtains:

t l;i(t)
0 -1 5/5 = 1.0
1-2 4/5 = 0.8
2 -3 (4/5)x (3/3) = 0.8
3-6 (4/5)x (2/3) = 0.533
6 -7 (8/15) x (1/1) = 0.533
7 - 00 (8/15) x (0/1) = 0.0

If the last event in the sample is a truncation rather than a death,
then the modified data give the following estimate, i.e., individual
E had disappeared from the observer at time 6.5 (so that the fact

of E's death at time 7 is unknown).

t ﬁi(t) - Modified Data
0 -1 1.0
1-3 0.8
3 - 6.5 0.533

Since the time of the death for individual E is now unknown, one

can only estimate that:
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0 <Pl(t) = 0.533  for t> 6.5

2. The logistic transformation estimator

IN-1, -i is the logistic transformation estimator from the

sample N of the Xi’s with the ith yalue deleted from the sample.

1
2(N—1)
=~ 1
L=PN-1,-1 0+ 30— D)

Pyog, - (0 +

N-1, -i = ¢n )

IN-1 -1t 1 2 3 4 5
t1  3.04  0.98  0.98  0.98  0.98
£2 3.04 0.98  0.98  0.98  0.98
t3 0.63 0 0.98  -0.46  -0.46
t4  0.63 0 0.98  -0.46  -0.46
t5  -3.04  -3.04  -3.04  -3.04  -1.89

Zi = NZNﬁ(N—l) gN—-l,—i

~ 1 P 1
Py (t)+ 5 PNo1, -1+ sew=1y

= Nép ( = N1‘)_'(N_J)en( ~"1 (N ;) )
1= BN+ 557 A AT

Z; (N) are called PSEUDO-Values of logistic transformation, the

following values are calculated:
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Zi:
t 1 2 3 4 5
t1 -0.65 2.198 2.198 2.198 2.198
t2 -6.05 2.198 2.198 2.198 2.198
t3 -1.9 0.606 -3.314 2.446 2.446
t4 -1.9 0.606 -3.314 2.446 2.446
t5 -3.0626 -3.0626  -3.0626 -3.0626 -7.162

Average of the PSEUDO-Values

> 1

N

N
H
II ™Mz

Invert to find jackknife estimator of logistic transformation

~ 1
~ P (t) +?N_
Z = en( — 1 )
— P(t) + N
1 7 1
(l+mp el =5y called the jackknife estimator
P(t) = = of logistic transformation -
1+ eZ
Variance of the Zi
Sy = Var (Z) 3 Zi —

11_

The follbwing values are calculated:

t z E(t) Var
tl 0.5484 0.646 13.6
t2 0.5484 0.646 13.6
t3 0.568 0.516 6.727
t4 0.0568 0.516 6.727
t5 -3.882 0 3.361
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Confidence Interval

The jackknife estimator for estimating variability and giving
confidence .interval.

Tukey, reference (3) has suggested that in the jackknife
procedure, we consider the PSEUDO-Values Zi(N) as approximately
independent and identically distributed and consequently, since Z

is an average of the Zi(N), proceed as if

N*Z—ﬂN

1 N 5.2 &
(i Z 2 =2

has t-distribution with N-1 d.F.

If the Zi are approximately normal variates (Miller has shown)
confidence bands for the unknown'ﬁ(t) are given, as for the mean of

any normal variate when estimated from sample size N.

_ Sz -
Zx F=E ty-a, (N—1) (D-1)
1.€.
1
Pt} ++5%
_ Sy 2N 5
2N
Linj= 7 — =Ly L= 7 +-%t
/N ‘1-a/2 > (m) JN 1- af2
1 1 1 L (N) 1
(1+ o) ek L _ (14 ) e ™ — 2
2N 2N = Pl = 2N _ 2N
14 e LN 1+ eL(N)

-143-



roseses [ MORS K [] <o -

Results of the Simulation

The jackknife procedure may be validated, in an empirical sense,
by sampling experiments .or computer simulation in . the following
manner. First, times of censoring and death are obtained by drawing
random numbers from postulated distributions. Second, the jackknifed
estimator of the logistic-transformed product-limit estimation is
found and confidence limits are computed by the method of Tukey,
reference (3). Since the true value of survival function, P(t), is
known, so is the theoretical value of A. The jackknife confidence
intervals can be checked for coverage: if Lé < A = Hy then
the par.icular interval covers, while otherwise (if A<Ly or Hy<A)
it does not cover. Finally, the above procedure can be repeated many
times (say 1000) and the fraction of repetitions which contains the
true value of A is recorded.

This fraction of the coverage should desirably be close to
(1- @ ), the nominal confidence level. The,jackknife confidence limit
procedure can be said to be robust of validity, ref (5), if the actua
coverage is close to the nominal coverage, l-a , for a various
distributions. Such seems to be‘true for large N (N = 50). However,
the jackknife confidence limits do not cover accurately when the
true value of P(t) is close to unity.

The following tables illustrate confidence limits of jackknife

method of product limit (P1(t)).
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