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ABSTRACT

Interactions of major activities participating in fleet
operations are investigated in the framework of a closed
queueing network system with finite aircrafts assigned to it.
An implementable algorithm is developed, which is useful for
computing the distributions needed to evaluate the effects of
the'infefactions on the fleet operétioﬁS: The'évéilability
management program is focused on seeking an optimal resource
allocation to multiple repair-shops to maximize the fleet

availability subject to the budget constraint.

1. Introduction

This paper is concerned with a military activity operating a
fleet of N identical aircrafts in a flying-base and repair-depot

combination. Fleet availability is an important part of operational
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effectiveness and can be measured as fthe average fraction of aircraft
available for use at a random instant (1). The purpose of this
paper is to provide i) an effective algorithm to evaluate the fleet
availability in the framework of a closed queueing network system
and ii) a managemént program for improving the fleet gvailability
with a limited amount of budget available. Furthermore, the model
presented in this paper is intended to cover the more practical
situations of the fleet operations compared to the previous works

in the literature ( 1,2).

IT. Description of the fleet operations

The following is the simplified description of the fleet

operations to be modeled and analyzed in this paper.

Missions:

Two types of missions are assigned to the flying-base, i.e.,
one is alert missions against emergency or abnormal sifuations
occuring unexpectedly and the other is routine missions such as crew
training, coordinated operational exercise, aircraft performance
checking, reconnaissance, and so on. The flying-base must have a
required number of aircrafts, Ny, stand ready for alert missions if
possible. However, to reduce the undue wear and tear on the aircrafts
and to increase the probability of having at least Np aircrafts when
necessary, there is an upper limit, Ng, on the number of aircrafts
authorized to operate simultaneously for the routine missions. If
the total mumber of available aircrafts are greater than Ny + Np,
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the remaining aircrafts stand by.

Maintenance:

Ordinarily, scheduled maintenance policy has direct influence
on fleet availability. However, our concern is limited to corrective
maintenance closely supporting the fleet operations. In this paper,
analysis begins with a given value of N resulting from a specific
scheduled maintenance policy. Corrective maintenance is particularly
important when a specific fleet is temporarily deplbyed at forward
area of conflict. In this situation, the prevailing practice is
'that repair-depot supports only corrective maintenance fof the fleet

operations.

Failure and repair:

The failure time distribution of aircraft in flight is assumed
to be exponential with a rate 1 per one hour of flight. However,
the average flying hours of‘aircraft per unit time (in the fleet
operations scale_time) are different by the type of ﬁission, i.e.,
fA for alert missions and fp for routine missions. Thus the
converted failure rate of aircrafts in terms of the fleet operations

scale time, uy and u‘M , are;

uy = Afy, for alert missions
and

u'M = -Afk for routine missions.
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The failed aircrafts arrive at the repair-depot to recover their
malfunctions. For complex systems such as aircrafts, the repair-
depot consists of multiple repair-shops each of which has a
specialized repair function. Each single-channel repair-shop
services the failed aircrafts arrived independently on a first-come-
first-service basis. The repair time distribution is also assumed
to be exponential with a rate uy (i= 1,2,..., M-1) in the fleet
operations scale time. The failed aircrafts return to the flying-

base in operable state after passing through some of the repair-shops

depending on their failure characteristics.

Closed network:

The are (M-1) repar-shops and the MR vstation" is the flying-

th

base. Let i "station" (i=1,2,..., M-1) be used to represent the

th position when all rebair-shops are placed in

repair-shop in the i
arbitrary sequence. Then M stations participating in ihe fleet
operations form a closed network with N 'customers' (=aircrafts)
circulating within at all times as shown in Figure 1 in the last
part of this paper. The customers transit in the network stochastic-
ally by a specific probability mgtrixllpijn , where P is the

probability that a customer will proceed to jth

jth station. The transition times of customers between stations are

station after leaving

assumed to be zero.
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thations:

N total number of aircrafts assigned to the fleet

Ny required number of aircrafts to stand ready for alert
missions

Ng max. number of aircrafts authorized to operate
simultaneously for routine missions |

M total number of stations, i.e., M-1 repair-shops and
a flying-base

uy service rate of ith station (=repair-shops)’ for
i=1,2,..., M-1

Uy u'M converted failure rate of individual aircraft
assigned to a alert mission and a routine mission in
the fleet operations scale time, respectively

pij probability that a customer will proceed to jth
station after leaving ith station

n., m, number of customers present at ith‘station

n = (nl, nz,...,nM), m = (ml, Myseees mM) state of the network

Pr(n), Pr(m) state distribution at equilibrium

q(n, m) transition rate from state ntom
e, state space
G(N) normalizing constant such that Pr(n)=1
nes
c3 amount of budget allocated to ith repair-shop

C = (c1, €2,...5 ©M-1) Vector indicating budget allocation
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I, Mathematical model

State distribution for closed network:

There are M stations and N customers in the closed network.
Let the state of the network be denoted by n = (nl, nz,...,nM) wﬁose
components nj are the numbers of customers present at the it-h station
Then the state n is a Markov process with q(n,m) représenting the
transition rate from state n to state m (4,5,9). The state space

defined as

M
&={n=,n;:,..,0n)) 2 ;=Nand ni= 0 for all i}
- i=1

is finite and has an irreducible class since each customer once

returns to Mth station and then transits to other stations again.

Remark: If & is an irreducible class, the equilibrium state
distribution on & is a set of positive numbers Pr(n) satisfying:
(1) Prin)=qln,m) = = q(m,n) Prim), neg

T Meg meg,
and

(2) sPrin = 1.
Nee

When & is finite, (1) and (2) have unique solution, necessarily
positive (3,6).
In (1) the only values of m for which q(n,m) is nonzero are

those with

mi=n.l-1, mj=nj+1, and m, =Ny for all k#i,j,
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since the internal transitions of customers between stations are

permitted only. Thus

q(n,m) = q(n, n-ej + e;)

where ej is the vector with all components zero except for 1 in the
ith component. The process with the above property is a kind. of

Markov population processes in (4). Furthermore,

q(n, n-e.+e.) = ui ﬂi(ni) pij s 1,7 =1,2,...,M

B8 *8
where
ﬂi(k) = min { 1,k} for i=1,2,...,M-1 and k=0,1,2,...,N
- and
Ayk) =k » k< Ny
1
Uy
Np + —(k—NA) > Np<k =< Np+Ngp
Uy
L NA + 0 NR , k z:NA + NR

Lemma : The equilibrium state distribution over ¢, , the solution

of (1) and (2), is of the form

M
’ i
(4) Pr(ny,ny,...,0y) = o) igl A; ()

where (G(N) is a normalizing constant defined so that (2) is satisfied

and
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(5) AK) = (1 , k=0

a4y

k
I ——- ,» k=1,2,...,N

where @, @yyenes @y > 0 are multiplicative constants such that

(6)

= . . P 3 i = 1,2,..-,M.
diep T e

For the proof of the lemma, see Appendix.

Computing -algorithm:
The following procedures to compute Pr(n) as well as marginal
distributions, Pr {ni=k} , are patterned after Buzen (7).
Assuming that the ratios @, are determined from (6), G(N) is defined
as:
‘ M
M cm = z[ln A (ng) |

n
neg

Now let us introduce an auxiliary function to compute G(N), i.e.,

(i}
®  g(s, 1)) =352 [ ow A ()]
ne& k=[1]
() dls

where
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‘ (il
é, = {g~== (n , M, sooereeesen '., n
Lil,s ° [ 1] [2]_ (i1 | k=1
for [il=(1},(2],...,[M] and s = 0,1,2, ,N

the original number of the station in the ith

[ M [ wsvees

nk=s and

n, = 0 for k =[1]---+-- ,GJ)
Note that [i] denotes

position when all

stations are placed in arbitrary sequence regardless of their

original numbers.

From (7), we can observe that

)
a
9 g(s,0)) = % (1) for s=0,1,...,N,
y=1 /9[1] )
(10) g0, (i) ) =1 for [i] =(1],(2],..., M]
and
r i) ]
(11) g(s,0d)) = 2 n A, (o
Cmmy B0F

265 ® (iys

S

= 3 A_.(y) )y
v=0 Gl [

D18 h-13, sy

S

(m A
o ¥

=2 A . () gisvy,G-0L0G)=0302),[M]
y=0 AEl]

and s=0, 1..., N.

The iterative relationship in (11), together with the initial condi-

tions given in (9) and (10), completely defines the algorithm to

compute G(N).

distribution Pr {nj=y }is derived from (4) by letting [M] =

follows (i=1,2,...M and y=0,1,2,...,N)
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12) Pr{n.=y} = > Pr (n,n_, «-eer , Ty ,)
(12) 1 neE 2 M
&n=y
1
=X p— A, (n,)
e, G MO T A iy
&ni=y k=(1]

= A () g {N-y, (M-13}/ G (N).

The expecfed number of aircrafts available at the flying-base,
E{ny} , and the fleet availability, A = E {ny} /N, can be immediately

obtained from (12) by letting [M] = M.

V. Fleet availability management

This section describes a management program for improving the
fleet availability. The program is focused on allocating a limited
amount of budget, B, to M-1 repair-shops competing with each other
for the use of the budget available. Let the current repair-depot
supportability be denoted by E?=(u?, ug,...,uﬁ_l). Whén a specific
amount of budget, cj, is allocated to i th repair-shop, the improved

repair rate is

0
ui(ci) =u; + wi(ci) , ¢j=0 and i=1,2,...,M-1

where wi(ci)ﬁis assumed to be continuous and differentiable at

c; = 0. Then, the expected number of aircrafts present at the

flying-base is a function of C = (°1’°2""’°M—1)’ i.e.,

il

E (ny) =h {uc;)s uyleydsenes iy y (G 1))

[0

w (cy1,C25---5 cM_l).
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Therefore, our optimization problem is :
maximize w(cl,cég..., cM—l)
subject to a linear inequality constraint

b (C) = c1+c2+...+cM+1 < B.

In order to solve the problem rigorously, constrained nonlinear
programming techniques such as the gradient projection method
developed by Rosen [8] could be used. However, this procedure is
very time consuming and it is cumbersome to compute the projection
of the gradient vector on the constraint hyperplane.

Intuitively, E {nM} must not decrease as the repair-depot |
supportability improves by investing resources in any of the repair-
shops, and achieves its maximum when all the repair rates of the
repair-shops become o . The surface of the objective function
w(C) is relatively regular. Therefore, our optimization problem can
. be effectively solved by a modified unconstrained optimization
technique in which "hillclimbing steps' of certain magnitudes are
taken repeatedly until the available budget is exhgusted.

The method of steepest ascent with 'binary apportionment" is
used effectively in our optimization problem.based on the ideas that
i) the hillclimbing proceeds along a steepest ascent path evaluated
at each starting point of hillclimbing step until the total amount
of budget is exhausted, ii) initially it takes a small step on steep

surfaces, but progressively bigger steps on relatively flat surfaces,
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and iii) each step exhausts twice the amount of budget apportioned
to the previous step. The algorithm begins by choosing some point

' E? within the feasible region and evaluating the gradient VW(Q?) =

éﬁf v , ow ) A new point gf is then obtained from
acl 3 ac 2, aCM_l QZ_C_O .
(13) i i
+1 k M-1
_ k oW
c =C +‘7W(§S 2t/ 3  Tonmullt K o=0,1,2, e

1=1 1
where superscripﬁ k indicates each hillclimbing step number and
is the initial step size, i.e., the amount of budget apportioned to
the initial step (k=0). The gradient vw(g}) is then reevaluated at
E}, and another point 9? is determined from (13), and so on. The
procedure is continued until some step k is found where i) remaining
budget is less than or equal to Zkf , ii) vw(g#) converges closely
to vw(gx—l), or iii) vw(g?) becomes sufficiently small. Note that
in the cases of i) and ii), all remaining budget is apportioned to
the step k. In the case of iii), it means that the excessive amount
of budget over b(g#) has negligible effect on the fleet availability.
They major computational effort in this method lies in obtaining the
7 gradient vector vw(C) whose components are the respective partial
déiivatives evaluated at C. For the computation of partial deriva-

a .
tives ac; w(cl,...,ci,...,cM_l), see Appendix. In the numerical

example given below, the results obtained by our method are suffici-

ently close to those by the gradient projection method.

- 58-



e O HRRI O seeeese

Numerical examp le:

As in Figure 1, seven stations form a closed network with 20
aircrafts. The data are given as; NA=4’ NR=12, uM=1.0, and uﬁ=3.0.
The values of ilpin and u; are given in Table 1 and Table 2,
respectively. To obtain the fleet availability, we follow the
cdmputing steps; i) the ratios «; from (6), ii) G(N) and g {s,[M-1]1}
for (9) - (11) setting [M] = i for E {n;} , and iii) E {ni} after
obtaining Pr {nj = { } from {12). Table 2 shows the results of i)
and iii) as well as u;. Then the fleet availability is::

E {ny  E{ny)

A= N = 20 = 0.6025.

Table 1

Transition probabilities of aircrafts between stations

1 2 3 A 5 6 7

1¢0 0.6 0.4 0 0 0 0

2 | o 0 0 0.7 0.3 0 0

I ps5ll = 3| 0 0 0 0.2 0.8 0 0
4 | 0 0 0 0 0.5 0 0.5
5 | o 0 0 0 0 0.6 0.4

6 | 0 0 0 0 0 0 1

7 L1 0 0 0 0 0 0
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Table 2

Values of 4, a; and E(n;

Station Repair - depot Féying-
number : as¢e Sum
1 2 3 4 5 6 7
uy 50.000 20.400 25.600 28.000 25.000 30.800 1.000
dy ‘0.020 0.029 0.016 0.018 0.020 0.018 1.000

E {ny} 1.164 3.004 0.743 0.938 1.164 0.938 12.050 20.000

Now we are concerned with allocating a specific amount of budget,
i.e., $450, to the six repair-shops for improving the fleet availa-

bility. The function ui(ci) is assumed to be as

ui(ey) =uf + a3 € (epd®®-1) ,  i=1,2,....6

where the values of a; (i=1,2,...,6) are 6.5, 3.0, 3.6, 5.0, 2.0, and
8.0, respeétively. Table 3-shows the results obtained from the method
of steepest ascent with binary apportionment. Note that the optimal
allocation of the budget is presgnted in the last row of Table 3.

The results for various input data are summarized in Figure 2 to
represent graphically the relationship between the total amount of

budget and the fleet availability achievable through optimal resources

allocation.
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Table 3

Optimal allocation -of budget and fleet availability improved

=2
Hill Amount of Fleet
1i bi- budget appor- Amount of budget apportioned at step k avail-
clm ﬁg tioned to ability
step (k) ihe stepk 1 2 3 4 5 6 A
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.6025
1 2.000 0.213 1.013 0.120 0.213 0.131 0.310 0.6232
2 4.000 0.555 1.523 0.327 0.539 0.366 0.690 0.6495
3 8.000 1.308 2.357 0.843 1.208 0.986 1.298 0.6859
4 16.000 2.785 3.898 2.038 2,436 2.554 2,293 0.7367
5 32.000 5.565 6.916 4.512 4.715 6.090 4.202 0.8009
"6 64.000 11.045 13.032 9.382 9.311 13.050 -8.179 0.8667
7 128.000 22.091 25.268 19.158 18.732 26.340 16.411 0.9185
8 196.000 33.838 37.972 29.740 28.880 40.257 25.313 0.9473
vSuﬁ 450.000 77.402 91.974 69.119 66.033 89.773 58.697 0.9473
h
D flying — base
O repgir — shop
L _J

Figure 1. An example of closed network
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Fleet
availability

0.5 . ! ' ' .
0o 100 200 300 400 500

Total budget

Figure 2. Relationship between total available budget and fleet

availability achievable
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V. Summary & conclusions

Interactions of major activities (in a flying-base with two
typed missions and in repair-depot composed of multiple specialized
repair-shops) participating in fleet operations are investigated
in the framework of closed queueing network system with finite
aircrafts assigned to it. An implementable algorithm is developed,
which is useful for computing the distributions needed to evaluate
the effect of the interactions on the fleet operations. The
-availability management program proposed in this paper is’ focused
on seeking an optimal resource allocation to multiple repair-shops
to maximize the fleet availability subject to the budget constraint.
Furthermore, the methodology can be used as a powerful tool i) for
the planners to design the optimal repair-depot supportability and
ii) for the practioners to gain executive insights into the trade-
offs between the available budget and the achievable fleet avail-
ability.

In this paper, air base/depot setting is used as a vehicle to
convey the central theme. However, any piece of equipment orl
facility could repleace the aircraft. Application  of the model and
the solution methodology presented in this paper in many other

industrial contexts is selfevident.
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Appendix

Proof of Lemma:
The proof is patterned after Kelly ( 6) . Using (3), the

balance equation (1) is written as

=3 3. 4 4 (n.+1)p.. P +e. -e. ).
(A1) Prin)% i () vy = %5 Iy 6 (0t py Prlote; e
Assume now that Pr(n) is the form stated in Lemma. Then from (4)
and (5),

Pr (g-l—_ej —_Qi) o B; (ni )

Pr (n) a; ﬂj (nj+1)

From the above result, (A 1) becomes

ﬂi(ni)

For (A 2) to hold, the following equations must hold

. u:

. D. = 3. d u D. 1= 1, 2, corveeeer , M
IIE]PI EJdup , 1

] 171

and these are identical to (6) since Zj pij = 1 for all i. Note
that (6), similar to (1), implies a balance equation in the case of
a single customer while (1) implies the same in the case of multiple
customers. Equations (6)., a sufficient condition for (1), is an.
elementary result of Markov population processes as shown in ( 5,6) .

Q.E.D.
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Derivation of partial derivatives 9E(n,,)/ac,:

From (12), the expected number of aircrafts available is :
N

(A3) Efnyl=3 k Prin,=k}
k=1

N !
s TkoAL (k) g{N-k,[M'—lj}——]

k=1 M G(N)
N N-k ‘
X - 2
sk Ay 3 Apy 0) g0k k)]
k=1 =0 _
N N-k B
s Ay [ X Ay ) ENEoy (M2 ]
k=0 M yoo M-
In (6), we can see that the ratios ¢ju; are dependent only upon
il Pij” . This means that if #3 is changed alone, all ¢; are unchanged

except for aj corresponding to 2R This particular property of the
closed network can be utilized for computing partial derivatives ,

: aE{nM} /du; , regardless of complex interdependencies between
stations. Letting(MJ=M and (M-1J=1i (i=1,2,...,M-1), the term

gl k, (M-23J} in (A 3) is independent of u;. Thus

0B {n, ) N Nk (y+p
—_— = {B{ s k AM (k)[ p> (-y)liui g{N-k-y,[M-ZJ}}
N N-k y - (y+1) 9
-A[z AM (k)[ S (-y) 2 - g{N-k-y,[M-Z]}]] /B
k=0 y=0 vt
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Note that from (5) letting ¢ jui = i
k
Al(k)= ai
k .
= (2, /n;) L i= 1, 2, e ,M-1and k=01, N.

Therefore, we.obtain the partial derivatives, a]E{nhA}//aci,

as follows:

3E{n
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