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Abstract

For many capacity expansion problems, distinct capacity types must ba speeified to identify capa-
city at different locations or capacities with diffarent costs and opzrating characteristics.

In this study, a projzct-sequenzing modsl is davziopad that allows op2rating costs to influence the
timing decisions for projzct establishmznt. Uadar certain conditions, th: pawar expansion formulation
is derivad that may b2 solved shrough thz dynamic programming approach, and its first applicatian
to planning in electric pawar systems is sslected to invastigale an op:iimal palicy and to show the
impact of requiring system to service more than one typz of demand,

Several sample lesting results indicate that in some systems ths efficiency of the large nuclear
plants is higher than that of small onas that it may ovarcoms the effects of the drop in relizbility.

1. Introduction

For many capacity planning problems, distinct capacity types must be specified to identify
capacity at different locations(1] or capacity with different costs and operating characteristics[2].
In the simplest planning mode! with differentiated types of capacity, the sequencing of a finite
number of capacity expansion projacts is szlscted to mest the projected demand at Iminimum
discounted cost(6). )

In this study, a projsct-sequencing modal is daveloped where each project is defined by its fixed
capacity and investment cost, and a new project is added when increases in demand exhaust
capacity already established. The overall system costs are associated with a system operating
costs. and one-time cost of installing a plant of certain type at each planning time,

The system operating costs consist of two kinds of costs associated with the forced outage and
the annual energy supply at time ¢ with the system.

Each system operating cost is derived from a continous sub-optimization of one or more pla-
nning models. Solution precedure has the following three important assumptions:

(a) the optimal timing of one instaliation in an optimal sequence is independent of the other

optimal instaliation times.

(b) Operating costs at a particular time are assumed to depend only on the set of projzcts in

operation at that time and on exogenous quantities, such as demands, that are directly
related to time.
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Given these assumptions, the project-sequencing model is formulated that may be solved threugh
the dynamic programming mcdel technique, and its application to the existing sample sysiem
from the Mexican electric power system[7)* is selected to investigate an optimal policy and to
show the impact of requiring the system to service more than one type of demand {i.e. Peak
power and annual energy). The optimal policy is to select the sequencing of a finite number of
capacity expansion prejects, and timing decision for each project which is independent of those
for other projects. A simple criteria which minimizes the total discounted system operating and
investment costs, is derived for determining timing decisions.

The mathematical formulation for the total cost of the capacity expansion program is based on
the author’s paper{4] with revised subpregrams ard modified constraints. The solution technique
is also implemented with respect to the forward dynamic programming given by the egs.{14] and
(15], and the linear programming methcd for the determination of the cest of the annual energy
supply instead of a simple constructive methed as in the paper(3,4).

Furthermore, to reduce the computational effort, 2 network construction program is uscd 2t
each plant installation stage.

2. Development of the Mathematical Model.

2 1. General Structure of the Model.

The project-sequercing mcdel for the power capzcity expansion preblem has two major inter-

connected cocmponents:

(1} A dynamic programming medel of chocsing the types of plants to install in an exisling
systemn and best time to bring each into preduction.

(2) An anpual system operzting cost submedel for both fuel and expected forced cutage. Para-
meters of this submcdel are the demand for peak power, the demand for annual energy
and the types of plants in the system.

The general structure of this project-sequerncing medel consists of the main bedy program,

three supporting subroutines; FIVCM, CONVL, BCONVL, and two functional subprograms; DEL
2 and DALS1 {see chapter 4 for detailed discussion).

2.9, The Dynamic Programming of the Project Sequencing Model (PSM)

2 9.1, The capacity expansion Model.

The main objective of the capacity expansion problem is to select the types of plants to be
installed, and the timing decisions of each installation.

In this study, the continucus time capacity expansion medel is developed for finding the sequ-
ence of a finite set of capacity expansion projects that minimizes the total discounted sysiem
operating and nvestment costs.

The structure of this model consists of fwo major cost components such as the system operating
costs asscciated with the forced outage and annual supplying energy costs in the existing system
and the one-time cost of installing a plant of certain types of plants at each planning time.

To develop the model, let k(i) be the ' installed plant of type %, and z; be the time at which
the it plant of type & is installed. Let S={&(1}, £(2), ---- .} be a sequence of unit installations

(*) For the Korean system, Data are not completely available to run the program. However, the results of the program
with some Korean data & other foreign data are available.
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of plant of type %, and t={r;, 7z -+ } be a sequence of installation times. Then the capacity
expansion program is given as the pair (S, r).

When the sequence § of installation of the plant of type & is finite, the total cost, of capacity

expansion program with discount rate r is calculated as the present wvalue of th& sum of the
system costs as the eq. (1)

J(S, 1) :él {ffl C(Z" % tyexp (—rt)dt+m(,,;exp(-—rrﬂ)}

—|—f:C (Z%, Dexp(—rt)d: )
Where
J(S8,7)=the total cost of the program which is related to the present value of the fixed
costs and the system operating costs.
r=the discount rate
N=the total number of installation with the chcice of plant type k=k(n)<S, n=1,2,--- N
K—the total number of each plant of tvpe &
vi=vi™® D the one-time cost of the »™ installed plant of type % This cost represents the

capital costs of construction plus the present value (at installation time} of the fixed
operating costs over an infinite horizon.

C(Z~,t)—=the system operating cost with the state vector Z= of the system after » new ge-
nerating plants have been installed, in vear £
Thus

Z“ZZO-}—glwk(s) . 2

Where
Z'=the initial state vector at the start of the planning period,
wiey=a K-dimensional unit vector with 1 if the k-type of plant is selected at the »** ins-
tallations, and zero elsewhere. This represents a new installing Kx1 plant vector.
To make it possible to compute mumerical values, the demand is assumed to be constant after
some planning pericd 7, and so can show there is a finite optimal program. Since the given
system is increasingly costly to operate as time goes on, the ststem operating cost C{Z,¢) is bo-
unded on [0, T') and non-decreasing in ¢ for fixed Z.
It is permissible that C(Z,7) is bounded on [0, oo} for large T.

2.2.2. Development of the dynamie programming for PSAM.

As mentioned earlier, the project-sequencing model is t> find the optimal sequence of new plant
types and ifs corresponding installation times which minimizes the total cost of the program J
{(S. 7).

So the objactive function of the project sequencing model is given by the following type of
dynamic programming medel with respect to {£(x)} and {r.} :

J(S*, 79)=Min Min [J(S, t)= f :c (Z*, Dexp(—rt)dt+G(Z™, k(n), 1)) (3)

{a(u))ES [7alE7

{*) vs=0tsn, is defined such that

_ [2a(f) i convex decreasing function in T
z”*_{m(‘l") ; constant for > T
Where T is the length of the planning period,
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where
X Tw
G2 L k), ) = 21 {.fr C(Z~1, t)exp(—rt)dt—l-m(,x)exp(-ﬂ‘n)} @
and G(Z~, k(n), .} is fnterpr’eted as the presented value of the total costs associated with the

installation and operation of plant k(n) in the system at time z..
Since

Vany€XP(—FTn) =0y "'f:' rUremexp{—ri)dt (5)
Substituting the eq. (5) into the eq. (4) gives

G(Z"™, k(n), o) =§:1 {f L €@y —7 s JeXD(—r)dt+vacn] (6)

Since the first part of the right-hand-side of the eq. (3) is independent of 7., the minimum
total cost of the program J(S* 1*) given by eq. (3) becomes as

J(SH)=J(S*, %) =‘k5}g§:;s[f:C(Z", exp(—ri)de +.éxG(Z”-l’ k{n) )] (M
Where  G(Z"7%, k(n)) =Min(G(Z", k(n}, )] ®

Let  Gr(Z% = f :c (27, tyexp(—rt)dt

= J’ :C(Z”, Dexp(—re)dt+10(2%, Thexp(—rT) (@)
Then, the eq.(7) can be rewritten as
IS = Min (62, k(n) +Ge(z7) (10)
kin))ES Nn=)

Define the set of all permutations of project indices in I
D= {5, L, -+, Lel Loy =LURG+D) for i=0,1, -, N—1} (11)
Where I corresponds to the systemn state vector Z° of the it installation of the plant type %
such that
Z'=Z" Yarn=2""4ox where S={k(1), (2), s R(N) =S, Spy v, Sa}
Let (I} be the number of elements in I, and

. el
f(f) =i£2§}r6191 {ngl G (In-l; k (?I) )} (12)
Then, the eq. (10) can bs written as
. rED
A= Min [5G, k) +Gr(20) 1%

Where S* is equivalent to [*=0,.

Thus, finding f(I*) is equivalent to finding J (I*) since

JI)=fI*) +G(Z%) 4

Note in eq. (13) that each successive term G{l k(n+1)) in a minimum cost sequence depends
on the preceding project set , but not on the sequence in which the projects in I, are undertaken.

If Iis the set of the first #{I) projects in a minimum-cost sequence, it is easily shown that
the sequencing of the projzcts in I must be minimum-cost as defined in eq. {12). It is possible
to have several sequenc:s ¢f projects in some subset of I which may provide equal minimum-ccst
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values as the alternative optimum sclutions. If this happens, one can adopt the tie-breaking rule
of selecting the minimum-cost sequence that has the latest establishment time *=r* (I &) for the
last project £ added to complete the set [
Consequently, the latest minimum-cost solution for the formulation given by eq. (7 may deter-
mine through the following forward dynamic prograrnming relationship:
FD=Imin {f{(I—&) +G(I &)} ' (15)
kErCg;

figy=0
whe Imin stands for th= latest minimization, and the solution procedure terminates with the solu-
tion f{I*}, which may bz converted to the solution J(I*) through eq. (14).

2.3. System Operating Cost Sub-Model,

In the previous ssction, the costs related to the power capacity expansion projsct were the
system operating costs associated with the forced outage and annual energy supply in the existing
system, and one-time cost of installing a plant of certain types at each planning time.

Particularly, the system operating costs C(Z,¢) consist of two kinds of costs associated with;
(i) the cost of forced outage at tims £ with system Z, called C,(Z,#), and (i} the cost of supplying
the annual energy at time ¢ with system Z, called C,(Z,¢). Thus C(Z,0)=C,(Z,6)+C,(Z,1).

In order to calculate the costs of C,(Z, ), and C,(Z,¢), the following two fundamental assump-
tions are undertaken:

(1) the cost of forced ocutage, C\(Z,1) is proportional to the expected unsupplied power at the

yvearly peak, and

(2) the cast of the annual supplying energy requirement is obtained by using the annual load

duration curve, L(y,1).

On the basis of the above assumption, each cost can be computed by using the following two
sub-models. ;

C.(Z, £) =8760 k- _[ :_Dmcx— Q—-D®)))dF(X; Z) (16)
C(Z, £) =870 - f :R Ly, 1), Z)dy an

xr
Where Q=total power capacity to produca peak power computed as ngln‘?;Za where 8 is

the name plate rating capacity of a plant of type & and Z; is the number of plants
of type k in the system.

X=the amount of failed (or unavailable) powar capacity which represents a Bernoulli
random variable,

D{t)—=Annmual peak power demand in year 2.
h=Penalty cost per unit forced outage ($/MWH).

F(X;Z)=Cummulative distribution of failed capacity on forcad outaze with given system Z
such that
F(X;Z)=Problamount of failed capacity on forced outage<<X, given system Z]

R(L,Z)=Minimum cost of supplying L units of power with system Z.

L{y,#)=Load duration curve in year ¢, and 0<y<<l. This represents that L units of power

must be supplied for 0<Zy <1 of year &
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3. Determination of Some System Sub-Models of the PSM.

3.1. Determination ', (Z, 1)

Let the cost of failed power capacity per year, given X, be proportional to the amount of
unsatisfied demand. Then this cost, 4C,(Z, ) can he writien as
P2, I):{Srﬁﬂ AX O(Q D(r))]: 11; )}iig—gg

Where k is the proportionality constant defined as the penalty cost per unit shortage ($,M
WH)} and D(#)=D(T)for :=T.
Thus the cost of forced cutage at time ¢ with the system Z is determined by the expected
value of 4C,(Z, 1) with its failed capacity distribution function F(X ; Z):
C{Z,)=8780h EZX—(Q-D@®))]

(18)

— 8760 k'[:_mzx— (@—D®)F(X ; Z)

Where the eq. (19) is the zame as eq. (16).
The eq. (19) can be aiso rewriten as

C.(Z, £)=8T60 hf:_m?(x s Z)dX

Where (X 2)=1-F(X; Z) [11].

For the detailed comuputation C,(Z®, #) ; the cost of forced outage with the system Z* after »
installaticns, it requires the valune of the distribution of failed capacity after = installation, F{X;
Z*), and the cost per unit cutage during the peak period; A.

3.1.1. Determination F(X ; Z")

Assuming that each plant of type 2 in the system has the probability P of being down at
time ¢, and also assnming that each plant failure is statistically independent of the other plants
in the system, then for the given initial value of F{X ; Z%, the distribution of failed capacity
after m installations F{X ; Z~) is given by

F(X; Z)=PumF (X —0remy s 7N+ (1 Py ) F(X 5 Z71) (21)
m=1, 2, =, n
Thus the F(X; Z*) can be calculated as the convelutisn of F(X ; Z% such that

1 ) A
linear combination of .
PG EIZ AP 29,y FE- T s 5 29, 0<X<Q" (22)
0 ; X<0
Where z
AR AR 2, Waei>
L K
=+ T by for Q":)‘Zlﬁxzt" (23)
i=1 =
and J 1 ) X>@°
F (X =F{X ; Z=scontinucus increasing in X, 0<X=<Q° . (24)
1 0 » X=0



3.1,2, Determination &
The cost per unit outage during the peak period, 2(#/MWH) is usually very difficult to es-
timate but it affects mainly the timing of installation rather than the choice of the plant types.
. In this study, it is chosen as the value of 50 times the average price of energy in the sample
data.

3.1.3. Detevmination C,(Z",¢)
With the determined F(X ; Z*) and h from the above sections 3.1.1 and 3.1.2, the ccst of
forced outage, C,(Z ) can be calculated as

Ci(z, )=87604[ . F(X;Z)dX @5)
‘Where
=G+ F buco for @=F 02,0

For simplicity, it has taken a discrete distribution for F(X; Z®) and 50 MW Metric pewer.
Consequently, C,(Z%¢) can be calculated as

C.(Z", ) =8760 hIE:F(X.- : 2% %50 (26)
for @*—D() éXs‘SQ", Ve

3. 2. Determination C.(Z ; )

The cost of supplying the annual energy, C.(Z,t), arises from the need to meet the energy
demands per unit time of the customers. These demands are represented by the load duration
curve. The cest Cy(Z,2) can be derived from two major components associated with a load
duration curve for fixed #: L(y,2) for 0<y<1, and a cost per unit time of energy supplied by
each plant type B ai( % /MWH).

Mathematically, L(y,#) is a decreasing function for fixed ¢ and 0<y<I. Practically, this L
(v,) is defined as the minimum power required during the fraction y of the year z Hence the
anmeal energy demand in year ¢ is given by

E@=[ Ly vy . @)

Where aL(y, t)/8t>>0 for all y=[(0,1] and all &

For a given cost per unit time of energy supplied by each plant of type % a: is the minimum
cost of supplying L units of power with system Z» after n instaliations; R(L,Z=) can be dete-
rmined from the following optimization formulation;

R(L,Z™ :hjitin h;‘l X (28)

subject to
0< Xi <wpZy®, k=1,2,-, K
n=0,1,+ N
Where u;—=8:&: ; 0 is a name plate rating capacity of plant of type % and & is an annual

utilization factor of plant tvpe %, and o is a cost of energy supplying a plant of type & ($/
MWH), X the total power outputs of all plants of type & and Z,~ is the number of plants of
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type k& in the system with » installations.
On the other hand, R(L,Z") can be obtained by the following nonlinear programming method,
ie.
r

R(L, Z")= Min lmXﬁ-Z;(— §1X.+L)+zzcxi—u,-z‘-~)] (29)

Xyvdpgaz -
i=12+, K, a=0,1+-,N
Subject to
Xi=0 for all &
Where the 4, and A, are Largrange Multipliers.

Furthermore, for computational simplicity of R(L,2Z»), one can also adapt a constructive solu-
tion approach in the papers (3,4). This approach characterizes the system at time zero by
grouping the initial and decision sets of plants according to the increasing variable costs of energy
(i.e. merit order). So R(L, Z") can be computed as the linear combination of the initial function
Ry(LY=R(L, Z2%.5

In this study, the linear programming method is used to determine R{L, Z*) under the following
assumptions: The load duration curve, L(y,t) for fixed z is assumed to have the following form;

Ly t)=L(y)es, y=(0,1; ¢l0)
Where L(y)=L(»0) for =0, and g is an increasing rate of demand for each segment of ye=
£0,1]. Next, since each plant can only produce £% (utilization factor) of its peak power because
of the down-time due to maintenance and some possiblities of plant failures etc., the utilization
factor for the nuclear power plant is assumed to be £:=0. 85, and for the fossil plant, £=0. 90,
respectively.

3.3. Network Configuration

The network is constructed in order to find the cost sequence of installations of plants starting
at the existing system Z° and ending at Z*. This can be corsidered in the dynamic programming
phase in the network. That is, for changing N, the program constructs a dummy final node Z¥F
to which each Z¥ is connected at cost Gr(Z¥). This is to find the shortest route from Z° to Z*
for an optimal unit installation sequence for a given planning time period T.

This network is built from starting system Z° by constructing arcs due to each installation of
k-tvpe of plant.

The cost on each arc is related to G(Z% %), and its ending node represents the new state of
the system Z°4-au for £=1, 2, ---K. This network building is continued unatil the optimal installa-
tion time is at least the end of the planning period 7. Thus the number of installations in each
stage depends on the size of the plant types. Actually the total number of installation of % types
of plants is given by K», n=1,2,3, -, N<oo, thus this number is very large ore when XK and
n are large.

So, some node elimination procedure can be taken in order to reduce the number of the same
states generated from each previous states. Under the node elimination of the network, the total
number of distinct states created by all combinations of = installations, Z(n), from the existing
system Z° can be given as

x-y

Tm=g ("*i71), for all a>1 4D
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Table 1 shows some results of the eq. (3.

Table 1, Numbers of Distinet Nodes at Each Installation with K Different Types of plants.

\ T (w)
n v
K ) 2 3 4 5 . . .
1 1 1 ] 1 1 ' . . .
2 2 3 4 5 6 . . .
3 1 3 ’ [ 14} 15 21 . . .
4 4 ‘ 10 25 a5 56 . . .
_ !

h Accérding to such an elimination approach, a considerable comgputational times connected with
K*—H (n) unnecessary nodes from all possible generating nodes K* can be saved. Further elimi-
nation of nodes with the high cost states can also be expected through the computing process.

3. 4. Optimal Installation Time

For a given any scquence of plant of the type % after = installations, {(n)}, the selection of
the optimal timing decisions in eq. (4-6) seperates into N independent subproblems G(Z 1, k(n))
associated with the eq. (10) where G(Z*"1, k(n), ) is given as the eq. (2) or (6).

First of all. the minimum-ccst timing solition for eq. (10} can be obtained by

G (2" k(n), ) —0
07 o

where 7. is the time of the 't installation, and £.&(%n.1, Twss]) for all
This resuit gives us that the optimal installation time to install the n® plant in an optimal

sequence is when the system operating cost savings become equal to the equivalent annual fixed
cost.

That is,

C(Z Y 1.)—C(Z", Tu) =7 Taemy ) (3

As in Marglin's analysis [10], the eq. (32) defines the optimal timing decision ¢*=rz,(Z~ &
{(n)} at the time when the marginal benefit rate, given by the savings on operating costs provided
by adding the plant type k to the set Zr'=Z"—k(n) equals the marginal cost rate for capital
charges on the investment. This type of timing condjtion can be generalized to several cases where
the invesiment cost v, varies over time [5).

4. Computer Simulation Medel

In order to test the projact-sequencing model system under some reasonable conditions, simula-
tions, simulation method should bs chosen because of lack of understanding of the various sub-
systems of the proj:ct-sequencing systems, including their relative importance and interdependence
upon one another. In this study, the simulation modelling is considered under the following main
chjectives:
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(1) To generate all different installation times within the planning time period.

(2) To allocate the hydro to load duration curve within peak constraints, and to determine the
number of ordered distinet state created by all possible combinations of N installations from
the original system Z°

(3) To caiculate node total capacity and capacity faz[ure probability F(x : 2).

(4) To identify the system performance statistics of the project-sequencing system with diffe-
rent types of plants, installation times, and costs etc.

On the other hand, the proposed dynamic programming associated with the eqs. (14) and {1

is used to determine the optimal solution of the PSM.

Figure 1 shows the main structure of the project-sequencing model Through the dynamic pro-

gramming solution procedure, three supporting subroutines; FIVCM, CONVL, BCONVL, and Mtwo
functional subprograms; DEL 2 and DALS1 are considered internally m the main program. The

Initialize Assembies

+
Compute JIN}, eiNi, Ni

Allocate Hydro to Load durztion
Curve within peak constraints

Determine the # of ordered distinet state
created by all posasible combinations of N
installations from the origin 2°

l

! Read in the set of all node condidares ]

® ]
Set up the first and the last node numbers

for current layer of node znd previcus
layer.

@ I

I Select present node from current layer l

l

Calculate Node total capacity and
F-bar

Select plant of first type

(ﬁLj ®

Figare 1. Main Flowchart of Project-sequencing Model

~
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Figure 1. Continue

brief descriptions are as follows:

FIVCM.---To calculate the probability distribution of failure capacity for each power plant.

CONVL.--The CONVL accepts the vector X of the length N and vector ¥ of length M. It
convolves them and returns X of length (N+M-—1).

BCONVL +--The BCONVL accepts a real vector X of length NX and a Bernoulli variable B with
Pr(0)=BP and Pr(NB—1)=1—BP. It assumes NB<NX. It also assumes X with
B and yields the result as X of length (NX+NB—1).

DEL 2---{i) To calculate demand levels for load duration curve and to allocate Hydro energy
to lead duration curve within peak constraint.

(i) To calculate (X Z)=F(X;Z—-K)-F{X; Z).
DALSL---To calculate dCZ, )=C(Z-K, ) -C(Z, t)

4.2, Sample Study

The mathematical model and some computational method have been discussed in the previous
sections to investigate the optimal type of new generating installations in different electric power
system,

In this section, sample data from the Mexican Electric Power System (7] are used for the
analysis of the system performance. The initial Input data are provided as follows:

Length of study period :resc-sreesssccnriinmmninnnironnaaa: 3 0r 5 year
existing installed capacity in period @ «-evevermmmiiniiiininciiininen 6,250 MW
peak demand in period 0 -seeersserseeerivresiininiiiniiinsie snsinssnsssssese 5, 000 MW
Peak POWET SUPDIY:eseorsmrrerirersmunsiesstssencrenmssscsesssssnnnannseenses 3, 800 MW
Annual hydro supply of total Energy -eetesssccemvimi, 15, 410 GW /ann,
Growth rate of demand-s-r=serarsrersmsivnsnsirsssirmermminerrcrrimm. 99 Jann.
Discount rate for present WOTTherererrnerrcnsmrarionrrnsrnrsnsiarasnsasses 8%/31111_

Cost of forced outage..................................................-..-...... $800/MWH
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utilization rate;
Nuclear power plant -«--.... - PO rresre s trrrenan eoen (1 85
fossil POWEr PIANE «vorererererimiiit et (), G0

The alternative plant's characteristics of type % being installed are described in Table 2.

In particular, the capacity of each plant of type k£ gives information to generate 2 number of
50 MW unit for each plant, and thus this gives KC=[20, 10, 20] for Z,, %#=1,2,3.

Table 3 is for the existing plant capacity for failure capacity probability and KC vector calen-
lations. Table 4 is for the existing plant capacity for energy and KC calculations, and also gives
information for variable cost of erergy. Table 5 is for energy demand for the load duration curve.

The results of the dynamic programming for the project sequencing problern are shown in Table
6. As shown in Table 6, two ziternative planning periods are taken for the system analysis,
and the resulting optimal policies are turnd out as; (i) for the three year planning period, the
optimal, installed plants are mixed with type 1, type 1, type 2 and type 1 though the optimal
mstallation sequential times, 0.23, 1. 62, 2.77, and 2.95 year. For the 5 vear planning period, it
turned out, S*={(type 1, type 1, type 1, type 2) and *={1.3, 2.1, 3.4, 4.5) year respectively,
Furthermore, for each case, the optimal total system operating coéts are given as $838 10° and
855. 10%, respectively. . ’

Table 2. Alernative Plants of Type k.

Plant | capiizl cost fixed op. cost Prch. of Varizble op,
type capacity of Z, g I 8 x 108 vear fzilure Cap, cost & éWH
Zy (CG) (FOC) . (Pe) 418
Z J\Olffl;"lpv 178.2 2.0 0.053 1. 26
z, NggleMa:V 101. 6 1.6 C. 040 1.35
z l%%gsl\ffw 86,0 1.4 0. 053 2.98

Table 3. Existing Plant Capacity for Probability Calculations

plant eize MW No. of Units Prch, of failure cap. Total Capacity MW | Remarks for (KC)
50 38 TG 0108 1800 ] 34
1G0 5 ¢. o108 500 H
150 v 0. 0233 1350 27
200 9 0. 01 1800 34
340 1 0.03 350 &
s00 i 0. 04 560 10

Total [ [ ‘ 6250 125

Table 4 Existing Plant Capacity for Energy Caleulations (Fossil Planis)

Ttem Qj‘_"i{ii o2 b s b | s I| 6 7| Totar

Plant capacity (MW) | 500 | 30 | oo J| 200 i 100 ‘ 50 160 ' 2250

Energy ccst ($x10% [ 311 li 313 1 2.7 1 3.67 ‘ 413 | 472 | 529 ‘ 21.42!
KC | [ 6 1 20 ‘ s | 2| 1 | 2 ] ]

Note, KC is the number of 30 MW unit for each plant capacity.
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Table 3. Energy Demands for Load Duration Curve at Time Zero.

l:\i Energy Demand (GW) Hours used

5. ! [ 4. 45 1000 hrs

i 2 | ' 3.97 5000 hrs

! | 2.70 2760 hrs

i .

1 Total | 27.25 TWH g, 740 hrs=1 year

Note (i) 27.25 TWH=4. 43 GW 1000 H+3.07 GW x 5000H
+2. 70 GW x 2760 H=27,252 GWH
G TMW=105watts
1GW=16* MW
1TW=1FGW
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Table 6. Results of the Computer Simulation.

Planning Exirerme  policies . Oatirms] policy
CASE A i CASE B I CASE C | .
Period . ' | Max. % | s*peley
Policy Install. I Pliiey Policy Instzll, @ - Max, : ©*; Oot. Install Time
(year) Time Totai cogt! Instzll Time Time Total cost| [y Diff H (vear)
($x16% | Towal cest (5125, (§xicy 1L 1l TC* ; Opt. cost (§ %185
0,2,1,1; (2.2,2, 1 (3,32, 1) — — *—=(, L2
3 (0. 23, 1. 82, {1.11, 1. 82, 2. 52, (1.82,2. 12, _ _ c¥={0.23,1.62,2.77,
2.50,2,95) 2.%5; 2.77,2.%5) 295,
839 B8O 05% 129 14.3 | TC*=833
(],‘,],]) . (2r232v2s2»2) (3,3‘3’3}' - - S*':(];T,I:z}
(1.3,2.1,3. 4, {1.5,2.1,2.8, 4.5 1.4,2.2,3.3,
5 4 6) 4249) (4_ 5) : — — T*=(1.3,2.1,2,4,4.5)
882 881 <03 2 2.5 | TC*=a55

Nowe that, A policy £5==(1,2,3,] means a sequence of installation of three different types of plants,

(Zy; £=1,2,8), ie Z,=1000 MW muclear plant, Z,=500 MW nuclear plant, Z,=1000 MW
fessil plant.

The figure 2 shows the probabilistic effect for the 3 year planning illustration. As shown in
figure 2, one case is the plot of the failure capacity probability F(x : Z) of adding a first 1600 M
W nuclear plant to the given initial system with Z% and the second is the case of the failure
probability Fix: Z) of installing three power plants suck as a 1000 MW npuclear, 1000 MW
nuclear, and 500 MW nuclear power plants, sequentially to the given system Z° Each point on
the curve represents the probability that the amount of unavailable capacity at any time ¢ is
greater than the value of the abscissa.

On the other hand, further nodes are eliminated throuzh each installation stage because of the
energy and other cost restrictions. Particularly, for the three year planning period, only 7 nodes
are considered instead of 10 distinct nodes at the third installation stage.

5. Concluding Remarks

A dynamic programming model for the project-sequencing problem is developed in this study,
and the following points of view are critisized from the system performance analysis:

i} The optimization deterrnines not only the number of each plant of different type to install
but alse the optimal installation time in vear. It is also able to calculate the trade off batween
the change of capital costs due to the selection of particular plant unit size and the resulting
change in operating costs, provided always that the relizbility criterion is satisfied.

iy There is a good indication of a great difference between the total present worth costs of
the three alternative extreme policies considered, based upon the resuits shown in Table 6.

iii} To compute the analysis. the procedure can be utilized to indicate the sensitivity of the op-
timal plens to changes in discount rate, cost of forced outage, growth rate of demand,
utilization rate, etc. thus providing further information to guide the final decision.

iv) The optimization technique is used for selecting an optimum installation time of power plant
operating cost. However, this technique can bz revised for further extension with a great
efficiency.
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v) The constructive approach Shows that a change in planning horizon is reflected in changing
the optimal timing of an installation, but if not too large, it does affect slightly the choice
of plant types. _

vi) Several sample testing results indicate that in some systems the efficency of the large

nuciear plants is higher than that of small ones, so that it may overcome the effects of the
drop in reliahility.
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