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Abstract

The objective ¢f this paper is to develop a stochastic inventory system model under
the so-called continuous-review <Q,r) policy with a Poisson one-ata-time demand
process, iid customer inter-arrival times {Xi}, backorders aliowed, and constant procure-
ment lead time y. The distributions of the so-called inventory position process {IP,_,}
and lead time demand process Du-r,n} are formulated in terms of cumulative demand
by time #, {N.}. Then, for the long-run expected average annual inventory cost expres-
sion, the “ensemble” average is estimated, where the cost variations for stock ordering,
holding and backorders are considered stationary.

1. Introduection

Inventory systems are operated largely based on some operating policies concerning review
systems and ordering rules. The so-called transactions-'reporting (continuous) systems and periodic-
review systems are commonly used for inventory system review,

Some examples of operating policies (doctrines) are the so-called <Q, 7>, {R,7), (R, T>, <(nQ,
r, T> and {R,», T identified in (3), where @ is an order quantity, R and » are certain control
limits on inventory level, and T is a review period. Arnong these five doctrines, the <@, r) and
(R, r) doctrines are asscciated with transactions reporting, and the other three are associated
with pericdic review.

In this study, the <@,r) dcctrine will be mainly dealt with. Under the assumptions that
demands generate a Poisson process, the demands occurring when the systern is out of stock
are backcrdered, units are demanded one at a time, procurement lead time y is constant, and
the inventory system consisting of one stocking point with a single source for resupply. The
doctrine is a continuous review model, under which an  order is placed for the quantity @ to
raise the inventcry pesition (IP.) at time # to the level r+Q as soon as a demand drops the
inventory pesition below the level »+1, where the inventory position is defined to be the amount
on hard (OH,) plus on order (GO,) minus backorders (BO.). Thus, the inventory position
successively fails frem »+@Q to r+1 during each procurement cycle, and instantaneously rises
again up to r+Q.

One approach to the ¢Q, ) inventory system analysis is to optimize the parameters » and @,
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in which the objective function for optimization is a suitable expected inventory cost, depending
on @ and » as well as on a set of relevant unit costs. For this work, 2 model for the estimation
of the “ensemble” average inventory cost (a long-run expected average annual cost) will be
determined. In other words, the final objective is to determine the optimal value of @ and r
which minimize the corresponding objective cost function, £(@.,») involving the long-run
expected terms of on-hand inventory E{OH], backorders E(BO), and average number of
backorders incurred per vear E{4BO]. These long-run expected terms are to b= computed in
section 3 under the assumption of stationary cost variations. Let the family of random cumulative
smands by time £{N#; t&T} with the index set T generate a Poisson process, which denotes
the cumulative demand by time £3>0. The assumptions concerning [N} once made, one may in
fer the relevant properties of the so-called inventory position process {IP:}. Hence, the relevant
properties of the so-called net inventory process (NIS:}. from which the cost process is derived
whose average we seek, where the net inventory is defined to be the amount on hand {OH!)
minus backerders {BO.}

It is shown in [2) and (3] that under ths <&@, r> model the Hmiting distribution of {IPy; t=0}
is uniform on the set {r+1, r+2-,r-+@Q}, when the inter-arrival times (X =12,
between successive demands are independent and identically distributed (iid) random variables
possessing negative exponential distribution and units are demanded one at a time.

Under the slightly modified replenishmant policy {nQ,ry, Simon [7] has also achisved the
same result for the stationary demand process in which the demand quantity is random, lead
times are arbitrarily distributed, and backorders are allowed.

Sivazian [8) has generalized the work done in (2] and (33.

It is shown in (5) that in the case of random demand quantity the limiting distribution is
not uniform vnder the <@, ) policy.

2. HModel Development

Under the previous assumptions, {MV: ; >0} is a discrete-valued continuous-parameter stochastic
process (a renewal counting process) with sample paths increasing in unit steps. (N} wily
be analyzed to describe probabilistically the inventory position {IP,; z=0}.

It can be shown that {IP.} totally depends upon tha demand procsss {N:}. For example, if
an inventory system is started with IPy=r+i (i=1,2,---, @) at time ¢=0, than IP, .=r+j (7
=1,2, -, Q) at time z—z>0 can be reached after the (i—* or {4+(m—1)@+(Q-7) ; m=1
2,-++} demand materialization by time #—r, where 7 is a constant procurement lead time, s
denotes the total number of order placements by time ¢—7 and (i—j)=max(0, i—j). In other
words, P{IP._.=z} is a function of P{N._r=y}, as IP._s} is determined by  {N...}. Moreover,
under the assuption of the Poisson deman process and given IP,=r+i, {IP;s} and {Deor,nl
are mutually independent .of each other, where Du-r,o is a lead time demand and s0 Deor,nlN:
—N._r. That is, .

PP .=r+j, Dy.c,o=k} =P{P:r=r+j} «P{Du_r,n=h}, 4y

for j=1,2,--,@ and £=0,1,2, -
Therefore, the analysis of {NIS.; >0} becomes straightforward, from which the cost process
can be immediately derived whose average we seek.
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When demands arrive at time poinats £y, s, - (0<ty<Ctp<{++), the successive inter-arrival times
IX::i>1) are defined as Xy=t,, Xo=ts—1y, - Xa=ta—ts1,+, where {Xi} are assumed to
be fid randorm variables with a common distribution F, (F(0)—=0)., Thus, {{P.} also is a discrete-
valued continuous-parameter stochastic process. Denote by Sn the renewal epoch«—'of the n'®
demand (the time of the =™ renewal or the waiting time to the 2t demand), so that {S.;»=
0,1,2,---} are the partial sums of the renewal process {X.}, that is,

=2 X (So=0)
i=l

Then,
Ni=8.p1n 5 8.1} ) (2)
so that for >0 and n=1,2, -,
Ni>n iff S.<t, and Ni=r iff S,<t and S.. >t
Therefore, P{Ni=n} =Fo(t)—Fus1(t), where F.(¢)=P{S.<t} which denotes the n-fold
convolution of F with itself, so that -

Fun=FF 0 =[ Fa=2)dF (@) =[ Ft=2)dF.(2), for n=1,2,,

(Fp()=1 for £20) _
we shall first find the marginal distribution functions of {IP\}, {D{z—r, £J} and the residual
waiting time (or excess waiting time) at epoch ¢—¢ {Z,—7} for +&T which is the time from:
t—r until the first demand subsequent to £—r, that is,
Z:,r:SJ\:t‘!‘—‘(t‘_r),
so that Sy <t—z< 8wy &
For finding such distributions, the following so-called renewal-type equation plays an important
role; For known functions F(z) and H(z) and an unknown function g{z),

If g(6)=H(@) +L‘ gli—z) dF () (@=0), then
g®=H®+[ Hi—a)dma), | )

where m(z) denotes the mean value function such that m(z) =E{N‘}:i1 F.(t). The proof of

the equation appears in [1J, (4] and {6). The mean value function m(z) can also be stated 1)
the form of a renewal-type equation {see [4], [6));

m{f)=F (&) + f; m(t—z2)dF{z)

—F(@) +_[: F—z)dm{z). (5)

Suppose that we consider the sequence of events consisting of the times at which an order in
the amount of @ is placed and received in the constant lead time 7. Defining Y: to be the time
elapsed between the (2—1)st and #® orders, the sequence of random variables {Yi; &=I1,2,--}
forms a modified renewal process in which the distribution functions are given by

P{Y <y} =P S} =Fi(y) =P {Ny =i}, &)
where { is the initial stock over the reorder point », and likewise,

P{Ys<yn} =P {Se<ys} =P (N3 2@t =Fo (1), @
for £=2,3,--,

since {Vi<yi} <= {(Sivcr-no—Sisqe-ne) Syi}
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= {§;<p}.
Thus, ancther renewal process {W. ; m=0,1,2, ...} follows such that
W.zfj Yi =St oo for m=1,2, -, (8)
=1 .
(WO:YO:O)’

where ‘m=(", means that no order is placed vet.

Let (¢—7z—#) and m be, respectively, particular values of the time T and the serial M of the last
order (say sm'® order) placed no later than z—+. If we assume that IP,_,=r+j (j=1,2,---, Q) at
time t—z, then we see that {@—j) demands are further needed in the time interval (t—7—8,
t—r) for =0, since IP; ..¢ is r+Q immediately after the m™ order is placed at time t—z—06.

Theorem 1

For the {®, r» inventory svstem with backorders allowed, constant lead time £2>0, iid cus-
tomer inter-arrival times with finite mean, units demanded one at a time, and with IP,=r+i
(1:1’ 29 '"Q)’

o g=f=-1
PUPo=rtj}=PWNee=(-DI"TL |, ' P(Ne=Q—jidP (Wa<t—r~8),
for j=1,2,---,@Q, where P{N._.,=({—7)}*=0 if i<j.
PROOF: Denote by ¢n{T<z—c—68} the probahility that M=m and

T<t—7—8 5o that ¢.{T<t—z—0} =P{W.<t—1—68).
Since the inventory position IPi.—r-tj (j=1,2,++,@) can be reached after the demand
materialization D, ;s such that

Degyeera=Ne-=[—7)7%, for m=0

{I\’;-f_e+(N.-f—M-r-e)={i+(m—1)@}+(@—j), for m=1,2, -

. Lol bk 2k 4
PUPe=r+A=X]|  PUP, ,=rtj|M=m, T=t—1—0)-d¢u|T<t~7~6}
- T .
=P N =DV 4B p (N NeesmQj| M, T—t—z—8)-dP W<t
..-.rw_ﬁ}

@ ra=g-t

=PNer=G= 2} PIN=Q-jldP{W.<t—z—6) QE.D.

Using the renewal equation for m (), the distribution function of Z._.; can be formulated as

follows;
Theorem 2

For the inventory model of Theorem 1,
PiZ,.<z}=F(t—1+2) —Lﬂ[l—F(tw—r—:-zrf)]dm(é)
- f TPt 8)3dm(E), for 20

PROOF : Since
PlZ, <2} =P{0<8x, 4i— 7)<z}
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=P {t_f<SNf_¢+1£t—?+2}

=Plt—esXit—rta 3| pyres,, <i—ctzlS.=8dPiS. =8,

nml
its proof is straightforward by use of Eq. (5).
The random variable Z,.. may have a different distribution from those of Xi's.
the distribution of D¢ .r,1a can be determined in the next theorem by partitioning in accordance
with the time t—r+z at which the first demand cccurs after time t—r and the time interval

Therefore,

{t—7z+2, t] during which 2—1 demands occur.

Theorem 3

For the inventory model of Theorem I,
P{Dior o=k = [fu'P{N,_z:k—l}dP{z,-,gz}, for B=1,2, -
P{Z, . >z}, for k=0

PROOF : For k=0,
PiDger, (=0} =P{N,—N,_:=0}
ZP{Z¢~1>T},
For k>1,
PiDy v =k} =P IN:—N._.=k}

= f:P IN—Nyo=b|Z =2} dP{Z... <2}
- J:P{‘ i=k—1}dP{Z, <z}
:f: (Fi-y(zt —2)—Fu{t—2))dP|{Z._.<z}. Q.ED.

Recall that by definition,
NIS;=IP, «—Du_r,e» for tZ2cv20
—=QH,—B0O: and hence

NIS,=O0H,, s NIS,>0

=B0,, Ctherwise.
With the results of Theorems 1 & 3, we are about to find ths distribution of {NIS,} which

can also be used to determine E(OH,], E(BO,), E{4BO,)], and thz probability P,.(:) that the

)

system is cut of steck, at time ¢
Let's define that under the assumgtion of Peisson demand process,
P{IP .=r+j, Dy_cjn=j—s} ' =P{IP: .=r+j} °P{D(hf,“::j—s}+
:P{IPt-r:r‘h}} 'P{D(:_r,::‘:]"—s}, if _}25} (10)
=0, ctherwise

Referring to Egs. (9) and (10),

E[OH:]::;\'E.‘J:—P{OHFI}

:%Qx-P{OH,=.z}
z=0
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@
=3 z-P{NIS,=x}
x=y

I

@
E P:lP{IPt -r—f"f'J} P{D(r r,u—?‘"{']—.:c}

I
[l

r+q
VPP, _c=r+j}- )__, - P{Duey=r+i—ajt

.
It

1l
o D’O

r+f
P{IP; r—r‘—‘-_]} Z;“I'P{D{t_f,ﬂ:r-i-j'—x}

o

7

P{IP._«=r-tj} E (r+j—n)P{Dy_r,u=n}

L}
—-

replacing r+j—x by =

=3 P{IPor=r+7) ]:[(r-i-j) S PDer0=n} — E P{Dr,0=n}), (12)

i=1

E(BOJ=3 x-P{BO=x}=F & PNIS.=~1)

= Q

=3 2 PP ee=r i} PiDe-r0=r j+1)
Q

= {IP:—?—?"‘}'J} E X P{D( Tf:_;r'+1_+_x}

¥=1

1l
||Mc

{IP:-f—r_J} E (ﬂ—?‘"—j)P{Du-T,n:”}
replacing r +j+z by =
Q r+7 .
=_§1 P{IP‘_f:r_f.j}.EEED“‘_,!”]—-(?--{-J')-—|—~gﬂ(r-f—_}—n)P{D(:_r,n"—‘ﬂ}]: (13}

Pos (t) - glP {BO; =x}

::.E;I zélp {IP;-T:?‘ +j} ‘P{D(g_f,u:?"‘l‘j er}
Q
=EPUP =+ (1= L P Decro=n), (14)

and
E(4BO,J=1P,:(¢),
Where 2 denotes the mean rate of demand such that

s E[Da,unnj
A=lim At

(15)

Now, we need to discuss the relevant cost variations associated with the (Q, »> mventory
systenm.

The procurement cost is assumed to be composed of a fixed ordering cost$A, which is
approximately proportional to the number of orders placed, and of a variable cost $C per

unit associated with transportation costs, part of the receiving costs, and part of the inspection

costs, Moreover, the unit cost $C will be assumed independent of the quantity ordered.
For the inventory carrying (holding) costs, the instantaneous rate at which inventory carrying

costs are incurred is assumed to be proportional to the investment in inventory at that point in

time. The constant of the proportionality or just the carrying charge, denocted by “I”, will he
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used to estimate the carrying costs. “I” has the dimension of “cost per umit time per monetary
unit invested in inventory” (for example, dollars per year per dollar of inventery invastment}.
Therefore, the instantaneous rate of incurring the carrying charges in the units of dollars per
year is IC x, where x is the on-hand inventory level,

For the stockout costs, there are two cases such as backorder costs and lost- sales costs incurred
by having demands cccur when the system is out of stock. When units are demanded one at a
time, the cost of each unit backordered can be estimated by B(z) =B+Bt, where B denotes the
fixed cost per unit backordered and B represents the varying cost in proportion to the length of
time. Denoting “units times years” by “unit vears”, B has the dimension of dollars per unit year
of shortage in the case of which we want the cost for a year to come out in dollars. The lost
sale ccsts won't be considered in this work.

The above expectations and relevant costs are put together to form the following expected
inventory cost expression L (@, r):;

S @, r),—a- -A+IC-E(OH,)+B- E(4BO.]+E- E{BO.), (16)

where é’— represents the numbzr cf orders placed per year Wthh is obtained from the mean rate

of demands per vear A and each order quantity @.

2, Long-Run Expected Average Annual Cost Formulation
Taking limit of Eq.(16), as ¢ tends to infinity, will lead to the formulation of the long-run
expected average annual cost function, where its minimization is the criterion to determine the
optimum & and r.
We can define the following in the sense of “ensemble” average;

mJ'E{OH:} ¢
EOHI=lime— —lim E(OH].

oo el

Then, £(Q, r), which denotes the limit of £, (@, r);, is achieved from taking limits of E[OH.],
ETBO,) and E[4BO.] as to tends to infinity.
As pointed out in (8], it can be analytically proved by Laplace transform approach that

ll_lEP{IPeﬁf—?“}'J --—Q-(J 1 2 R)

In order to determine the limit distribution of Dy.r,n, We need to introduce the following so-
called Key Remewal Theorem (for its proof see [9] and [10]);
If the inter-arrival time X has finite mean g and the distribution F is not arithmetic, and H
(¢) is any function satisfving the conditions
a) H()>0 for all £=0
b [TH@)dr<o0,
1]
c) H(#) is nonincreasing, then it is true that
lim H(t—x)dm(x) :—J?H(t)dt.

e

with this result and Theorem 2, the limit distribution will result in

[ [Feay—2f Fa(nay+[ Fratddy

HmP {D(g_r;ﬂ=&} = fOl’ k:]., 2, Ty

y
1 HL (1—F(2)3dz, for =0
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This result can be directly used for finding that
Iim E{ D(,_f,n]=—;— for every £>0, which is necessary for computing lim E{BO,J.
= =
Thus, the above limiting estimations will end up with the following long-run expected average
annual inventory cost £(Q,r);

£@,7) =é . A++IC- ETOH)+B- E(4BO)+B- E(BO), a7)
4. Conclusion

This siudy shows that tha limit distributions of D0, IP:_+ and NIS, are achizved by using
the renewal theorems and th2 Laplace transform approach, so that the expected. terms of the
long-run expected average anmuil inventory cost expressions are analytically and explicitly
describzd, and so it ¥ more realistic.

This work can be extznded to sym2 continusus-review inventory systems which have demand
proc=sses such that ths stechastic procsssss {IPi_«} and {D.r,s} may be asymptotically indepen-
dent under the assumnntion that demands occur one at a time. The non-stationary cost variations
can also b= considered withaut any siznificant difficuity.

The optimization problem of E.(17) can b2 salved by dynamic programming approach for th
optima of @ and ~
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