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ON STATIONARY GAUSSIAN SECOND ORDER MARKOV PROCESSES

By W.J. Park and Y.S. Hsu

0. Abstract

In this paper we give a characterization of Stationary Gaussian 2nd order
Markov processes in terms of its covariance function R(t)=E[X(OX({+T)]
and also give some relationship among quasi-Markov, Markov and 2nd order

Markov processes.

1. Introduction

Let {X(¢) : t&T} be a stationary Gaussian process with a covariance function

R(D=E[X()X({+1)]. Assume that E(X())=0 and E(X (t))2=1 for each
tET. A process X(¢) is called Markov if for any partition of T with ¢, <¢f, <

<t,<t,
P{X(D<z|X(tD, X(t), =, Xt} =P{X®<z|X(t)}
and is called 2rnd order Markov if for any partition of T with #; <ty <l <f,_;
<t, <,
P{X()<x| XD, X)), = X({,_p, X&)}
=P{X(O<z|X(t,_D. XD}
for any real number x. One can define the concept of nth order Markov in
similar fashion. A process X(¢), t&T, is called quasi-Markov (or reciprocal) if
for any A€o(X(s), s<t or s>u), B&o(X(s), t<s<u) and for each pair ¢ and
# with t<# in T,
P{ANBIX(£), X(w)}=P {4|1X{#), X(u)}-P{B|X(), X(w)}.
It is well known that the stationary Gaussian process is Markov (with contin-
uous covariance function) if and only if its covariance furction has the follow-
ing form:
R(D)=e %" where a>0
{See Doob [2] for T'=[0, o0)). Chay [1] and Jamison [3] have shown recently
that the stationary Gaussian process.is quasi-Markov if and only if its covar-
iance function has one of the following forms:
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() R@=e " (a>0),
(i) R(t)=cos f7, or
(i) R(x)=1—-|7l, 7&(—-1,1)

In this paper we characterized the 2nd order Markov (Stationary Gaussian)
process. Our main result is as follows: A process X(¢), (&T=1[0, {] is 2nd
order Markov if and only if its covariance function has one of the following
forms: |

(i) R(m)=1

(i) R(z)=A" where 1<1 or

(ii1) R{(t)=cosyT where r7<=x
We have also shown that

(i) when T is a set of integers, 2nd order Markov property and quasi-Markov
property are equivalent,

(i1) when T is a finite interval of real numbers, 2nd order Markov property
implies quasi-Markov property, and

(iii) when T is [0, o©), 2nd order Markov property implies Markov property.

2. Characterization of 2nd order markov

Denote R™ = [0, o0),
Z" =the set of all positive integers
A=10, {] for finite real number Z.
We assume that the process X (t), tE€T, (where T may be RT, Z T or A) be

stationary and Gaussian with £(X(¢))=0 and E(X (t))2:1 for each {&€T. Let
R(7) be the covariance function of the process X ().

PROPOSITION 1. Let X(t), t€ER™ (or Z7) be nth order Markov process such
that |R(Z)|=1 for some t,#0 in R™, then |R(s)| =1 for V sER™.

PROOF. Assume that R({))=1 (the case when R(#;)=—1 can be proved by
a similar argument). Since the process is Gaussian, R(#,)=1 implies that X(0)
and X(¢,) are linearly dependent random variables, and we have X(0)=X({y)a.s.
because R(¢,)=1. The stationarity of the porcess implies that

(1) X(0)=X(t)=X(kty) for kEZ".

For s&(nt,, (n+1)ty), let E{X(s)|X(0)}=aX(0). Then X(s)—aX(0)LX(0)
implies that R(s)=a. Now for #&(0, ¢y,
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E{X(s)|X(u), X(y), +» X(nty)}
=E{X(DIX(y, -, X(nt)}=E{X(s)|X(0)}
=aX(0), which implies that X(s)—aeX(0) LX(%).
Therefore, E[{X(s)—aX(0)} » X(u#)] =0, i.e.
EFX(s)X(w)] =aE[X(0O)X(@x)] =aR(u)=R(s)R(u), hence

(2) R(s—u)=R(s)R(x) for uc(0, ty)) and s &(nt, (n+1)¢y).
Let s=nt,+v, then we have v&(0, ¢,) and
(3) R(nty-tv)=E [X(m‘0+ v)X(0)] =E [X(nty+v)X(nty)]

=E[X(0)X(0)] =R(v).
Hence from (2) and (3) R(v—u)=R(w)R(u) for =, v in (0, to) and by letting

#=y, we have R(O)sz(u), Le. |[R(w)|=11for V u €(0, {;). Now the result

that |R(x)|=1 for V «=R™ follows from the stationarity of the process X(2).
This completes the proof.

THEOREM 1. A process X(t), (EZ Y s ond order Markov if and only if its
covariance funciion R(t) has one of the following forms;

(1) [R(1)|=1 |
(i) R(7)=A", where 2=R(1)
(i11) R(t)=cos 77, where R(1)=cos vy and ww/y is irrational number.

PROOF. Assume that |R(#)|#1 for V €2 T By the properties of (Gaussian

and 2nd order Markov, we obtained, for 0<u#<v<w<s in Z "
E{X(O X)), X(v), X(w)}=E{X()| X)), X(w)} =aX(w)+bX(v).
Note that the linear expression aX{(w)+b6X(«) follows from the Gaussian pr-
operty. Thus X(s)—aX(w)—b6X(v) L X (%), X(v) and X(w), which implies:
(4) R(s—u)—aR(w—u)—bR(v—u)=0 |
R(s—v)—aR(w—v)—0=0
R(s—w)—a—bR(w—v)=0.
Let v—u=1,, w—v=[, and s—w=I[;, then equations in (4) are equivalent to
the {ollowing equations:

(5) R(I,+1y+1,)—aR(l,+1,)~bR()=0
(6) R(l,+13)—aR(l,)~b=0
(7 R(l)—a~bR(l,)=0.

Since R(H)#Z1 VY €7 *  we can solve (6) and (7) and obtain
(8) b= [RUy+I)—RUDRUDI/[1—R(U)]
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a= [R(I)—RUDRU,+1)1/[1-R*UN].
‘Substituting (8) into (6), we have
(9) [1— R° U1 RU+1,+1)=R(I ) [RU,+1)—~ RUDR(U)]
+R(I,+1,) [R(I) — R(U)RUy+I5)].
Set /,=I3=1 and /,=/, then (9) becomes

(10) (1—EDR(I+2)— k(1= k)R +1)— (ky— kDR =0
‘where £2,=R(1)<1 and &,=R(2)<l.
To solve the linear difference equation (10), we suppose that A, and 4, are

the roots of (l—kf)xz—-kl(l—kz)x—-(laz—kf)=0, then the solutions of the equa-
ition (10) would be:
i) (4,+B,DX if 2,=2,=2
(i1) Azlzl—l—BzZ!z if 4,74, and both are real
(iii) Ag cos rI+B; sin ¢/ if 4}, 4, are complex,
for some constant A, and B, /=1, 2, 3.

"The only forms from (i), (ii) and (iii), which satisfy the non-linear difference
equation (9), are as following:

(11) R(t)=2 and R(t)=cos 77.
We note that if R(t)=cos yt, then |R(?)|#1 for V t€Z* (by Proposition 1)
.and therefore % has to be irrational. This completes the proof of “only if”

part of the theorem. This completes the proof since the proof of “if” part is
trival.

THEOREM 2. Assume that the continuous covariance function R(7) is differ-
entiable for at least one point in (0, {) and it has the right derivative at ©=0.
‘The process X(t), t€A=1[0, {1 is 2nd order Markov iff R(t) has one of the
following forms:

(1) R(7)=1

(ii) R(t)=2', where 2<1

(ii1) R{(t)=cos 7T where v (<&

PROOF. Assume that the process is 2nd order Markov. Suppose that there
-exists {;,&A\{0} such that |R(¢{))|=1, then we want to show that R(r)=1 for

all t€A. Letting /,=0 in (5), (6) and (7), we obtained:
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(i) when R(/p)=1, (R(/,+I)=aR(D+IR( )
{R(Z ) =a+b
Le. R(/,+I)=RUDR( for ¥V I, I3 in A\{0},
therefore R(7)=21" for VTEA4. But R(¢,)=1 implies that A=1, and hence R({)=1.
(i) when R(/,)=—1, R(ZI—I—Z3)=aR(Zl)—bR(11)
{R(Za)za—b
i.e. R(/+ID=RU,) R, for V {;, I, in A\{0},
therefore R(7)=21" for V t<A. But R(¢,)=—1 implies that Ai=—lie A=-1,
‘which i1s impossible since R(7) is continuous.
Now we assume that |R(7)|#1 for V 7€A\{0}, then R 7) should satisfy the
equation (9) for any /,, 7, /5 in A. lLe.
(12) (1~ R*U)) [RU +1y+1) — R(I,+13)]
=(R(;)~ R(O)) [R(Uy+15) ~ RUYR(I)]
+ [R(, +1,) ~ RUD] [RUy) — RUDR(Ly+1)]
Now dividing the above equation by /, and taking the limit as /; approaches

.zero, we obtained

R(l,+1,+1)—R(U,+1,)

RO [RUy+1) — RUPRU)=Tim[ 1~ (1)) 7}
R(+1)—R(U,)
(13) —(RUg)~R(UDRUy+13)) & ; : ]

L
:Since R(7) is differentiable at one point and /,, /5 are arbitrary, we conclude

that R(7) is differentiable everywhere in (0, {).
Rewrite (9) as:
(14) R, +1,+I)A+RUD)A~RUY)=R()).
[R(Iy+13)—R(U3)~RUD(RU,)—RO)]+RU+1,) [R(U)—RU,+1,)
—R(,+1)(R(,)—R(0))].
:Dividing (14) by /, and taking the limit as /, approaches zero, we obtained
2R (0) [RUDRU)—R(;+1)] =0
“Thus, we have either R'(0)=0 or R )R()=R(+I3).

(Case 1) If R(/,DR()=R(l{+/5), then general solution is R(z)=A;2. Thus

-we have R(z)=1" for V¥V 7€4 since the solution has to satisfy the initial condi-
ttion R(0)=1.
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(Case 2) If R’(0)=0, from (13) we have

(1~ R°()IR (Iy+1)=R'(0) [R(U,+1) — RUDR(]
+R'(1,) [R(I3)— RUHR(U,+1], i.e.

(15) [1-R*U)] [R'(L,+1)~R (I,)] =R'(0) [R(,+13)~ R(I,)
—R(1,)(R({3)— R(O)] + R ({5) [R(3)—R(0) —RU)(RUy+15) — R(U,)].
Now dividing (15) by /, and taking the limit as /5 approaches zero, we can
show that R”(t) exists for VT&(0, {). Also we obtained
16)  (1—R*UDIR"(I)=2R" (DR’ (1)~ (R’ (0))°R(ly) — RUH(R (U,))°
sSince R’'(0)=0, we have
(17) (1—y2)y”=—y(y’)2 where y=R(7).

To solve (17), let p=9’, then (17) becomes (1—y2)p gﬁ ::—ypz, i.e. either

p=0 or (192 G —_yp 1t p=0, then R()=1. If {1—3>) ji,’ — —yp, then

ay
CP —_ Y9 (since y1), ie. Inlpl=-5In(1—yD+¢” or Ipl=c's/] 2 or
dy —_ant S 9 — —
o =C V4 ] —y2 o Therefore y=R(t)=cos AT.

We note that y{ <z since R(t)#1. This completes the proof of “only if” part
of the theorem. Since the proof of “1f” part is trivial, this completes the proof.

The following Corollaries can be easily obtained by comparing the results of
Chay [1] and ours.

COROLLARY 1. A process X(t), t&Z T in 2nd order Markov 1ff it 1s quasi-
Markov, where Z* is the set of all positive integers.

COROLLARY 2. If a process X(1), t€A s 2nd order Markov, then it is also
quasz’-Markqv, where A= [0, €] for a finite real number £.

COROLLARY 3. If a process X(t), tER™ is 2nd order Markov, then it is @
Markov process, where R = [0, oo).

W.]. Park Y.S. Hsu
Wright State University and Georgia State University
Dayton, Ohio, 45435 Atlanta, Georgia 30303



On Stationary Gaussian Second Order Markov Processes 255

REFERENCES

[1] Chay, S.C., On quasi-Markov rendom field, J. of Mult. Analysis, Vol.2, No.l,
14—-76, 1972.

[2] Doob, J.L., Stochastic processes, Wiley, New York. 1953.

[3] Jamison, B., Reciprocal processes; the siationary Gaussian case, Ann. Math. Statist.
41, 1624—1630. 1970,



