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ON STATIONARY GAUSSIAN SECOND ORDER MARKOV PROCESSES 

By W.J. Park and Y.S. Hsu 

O. Abstract 

In this paper we give a characterization of Stationary Gaussian 2nd order 

Markov processes in terms of its covariance function R(r) =E [X(t)X(t+-r)] 

and also give some relationship among quasi-Markov, Markov and 2nd order 
Markov processes. 

1. Introduction 

Let {X(t): tεT} be a stationary Gaussian process with a covariance function 

R(T)=E[X(t)X(t+T)]. Assume that E(X(t))=O and E(X(t))2=1 for each 

t든T. A process X(t) is called Ma샤oν if for any partition of T with t1 <t2 < ..• 

<tk<t, 

P{X(t)드XIX(t1)' X (t2)' …, X (tk)} =P{X(t)드xlX(t싱} 

and is called 2nd order M arkoν if for any partition of T with t1 <t2 < ... <tk- 1 

〈사<t， 

P{x(t)드XIX(tl)'. X (t2)' ''', X (t k_l)' X (tk)} 
=P{x(t)드XIX(tk_ 1) ， X (tk)} 

for any real number x. One can define the concept of nth order Markov in 
similar fashion. A process X (t), tεT， is called qμasi-Markov (or recψrocal) if 

for any Aεli(X(S) ， s<t or s> μ) ， Bεli(X(S) ， t<s<μ) and for each pair t and 

u with t<ze in T , 
p{AnBlx(t), X(μ)} =P {AIX(t), X(μ)} .P{BIX(t), X(u)}. 

It is well known that the stationary Gaussiall process is Markov (with contin­
uous covariance function) if and only if its covariance function has thè follow­
ing form: 

R(-r)=e-α1 ， 1 where α늘O 

{See Doob [2] for T= [0, ∞)). Chay [1] and Jamison [31 havc shown recently 
that the stationary Gaussianprocess is quasicMarkov if and only if its covar­
iance function has one of the following forms: 
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(i) R(r)=e-a\,\ (α르0) ， 

(ii) R(r)=cos ß-r, or 

(ii i) R(-r) = 1- l -r 1, -rε( -1,1) 

In this paper we characte1'ized the 2nd orde1' Markov (Stationa1'Y Gaussian) 

p1'ocess. Our main 1'esult is as follows: A p1'ocess X(t) , tεT= [0, 'l is 2nd 

o1'de1' Ma1'kov if and only if its cova1'iance function has one of the following 

forms: 

(i) R(-r)프1 

(ii) R(-r)=A.' whe1'e A. <1 0 1' 

(iii) R(-r)=cos r-r whe1'e r-r <π 

We have also shown that 

(i) when T is a set of intege1's, 2nd o1'de1' Ma1'kov p1'ope1'ty and quasi-Ma1'kov 
p1'operty are equivalent, 

(ii) when T is a finite interval of real numbe1's, 2nd order Markov property 

implies quasi-Markovproperty, and 

(iii) when T is [0, ∞)， 2nd order Markov property implies Markov property. 

2. Characterization of 2nd order markov 

Denote R+ = [0, ∞)， 

z+ =the set of all positive integers 

A= [0, 'l for finite real number ,. 
We assume that the process X(t), tεT， (where T may be R+ , Z+ or A) be 

stationary and Gaussian with E(X(t) )=O and E(X(t) i=l for each tεT. Let 

R(r) be the covariance function of the process X(t). 

PROPOSITION 1. Let X(t), tεR+ (or Z+) be ntlz order Markov process szech 

that 1 R(to) 1 = 1 for some to낯o z'n R+ , then IR(s)1 =1 for V sεR+. 

PROOF. Assume that R(to)=l (the case when R(to)=-l can be proved by 

a similar argument). Since the process is Gaussian, R(to)=l implies that X(O) 

and X (to) are linear1y dependent random variables, and we have X(O)=X(to)a. s. 

because R (to) = 1. The stationarity of the porcess implies that 

(1) X(O)=X(to)=X(kto) for kεz+. 
For sε(nto' (n+l)to)' let E{X(s) IX(O)} =aX(O). Then X(s)-aX(O) ..LX(O) 

implies that R(s)=a. Now for μ든(0， to)' 
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E{X(s) /X(μ) ， X (to). …, X(nto)} 

=E{X(s) /X(to)' …, X(ηto)} =E {X(s) / X(O)} 

=aX(O), which implies that X(s)-aX(O) ..LX(u). 

Therefore, E [{X(s) 一 aX(O)} • X(u)] =0, i. e. 
E [X(s)X(u)] =aE [X(O)X(μ)] =aR(u)=R(s)R(χ)， hence 

(2) R(s-u)=R(s)R(μ) for με(0， tO) and s ε(nto' (η 十 1)tO)' 

Let s= ηto+v， then we have vε(0， tO) and 

(3) R(nto+v)=E [X(nto十 ν)X(O)] =E [X(nto+v)X(ηto)] 

=E [X(v)X(O)] =R(v). 
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Hence from (2) and (3) R(v- μ)=R(v)R(μ) for u, v in (0, tO) and by letting 

μ = u, we llave R(0) = R2(μ)， i. e. /R(χ) / = 1 for V χ ε(0， tO)' Now the result 

that R(씨 / = 1 for V κεR+ follows from the stationarity of the process X (t). 

This completes the proof. 

THEOREM 1. A process X( t), tεz+ z's 2nd order Markov zJ and only zJ zïs 
covariance lunc tz"on R(r) has one 01 the lollowing lorms; 

(i) /R(-r) / 三1

(ii) R(-r)=A:, μ，here A=R(l) 

(iii) R(r)=cos rr, where R( l) =cos r and πIr is irra tz"onal number. 

PROOF. Assume that / R(t) I 낯 1 for V tεZ+. By the properties of Gaussian 

and 2nd order Markov, we obtained, for 0드μ <v<μ， <s in Z+ , 
E{X(s) IX(u) , X(v) , X(w)} =E {X(s) IX(v) , X(ω)} =aX(w)+bX(v). 

Note that the linear expression aX(ω)十bX(μ) follows from the Gaussian pr­

operty. Thus X(s)-aX(w)-bX(ν)上X(u)， X(ν) and X(ω)， which implies: 

(4) R(s- μ)-aR(ω-μ)-bR(v-μ)=0 

R(s-v)-aR(w-v) 一 b=O 

R(s-w) -a-bR(w-v) =0. 

Let v一 u= 11, ω 一 v=/2 and s-w=/3, then equations in (4) are equivalent to 

the following equations: 

(5) R (l l +/2+/3) -aR(l l +/2) -bR(l l)=O 

(6) R (l2+/3)-aR(l2)-b=0 

(7) R (l3)-a-bR(l2)=0. 

+ Since R(t)낯 1 V tεZ' ， we can solve (6) and (7) and obtain 

(8) b= [R(l2+/)-R(l2)R(l3)] I [1-R
2
(l2)] 
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a = [R(l3) - R(I2)R(l2+ l3)] / [1-R2(I2)] • 

'Substituting (8) into (5), we have 

(9) [1- R2(l2)] R(l1+l2+l3) = R(l1) [R(l2+I3) - R(l2)R(l3)] 

+R(ll +/2) [R(l3)-R(l2)R(l2+13)]. 

Set 12=김=1 and /1=/, then (9) becomes 

(10) (1-쩍)R(l + 2) - k 1 (1- k2)R(l + 1) - (k2-펙)R(l) =0 

w here k 1 = R( 1) <1 and k2 = R(2) <1. 

To solve the linear difference equation (10), we suppose that Àl and λ2 are 

the roots of (1-팩)X2-kl(1-k2)X---(k2-잭)=0， then the solutions of the equa­

ition (10) would be: 

(i) (A1 +Bll)차 if λ1=À2=Å 

(ii) A2지+B2셔 if Å1;i:À2 and both are real 

(iii) A3 cos rl + B3 sin rl if λl' À2 are complex, 

for some constant Ai and Bi’ z.=l, 2, 3. 

'The only forms from (i), (ii) and (iii), which satisfy the non-linear difference 
,equation (9), are as following: 

(11) R(T)=Xr and R(T)=cos rT· 

We note that if R(r)=cos rr, then IR(t)I ;i:1 for V tεz+ (by Proposition 1) 

and therefore 풍 has to b뾰e ihrnra때t디io아on쩨l뻐a 
part of the theorem. This completes the proof since the proof of “ if" part is 
trival. 

THEOREM 2. Assμme that the contz'nuoμs covariance funcHon R(,) is dzffer­

entiable for at least one point in (0, 0 and tÏ has the right derz'vatz've at 'Z" =O. 

The process X (t), tεA = [0, ,] z's 2nd order M a깨ov 딸 R( 'Z") has one 01 the 

follow쩌g forms: 

(i) R(r)=l 

(i i) R(r)=À't", μIhere À<l 

(iii) R('Z" )=cos r 'Z" μIhere r ~"<π 

PROOF. Assume that the process is 2nd order Markov. Suppose that there 
‘ exists t。εA\{O} such that I R(to) 1= 1, then we want to show that R( 'Z") -1 for 

"all 'rεA. Letting 12=0 in (5), (6) and (7), we obtained: 
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(i) when R(l2)=l, (R(lI+/3)=aR(lI)+bR(lI) 

R(l와 =a+b 

i.e. R(l I+/3)=R(l I)R(l3) for V 11, 13 in A \ {O}, 

rt:herefore R(-r)=À' for V，εA. But R(tO) = 1 implies that À= 1, and hence R(t) 르1. 

(ii) when R(l2) = -1, (R(l1+/3)=aR(lI)-bR(l1) 

R(l3)=a-b 

i.e. R(l1+/3)=R(lI)' R(l3) for V '1' 13 in A \ {O}, 

,therefo1'e R(,)=À' for V ，εA. But R(to) = -1 imp1ies that i'= -1 i. e. À= -1, 

‘which is impossib1e since R(,) is continuous. 
Now we assume that IR(,) 1"":1 for V ，εA\{O}， then R ~，) shou1d satisfy the 

,equation (9) fo1' any 11' 12’ 
13 in A. i. e. 

(12) (1-R
2
(l2)) (R(l1 +/2+/3) -R(l2+ /3)] 

= (R(l I) - R(O)) (R(l2+ /3) - R(l2)R(l3)] 

+ (R(l1+1강 - R(l2)] (R(l3) - R(l강R(l2+ /3)] 

:Now dividing the above equation by / 1 and taking the limit as /1 approaches 

.zero, we obtained 
? .. __ R(l1 +/2+13) -R(l2+ /3) 

R ’ (0) (R(l2+센 -R(l강Rα3)) =3팩l(1 -R"(lZ)) “ '1 

R(l l +/9) - R(lQ) 
(13) - (R(l3) - R(l강R(l2+l3)) i f ‘ 

~Since R(,) is differentiab1e at one point and 12, 13 are arbitrary, we conclude 

.that R(,) is differentiab1e everywhe1'e in (0, 이. 

Rewrite (9) as: 

(14) R(l1 +12+/3)(1 +R(l2))(1-.R(l)) =R(lI)' 

(R(l2+13) -R(l) -R(l3)(R(l~) - R(O))] + R(l1 +/2) (R(l꾀 -R(l2+ 13) 

- R(l2+13)(R(l2) -R(O))]. 

illividing (14) by 12 and taking the 1imit as 12 approaches zero, we obtained 

2R'(0) (R(l I)R(l3)-R(l1+/3)] =0 

’ Thus, we have either R ’ (0)=0 or R(lI)R(l3)=R(lI+/3)' 

(Case 1) If R(l1)R(l3)=R(l1+/3) , then gene1'a1 solution is R(,)=A1}.'. Thus 

‘ we have R(，)=차 for V , EA since the solution has to satisfy the initia1 conùi­

ltion R(O) = 1. 
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(Case 2) If R ’ (0)=0, from (13) we have 

(1- RZ(2))R' (lZ+13)=R'(0) [R(lz+l) - R(l2)R(l3)] 

+R'(l2) [R(l)-R(l2)R(l2+13)]' i. e. 

(15) [1-R
2(l2)] [R' (lZ+13)-R' (l2)] =R'(O) [R(/Z+13)-R(lZ) 

- R(l2)(R(l3) - R(O)] + R'(lZ) [R(l3) - R(O) - R(l2)(R(l2+13) - R(lZ)]' 

Now dividing (15) by 13 and taking the limit as 13 approaches zero, we can 

show that R ’ (r) exists for Vrε(0， 이. Also we obtained 

(16) (1-R
2(l2))R’ (l2) = 2R'(0)R'(l2) - (R'(0))2R(l2) - R(/2)(R'(l2))2 

Since R'(O)=O, we have 
2 ... u ........ 2 

(17) (l- y"')y"=-y(y')'" where y=R(r). 
2\ Á dp To solve (17), let p= y ’, then (17) becomes (1- y"') Þ '::1' = - yþ"'. i. e. either 

p=O or (1-y2) 걱ι =-vfJ. If fJ =O. then R(r)=1. If (1-에 」휴 = - vfJ. then 

쁘=--쁘몽 (since y ;i' 1), i. e. ln Ip 1=웅ln(l-i)+c" or Ipl =c'감」yZ or 
1-y 

뿌 =cγ;흙. Therefore y=R(r)=cos ,h. 

We note that r' <π since R(r) ;i'1. This completes the proof of “ only if" part 

of the theorem. Since the proof of “ if" part is trivial. this completes the proof. 

The following Corollaries can be easily obtained by comparing the results of 
Chay [1] and ours. 

COROLLARY 1. A process X( t), tεz+ 쩌 2ηd 0γder Markoν lff it is quasi­

Markov , wheγe Z+ is tlze set of all positiνe integers. 

COROLLARY 2. 1f a process X (t), tεA is 2nd 0γder Markov, then it is also 

qμasi-Markov， where A= [0, ~] for a finite real nunzber ~. 

COROLLARY 3. 1f a process X( t), tεR+ is 2nd order Markov, then it is (l' 

Ma깨ov process, where R+ = [0, ∞). 
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