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A RESULT ON FIXED POINTS

By J. Achari

1. Intreducticen

In recent years many extensions and generalizations of Banach fixed point-

theorem had been done by many authors. But in all the cases the mappings.
under consideration involve only two points of the space. Until, recently Pit-
tnauer [4] and also Rhoades [6] studied contractive type mappings involving
three points of the space. Pittnauer [5] also studied the mapping involving
four points of the space.

The aim of this paper is to establish a fixed point theorem containing four:
points of the space and we shall show that results of Banach (1], Browder
(2], Kannan [3], Pittnauer [5] and Reich [7] as special cases. Let (x, d) be a.
ciosed bounded subset of a complete metric space. Let ¥ (=1, 2, 3) be mono-

tone 1ncreasing sclfmapping of the reals 10, which is continuous on the right
and satisfy the condition

(1. 1) @"E.(z‘) <fT for t>0 and 7.@'2.(0):0 for £=0.
i=1,2,3 i=1,2,3

Also, let f be a mapping of X into itself such that

(1.2) d(fu, fu, )<V [d(u;, #,)] + ¥, [d(u,, kaJS)] + ¥ [d(u,, flfq)]
for #,, ., s #,=X and fixed integers 0<<A<l/.

2. Fixad pcint theorem

The following theorem is patterned after the results of Pittnauer [5] with:
necessary modifications as required for the more general settings.

THEOREM 2.1. If f be a selfmapping of X into itself satisfying condition
(1.2), then f has a unique fixed point.

PROOF. Let x, y&X and we define
b
zal——:f!:c, Ug=f"y, U=y, u,=x.
Then the condition (1.2) takes the form
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k41

2.1) d(f N x, FUDST A PO1HT LA T3 L.

n+k n+l+m
y=f

We now choose an arbitrary xy&X and define x=f""" x,, x, for

some fixed positive integer »z, m, then from (2.1) we get
ntRk+i- Fe+1+1 L1 4
(2.2) d(frrEHIEmEL o R 1) <T [d(f""" o o, f7T 20

We shall show that the iterated sequence I(f, zy)={x,lx, = il xg 7#=0, 1, 2e}
is a Cauchy sequence. For #>£-/, the inequality (2.2) implies

CAONACHSHE MDA P CICMIE ML o PICICHTIE W)L o FICIC AW DI
Let S ﬂ-—:su% d(x,, %, ) for n=>k-+1+1 then it is clear that B, <0(X)<oo where
m>

d(X) is the diameter of X. From (2.3) and by the monotonicity of ¥ we have
(2.4) 5n£5112% w‘l [d(xn—l' xn—i-m—-l)} Sup wz [d(xﬂ_p Xy tm 1)]
m

m >0
+?Snl§% wB [d(xn—l’ xn+m—1)]
g'épﬁl [?ii% d(xn—l’ xﬂ+m—1)] +w2 [Eil.lz% d(xn—-l’ xn+m-—1)]
"‘ws[i‘lz% A(Xy_1r Xpyp_1)]

gwgl(ﬁﬂ_l)'}'wg(ﬁﬂ__l)_I_WS(AB#_I)-
If we take 8, ;=0 for some n=>k+/+1, then we have x, =x, =fx i e, x

H

is a fixed point of f. Let 8,_,70 for all u=k+7/41. Then from (2.4) and (1.1)

we get

B,<B, 1 for n=k+I1+1,
and so the limit 0<B_ =1lim §,<d0(X) exists. Because ¥ is continuous on the

n—00

right we have lim ¥(5,)=¥(5,,) and {rom (2.4) letting n—oo

H—r OO
B <Y (B )+ (B.)+¥(8.)<B,.»
if 5.,>0, then we have a contradiction so 5 =0 and hence I(f, xy) is Cauchy.

Since X 1s a closed subset of complete metric space we have
(2.5) lim x, =z&X.

H—OO
We now that z is a fixed point of f. Let z7#fz. Consider a ball S defined by
(2.6) S= {x]xEX s d(x, z)g% d(z, fz)}

and we see that

(2.7) d(x, fz)z"%" d(z, fz), x&S.
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We choose the smallest integer N>/+1 for which foOES. Putting

N+ Ntk
f Yep Uy =f 0

N
Uy =J Xg Uy=2Z, Uz=
and considering inequalities (1.2), (2.6) and (2.7) we get
difN M x, FA<T ANy DIFTL LA 2y, FYTH 21+, 1d G, AT )]

<U 4z DI+T,Af Ny D+dCa D1+ 1dG T ]

<U,| +d(z ) |[+V,| +-da f+5dCa [ |+T,| 5 dCz 12)]

<[ Gd(f w1 [T g ST dF T x £2)].

+1

If fN"leo;éfz, then we have a contradiction. Let fN x,=fz. Now taking

_ . SIS _ __N+1-F o N+1-{
=S x,(m IS a positive integer), #,=z, #3= Xg Ug=f X,

we have from (1.2)
A" x, ST A, D]+ 1 g [ 2 D1+ 5[d(z, N xp)

<V [d(f"xy D1 +E,d(f" xy f]+¥51d(z, f2)1,
or d(z, f2)<V,[d(z f2)]+¥,[d(z, f2)], by letting m—oo and by (2.5)
which is a contradiction and hence z=fz. Next we show the unicity of the
fixed point. Let z and w be fixed points of f and z#w. Then putting «,=u,=z,
u,=1u,—w In the inequality (1.2) we get
0<d(z, w)=d(fz, fw)<¥ [d(z, w)]+¥,[d(z, w)]+¥;[d(z w)] <d(z w),
which is a contradiction. So z=w. This completes the proof of the theorem.

3. Remark

We shall show that our theorem contains some well-known results as special
cases.

(a) If in the inequality (1.2), we put ¥ ;=0 and ¥,=¥;=¢ then we get the
results of Pittnauer [3].

(b) For k=/=0 and #y=u, and #,=u;, ¥,({)=¢(t) we have Browder [2]. If
we define the function ¥ (#) by .(t)=az, ¥,({)=bz and WB(t):cz, 0<z <o
with a4-&6+c<1 then we can prove the theorem assuming X is complete only

and this theorem gives the following results as special cases.

(¢) For k=Il=1, u;=u,, u;=u, we get the result of Reich [7].

(d) For k=I=1, uz=u, u;=u, and @¢=0, b=c=a we have Kannan [3].
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(e) For k=I=1, uy=u, u,=u; and =0, db=c=a we have Zamfirescu [8].

(£) For k=1=0, uy=u,, u,=u, and b=c=0, e=«a we have Banach [1].
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