Kyungpook Math. J. Volume 19, Number 2 December, 1979

ON FOULIS PAPER

By S.H. Raza

This paper is based on the results of D.J. Foulis paper 'Relative Inverses in

Baer--Semigroups*' [1]. We shall follow the notation and terminology given in this paper. For the sake of completeness we are giving the following definitions. A *-semigroup is a semigroup S with an involutorial antiautomorphism $x \rightarrow x^*$ such that

(i) $(xy)^* = y^*x^*$ and (ii) $x^{**} = x$ for all x, y in S.

A projection in such an S is an element e in S with $e=e^2=e^*$. The partially ordered set of all projections in S is denoted by P(S), the partial order being defined by $e \leq f$ if and only if $e=ef(e, f \in P(S))$

A Baer-*-semigroup is *-semigroup S with a two sided zero 0 with the property: for each element a in S there exists a projection $a' \in P(S)$ such that $\{x \in S \mid ax=0\} = a's$. We define P'(S) = P(S) by the condition $P'(S) = \{a' \mid a \in S\}$. A projection e in P(S) is said to be closed if e=e''. By (v) of theorem 1 [1] a projection e is closed if and only if e=a' for some a in S. An element a in S is said to be right *-regular in S if $aS = (a^*)'' S$, a is left *-regular in S if Sa = Sa''. If a in S is both right and left *-regular in S, then a is said to be

*-regular in S.

A slight different, but equivalent definition of *-regular in S as defined that if a is an element of the Baer-*-semigroup S, then a is *-regular in S if there exists a unique element a^+ in S such that $a=aa^+a$, $a^+=a^+aa^+$, $aa^+=(a^*)''$ and $a^+a=a''$. An element a in S is range closed if the condition g in P'(S)with $g \leq a''$ and $(ga^*)''=(a^*)''$ necessarily implies g=a''. a^+ is relative inverse of a.

In an involution semigroup S, let $e=e^2=e^*\in S$ and $f=f^2=f^*\in S$. If there exists an element $x\in S$ such that x=exf, $x^*x=f$, $xx^*=e$, then we say that e and f are *-equivalent and we write $x:e^{*}f$ and x is partially unitary element of S. In this note we give some interesting results which are consequences of the beautiful results given in [1].

232

S.H. Raza

· ·

THEOREM 1. If a is *-regular element in S, then $[g' \wedge ((a^+)^*)''a^+]'' = (ga^*)' \wedge (a^*)''.$

PROOF. Let $h = (ga^*)'$. Then $h' = (ga^*)'' \le (a^*)''$. (By thm.1 (xiv)[1]) and hC(a^*)". Hence $ha = (h \land (a^*)'')a$ by lemma 5 [1]. $(ha)'' = [(h \land (a^*)'')a]''$ $(h(a^*)''a)'' = [(h \land (a^*)'')a]''$.

$$\begin{split} & [(h(a^*)'')a]'' = [[(h \land (a^*)'')a]''a] \text{ by (xii) of thm.1 [1].} \\ & (h(a^*)'')'' = h \land (a^*)'' \text{ by (v) of thm 6 [1].} \\ & \text{L. H. S. } ((ga^*)'(a^*)'')'' = ((ga^*)'aa^+)'' = [[((ga^*)'a)''a^+]''a^+] \text{ by (xii) of thm. 1 [1]} \\ & = [(g' \land a'')a^+]'' \text{ by thm. 6 [1]} \\ & = [(g' \land ((a^+)^*)''a^+]'' \text{ by cor. of thm. 11 [1].} \\ & \text{Therefore } [(g' \land ((a^+)^*)''a^+]'' = (ga^*)' \land (a^*)''. \end{split}$$

THEOREM 2. If a is *-regular in a Baer-*-semigroup S, $g \leq a''$, $(ga^*)'' = (a^*)''$ and $a'' \leq g \leq 1$, $1 \neq g \in P'(S)$, then $(ga^+)'' = (a^*)''$.

PROOF. a is *-regular in S implies a is range closed in S, by lemma. 8 [1]. Then there exists g in P'(S) such that g=a''. Now ga''=a''a''=a''. So ga''=a'' which gives by cor. of thm 11 [1]

$$((ga^+)''a)'' = ((a^+)''a)''$$

Further by thm. 6 and cor. of thm. 11.

$$(ga^+)'' = (a^+)'' = (a^*)''$$

since $(ga^+)'' \leq (a^+)''$ by (xiv) of thm. 1 [1] and $(a^+)'' = (a^*)''$.

THEOREM 3. Let a be *-regular in a Baer-*-semigroup S and let a^+ be its relative inverse. Then

 $(e'a^*)' \wedge (a^*)'' = (ea^+)'' \text{ for } 1 \neq e \in P'(S).$

PROOF. Let $f = ((e'a^*)'' \lor (a^*)')'$ (i). Then $fa = ((e'a^*)' \land (a^*)'')a$ and $(fa)'' = (((e'a^*)' \land (a^*)'')a)''$. Since $(e'a^*)'' \le (a^*)''$ by (xiv) of thm. 1 [1], so $(e'a^*)'$ $C(((a^*)'')a)$ by lemma. 5 [1], we get $(fa)'' = ((e'a^*)'a)''$ which gives $(fa)'' = e \land a''$ = ea'' by thm. 6 [1] and 36.6 [1], since a is range closed by lemma 8 [1]. Hence $(fa)'' = ea'' = (ea^+a)'' = ((ea^+)''a)''$ by cor. of thm. 11 [1] and (xii) of thm. [1]. By (i) $f \le (a^*)''$, $(ea^+)'' \le (a^+)'' = (a^*)''$ by (v) of cor. of thm. 11 [1]. We have $f = (ea^+)''$ by thm. 6 (v) [1]. Therefore $(e'a^*)' \land (a^*)'' = (ea^+)''$.

THEOREM 4. Let a be *-regular and a^+ be its inverse in a Baer-*-semigroup.

If $a:g \sim^* e$ and $(e \land g) a'' = ea''$ then $[((e \land g)a^+)'' \land g'] = a'(ea^+), 1 \neq g \in P'(S), 1 \neq e \in P'(S).$

PROOF. As $(e \land g)a'' = ea''$ which gives by cor. of thm. 11 [1] $((e \wedge g)a^+a)'' = (ea^+a)''$. Now by (xii) of thm. 1 [1] we have $((e \wedge g)a^+)''a)'' = ((ea^+)''a)''$. By thm. 6 and cor. of thm. 11 [1] gives $((e \wedge g)a^+)'' = ((ea^+)'').$ Since $((e \wedge g)a^+)'' \leq (a^+)'' = (a^*)''$ and $(ea^+)'' \leq (a^+)'' = (a^*)''$ $((e \wedge g)a^+)'' \wedge g' = ((ea^+)'' \wedge g')$ $((e \wedge g)a^+)'' \wedge g' = [(g(a^+)*e)'(ea^+)]$ by thm. 6 (i) [1]. Since a is range closed by lemma 8. Now $aa^+ = (a^*)''$ by cor. of thm. 11 [1], so $aa^+g = (a^*)''g$ which implies $(a^+g)^*a^* = g(a^*)''$. We have $(g(a^+)^*a^*) = g(a^*)''$. $(g(a^+)^*)a^*a = g(a^*)'' a.$ Therefore $(g(a^+)^*)e = g(a^*)'' a$, since $a^*a = e$ by def. of *-equivalent. We get $((e \land g)a^+)'' \land g' = [(g(a^*)''a)'(ea^+)]$ $= [gaa^{+}a]'(ea^{+})$ by (ii) of cor. of thm. 11 [1] $=(ga)'(ea^+).$ Since ga = a (because $aa^* = (ga)a^* = (ga)(ga)^*$ by *-cancellation law ga = a),

$$((e \wedge g)a^+)'' \wedge g' = a'(ea^+)$$

THEOREM 5. Let a be *-regular in a Baer-*-semigroup S, a^+ be its relative inverse, $h \leq a''$ and $(e \lor g) \leq a''$, and $(e, f) \land \forall e, f \in P'(S)$. Then h = (e'g')' if and only if

$$((ha^*)'' \wedge (a^*)'')a = ((e \wedge g)'a^*)''a, h, g \in P'(S).$$

PROOF. If h = (e'g')'. Then $h = (e' \land g')'$. So $(ha^*)''a = ((e' \land g')a^*)''a$. By (xiv) of thm. 1 [1], $h(a^*)'' \leq (a^*)''$. So $h(a^*)''C(a^*)''$. By lemma 5 $((ha^*)''a) = ((ha^*)'' \land (a^*)'')a$. We have $((ha^*)'' \land (a^*)'')a = ((e \land g)'a^*)''a$. Since $(ha^*)'' \land (a^+)'' \leq (a^+)'' = (a^*)''$ and $((e' \land g')'a^*)'' \leq (a^*)''$ by (xiv) of thm. 1 [1], hence $(ha^*)'' \land (a^+)'' = ((e' \land g')'a^*)''$ by thm. 6 as a is range closed by lemma 8.

S.H. Raza 234

 $(ha^*)''(a^+)'' = (ha^*)''(a^*)'' = ((e' \land g')'a^*)''$ by 37.7 [2] and (v) cor. of thm. 11 [1]. As $(ha^*)'' \leq (a^*)''$, so $(ha^*)''(a^*)'' = (ha^*)''$, $(ha^*)'' = ((e' \land g')'a^*)''$ By thm. 6, $h \lor a' = (a' \land g')' \lor a'$ because a is range closed by lemma 8. We have $(h \lor a') \land a'' = ((ee' \land g')' \lor a') \land a''.$

So $h = (e' \land g')' = (e'g')'$ by thm. 37.7 [2] since $(e, f)M \forall e, f \in M$.

THEOREM 6. If a is *-regular in a Baer-*-semigroup and a^+ is relative inverse, then

$$[(\{(g' \land a'')a^*\}' \land (a^*)'')a]'' = [((ga^+)'' \land (a^*)'')a]'' \land (a^*)'')a]'' \land (a^*)''.$$

PROOF. Since $(ga^+)'' \leq (a^+)'' = (a^*)''$ by (xiv) of thm. 1 and (v) of cor. of thm. 11[1], then $(ga^+)'' C(a^*)''$. So by lemma 5, $((ga^+)''a)'' = (((ga^+)'' \wedge (a^*)'')a)''$ $(ga^{+}a)'' = (((ga^{+})'' \land (a^{*})'')a)''$ by (xii) of thm. 1 $(ga'')'' = (((ga^+)'' \land (a^*)'')a)''$ by (i) of cor. of thm. 11. By (xv) of Thm 1 [1], $(ga'')'' = (g \lor a') \land a''$.

$$= [\{(g' \land a'')a^*\}'a]$$
 by thm. 6 [1],

since *a* is range closed by lemma 8 [1]. Let $h = \{(g' \land a'')a^*\}'$. Then $h' \leq (a^*)''$, hence $h'C(a^*)''$ and $h'a = [(h' \land (a^*)'') a]$ by lemma 5 [1] Now $(h'a)'' = \{(h' \land (a^*)'')a\}''$.

So on putting the value of h.

 $[\{((g' \land a'')a^*)' \land (a^*)''\}a]'' = [((ga^+)'' \land (a^*)'')a]'' \land (a^*)''$

THEOREM 7. Let a is *-regular in a Baer-*-semigroup, a^+ is its relative inverse in S, $g \leq a''$, $(ga^*)'' = (a^*)''$, $a'' \leq g \leq 1$ and $eC(a^*)''$. Then (i) $([(e \land (ga^*)'')a]^*)'' = [(a^+e)]''$ (*ii*) $[e(a^*)'']'' = [(g \lor a') \land (a^*)'' \land e].$

PROOF. As $(ga^*)'' = (a^*)''$, so $([(e \land (a^*)'')a]^*)'' = ([(e \land (ga^*)'')a]^*)''$ Hence by lemma 5 [1] we get $([(e \land (ga^*)'')a]^*)'' = ((ea)^*)'' = (a^*e)'' = ((a^*)''e)''$ by (xii) of thm. 1 [1] which implies

 $([(e \land (ga^*)''a]^*)'' = ((a^+)''e)'' = (a^+e)''$ by (xii) of thm. 1 [1].

Proof of (ii). Since a is range closed in S by lemma 8 [1]. Hence there exists g in P'(S) such that g = a''. Now $0 = g' \land g = g' \land a''$ which gives $1 = g \lor a'$. $1 \land q = g' \land g = g' \land g = g' \land g'$.

 $(a^*)'' = (g \lor a') \land (a^*)''$ and so $a = [e \land (a^*)''] a = ([(g \lor a') \land (a^*)'' \land e] a)$ by lemma 5 [1]. Further $[e(a^*)''a]'' = (ea)'' = (\{(g \lor a') \land (a^*)'' \land e\} a)''$, since $a = aa^+a = (a^*)''a$. Finally we get $[e(a^*)'']'' = [(g \lor a') \land (a^*)'' \land e]$, since $(g \lor a') \land (a^*)'' \land e \leq (a^*)''$. $[e(a^*)''a]'' = [e(a^*)''a]''$, and $(e(a^*)'')'' \leq (a^*)''$ by (xii) and (xiv) of thm. 1 [1].

The author is grateful to Professor D.J. Foulis for his valuable comments

and suggestions.

C/O Dr. V.N. Dixit Department of Mathematics University of Delhi Delhi-110007 India

REFERENCES

 Foulis, D.J., Relative inverses in Baer-*-semigroups, Michigan Mathematical Journal, Vol.10, (1963), pp.65-84.
Maeda, F. and Maeda, S., Theory of symmetric lattices, Springer Verlag, Berlin, Heidelberg, New York, 1970.