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A NOTE ON 

By Young 1. Park 

RING 

In a ring A , an ideal 1 is said to be large if it has nonzero intersection with 

every nonzero ideal, i. e. it has nonzero intersection with every nonzero 

principal ideal. It is known in [4] that a ring is semiprime if and only if every 

large ideal has zero annihilator. For a ring A , let .l'=.l'(A) be the set of all 

non-Iarge maximal ideals of A. We shall call a ring A nl-sel1zz"s쩌zPle if .l'(A) 

놓ø and n.l'(A)=(Q). In this paper, we will study the maximal ideal space of 

the under lying ring to characterize, among other things, a complete 

Boolean algebra in terms of maximal ideals that are not large. 

atomíc 

In what follows, A will denote a commutative semisimple ring with unity, 
that is, the intersection of aIl its maximal ideals is zero. Let Q三Q(A) be the 

-space of all maximal ideals of A endowed with the Stone-topology generated 

by the supports S(a) (aεA) where S(a)= {PεQla종P}. It is known that the 

space Q(A) is compact. Now for an element aεA， we define a set Z(a)=Q­

S(a) , i. e. Z(a) = {PεQlaεP}. AIso for an element P of Q we define S(P)르 

US(a) (aεP). We prove following lemmas. 

LEMMA 1. For each PεQ， P종S(P). 

PROOF. It is obvious from the definition of S(a) for each aEA. 

LEMMA 2. For P l' P 2εQ， zf P1놓P2， then P1np2 is not prz'me. 

PROOF. Well known. 

LEMMA 3. For each PεQ， nZ(a) (aεP) contains at most one element. 

PROOF. Let P l' P 2ε nZ(a) (aεP). Suppose Pl~P2' Since PiEnZ(a) (aεP) 

:i=1, 2, PCPi, i. e. pcP1np2. Thus p=P1np2• since P is maximal. By lemma 

2, P is not prime. A contradiction. 

THEOREM 4. Let PεQ. P is large if and only zf {P} =S(a) for no element a 

EA. 

PROOF. Let P be large. Suppose there was a. nonzero bεA such that {P} = 

S(b). Then this implies that bt!=P and bεP’ for all P'εQ with P'~P. But bP 
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CP. Since an intersection of ideals is an ideal, bPCpn {P' P'εQ- {P}} =np 

(PEQ). But the semisimplicity of A implies that bP=Q. Since P has zero 

annihilator, b=O. A contradiction. Thus there is no element a in A such that 

{P} =S(a). Conversely, let PεQ and there is no bεA such that {P} =S(b). 

Let aP=Q for an element aεA. Suppose a~Q. Then S(a)놓rþ. And aP=Q im­
plies S((1) ns(p) =rþ since S(a) nS(a') =S(aa'). Note that the complement of 

S(P) with respect to Q is nZ(a) (aεP). By the lemma 1, P tES(P) , and by 

the lemma 2, the set nZ(a) contains at most one element. Consequently, 
S(o)= {P}. A contradiction. Thus a=O. This completes the proo f. 

Of course, the alternation of above theorem is that PεQ is not large if and 
only if {P} =S(a) for some aεA. Now, we have the following. 

COROLLARr、 1/ ~’~rþ， then the elements 0/ S are the only isolated pO Ïízts Ï1 t 

Q. 

We recall that in the category of compact Hausdorff spaces and continuous 

maps, a space is projective if and only if it is extremally disconnected [3]. 

For a completely regular Hausdorff space X , ßX denotes its Stone-Cech com­
pactification. It is known in [2] that a compact space X is extremally discon­

nected if and only if X = ßS for every dense subspace S. N ext, let r be a 

subset of Q. We observe that, for a nonzero element aEA , S(a) contains an 

element P of r if and only if a졸P， that is aE$ nr’. Thus a set r is dense in 
Q if and only if nr=(o). Proofs of the next two propositions are straightfor­

ward. 

PROPOSITION 5. A ring is nl-seηzisimple zf and only zf z'ts maxz'ηzal z'dea{ 

space contaz'ηs a deηse $ubset 0/ isol ated po쩌ts. 

PROPOSITION 6. A rùzg A is a subdiγect product 0/ the /ields A/P, PES(A} 

zf and only zf z't is nl-semisimple. 

LEMMA 7. 1/ Q(A) is H aμsdor//， the /ollowz'1zg are eqzeivalent: 

(1) A is nl-semz'simple aηd Q is Pγojectiνe. 

(2) ßS=Q. 

PROOF. (1) implies (2). Since Q is projective, it is extremally disconnected. 
AIso nS=(Q) implies S is dense in Q, and thus Q=ßS. (2) implies (1). Since 

S is discrete, thus Q( = ßS) is extremally disconnected. S is dense in Q. This. 

implies ns=(o). 
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Now, we recall in [5] that a compact space Y is said to be the Iree space oÌ ‘ 

D if it is the Stone-Cech compactification of a discrete space D. In the next­

corollary, AO will denote the set of idempotents of A. 

COROLLARY 1. Let .Q(A) be zero-dim3 iZsional. The following ar3 eqzμ~'va!ent. 

(1) .40 is ratz'onally comp!e!e aκd a is lzl-s8misimpl e. 

(2) .Q is ille free space 01 2:. 

PROOF. Since .Q(A)- .o(AO
) , .Q is projective. 

COROLLARY 2. A Boolean algebra is ato!nic and coηzþ!ete il and only 2/ its 

Stone-space is the Iree space 01 the set 01 uzuima! z'dea!s tJz.'lt are no! large. 

PROOF. N ote that a Boolean algebra A is atomic if ani only if .Q(A) contain) 

a dense subset of isolated points. By the corollary to theorem 4, 2: is the only 

set of all isolated points in .o. Thus 2: is dðnse in .0, i. e. nl-semisimple. Also 

note that Boolean algebra A is complete if and only if .o(A) is projective. 

Hence 13J;=.o. The converse is trivial. 

EXAMPLES. It is obvious from proposition 5 that every atomic Boolean 

algebra is nl-semisimple. Now, let X be a discrete space. Then the free space 

βX i3 projective, i. e. extremally disconnected. Thus the regular open subsets 

of i3X are closed. Let B be the Boolea:J. algebra of all regular open s :J.bsets 

of βX. Theπ ￡’(B)-X , and .Q(B)~‘3X， and henca B is nl-semisimple. Another ’ 

trivial example of nl-semisimple ring is the ring of all sequences of real nUlll' 

bers. 
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