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A NOTE ON nl-SEMISIMPLE RING
By Young L. Park

In a ring A, an ideal [ is said to be large if it has nonzero intersection with
every nonzero ideal, i.e. 1t has nonzero intersection with every nonzero
principal ideal. It is known in [4] that a ring 1S semiprime if and only if every
large ideal has zero annihilator. For a ring A4, let Y=3(A) be the set of all
non-large maximal ideals of 4. We shall call a ring A nl-semisimple if 3(A)
>0 and NX(A)=(0). In this paper, we will study the maximal ideal space of
the underlying ring to characterize, among other things, a complete atomic
Boolean algebra in terms of maximal ideals that are not large.

In what follows, A will denote a commutative semisimple ring with unity,
that is, the intersection of all its maximal ideals is zero. Let 2=0Q(A4) be the

space of all maximal ideals of A endowed with the Stone-topology generated
by the supports S(a) (aEA) where S(a)={PER|acEP}. It is known that the
space Q2(A) is compact. Now for an element ¢4, we define a set Z(a)=0~-
S(a), i.e. Z(a)={PER|a&EP}. Also for an element P of 2 we define S(P)=
US(ae) (e&P). We prove following lemmas.

LEMMA 1. For each PEQR, P&ES(P).

PROOF. It is obvious from the definition of S(a) for each a&A.
LEMMA 2. For P, P,&Q, if P<P, then P/(\P, is not prime.
PROOF. Well known.

LEMMA 3. For each P, NZ(a) (¢&EP) contains at most one elemernt.

PROOF. Let P,, P,&NZ(a) (aEP). Suppose P;xP,. Since P,ENZ(a) (cEP)
i=1,2, PCP,, i.e. PCP{NP, Thus P=P;NP, since P 1s maximal. By lemma
2, P is not prime. A contradiction.

THEOREM 4. Let PEQ. P is large if and only if {P}=S(a) for no element a
EA. ' |

PROOF. Let P be large. Suppose there was a nonzero d&EA such that {P}=
S(8). Then this implies that &P and &P’ for all P’EQ with P'xP. But oP
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CP. Since an intersection of ideals is an ideal, dPCPN{P’'|P'EQ—-{P}}=NP
(P&Q). But the semisimplicity of A implies that dP=0. Since P has zero
annthilator, »=0. A contradiction. Thus there is no element ¢ in A4 such that
{P} =85(a). Conversely, let PELQ and there is no &A such that {P}=S(D).
Let aP=0 for an element e&A. Suppose ¢>x0. Then S(a)x¢. And ¢P=0 im-
plies S(2)NS(P)=¢ since S(a)NS(a’)=S(aa’). Note that the complement of
S(P) with respect to 2 is N\ Z(e) (eEP). By the lemma 1, P&S(P), and by
the lemma 2, the set NZ(a@) contains at most one element. Consequently,
S(a)={P}. A contradiction. Thus ¢=0. This completes the proof.

Of course, the alternation of above theorem is that PELR is not large if and
only if {P}=S(a) for some a&A. Now, we have the following.

COROLLARY. If Xx@, then the elements of X are the only isolated poiits i
2.

We recall that in the category of compact Hausdorff spaces and continuous
maps, a space is projective if and only if it is extremally disconnected [3].
For a completely regular Hausdorff space X, 8X denotes its Stone-Cech com-
pactification. It is known in [2] that a compact space X 15 extremally discon-
nected 1f and only if X=48S for every dense subspace S. Next, let /' be a
subset of 2. We observe that, for a nonzero element a¢&=/4, S(a) contains an
clement P of I’ if and only if e&P, that is e&(\/I’. Thus a set [’ is dense 1n
Q if and only if N/'=(0). Proofs of the next two propositions are straighttor-
ward.

PROPOSITION 5. A ring is nl-semisitmple if and only if ils maximal ideal
space contains a dense subsel of isolated poinis.

PROPOSITION 6. A ring A is a subdirect product of the fields A/P, P&3(4)
if and only if it is nl-semisimple.

LEMMA 7. If QC(A) is Hausdorff, the following are equivalent:
(1) A is nl-semisimple and 2 is projeciive.
(2) B3 =5

PROOF. (1) implies (2). Since £ is projective, it is extremally disconnected.
Also N¥=(0) implies Y is dense in 2, and thus Q=3. (2) implies (1). Since
2’ 1s discrete, thus 2(=p82) is extremally disconnected. 2’ 1s dense in £. This
implies N3'=(0).
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Now, we recall in [5] that a compact space Y is said to be the free space or.
D if it is the Stone-Cech compactification of a discrete space D. In the next.

corollary, A’ will denote the set of idempotents of A.

COROLLARY 1. Let Q(A) be zero-dimzusional. The following arz equitvalent.
(1) 4% s rationally complete and a is nl-semisimple.
(2) 2 is ihe free space of 2.

PROOF. Since 2(4)=2(4%, Q is projective.

COROLLARY 2. A Boolean algebra is atonic and complete if and only if its.
Stone-space is the free space of the sel of mzximal ideals that are no! large.

PROOF. Note that a Boolean algebra A is atomic if and only if 2(A4) contains
a dense subset of isolated points. By the corollary to theorem 4, X is the only

set of all isolated points in 2. Thus 2" is dznsz in 2, i.e. nl-semisimple. Also.

note that Boolean algebra A is complete if and only if Q2(A4) is projective.
Hence 53 =0. The converse is trivial.

EXAMPLES. It is obvious from proposition 5 that every atomic Boolean.
algebra is nl-semisimple. Now, let X be a discrete space. Then the free spacs
58X is projective, i.e. extremally disconnected. Thus the regular open subsats
of 8X are closed. Let B be the Boolean algebra of all regular opsn subsets.
of 5X. Then Y(B)=X, and 2(B)=3X, and henca Bis nl-semisimple. Another-
trivial example of nl-semisimple ring is the ring of all sequences of real num-
bers.
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