Kyungpook Math. J. Volume 19, Number 2. December, 1979.

A NOTE ON nl-SEMISIMPLE RING

By Young L. Park

In a ring A, an ideal I is said to be *large* if it has nonzero intersection with

every nonzero ideal, i.e. it has nonzero intersection with every nonzero principal ideal. It is known in [4] that a ring is semiprime if and only if every large ideal has zero annihilator. For a ring A, let $\Sigma = \Sigma(A)$ be the set of all non-large maximal ideals of A. We shall call a ring A nl-semisimple if $\Sigma(A) \neq \phi$ and $\bigcap \Sigma(A) = (0)$. In this paper, we will study the maximal ideal space of the underlying ring to characterize, among other things, a complete atomic Boolean algebra in terms of maximal ideals that are not large.

In what follows, A will denote a commutative semisimple ring with unity, that is, the intersection of all its maximal ideals is zero. Let $\Omega \equiv \Omega(A)$ be the space of all maximal ideals of A endowed with the Stone-topology generated by the supports S(a) $(a \in A)$ where $S(a) = \{P \in \Omega | a \notin P\}$. It is known that the space $\Omega(A)$ is compact. Now for an element $a \in A$, we define a set $Z(a) = \Omega -$ S(a), i.e. $Z(a) = \{P \in \Omega | a \in P\}$. Also for an element P of Ω we define $S(P) \equiv$ $\bigcup S(a)$ $(a \in P)$. We prove following lemmas.

LEMMA 1. For each $P \in \Omega$, $P \notin S(P)$.

PROOF. It is obvious from the definition of S(a) for each $a \in A$.

LEMMA 2. For P_1 , $P_2 \in \Omega$, if $P_1 \neq P_2$, then $P_1 \cap P_2$ is not prime.

PROOF. Well known.

LEMMA 3. For each $P \in \Omega$, $\cap Z(a)$ $(a \in P)$ contains at most one element. PROOF. Let P_1 , $P_2 \in \cap Z(a)$ $(a \in P)$. Suppose $P_1 \neq P_2$. Since $P_i \in \cap Z(a)$ $(a \in P)$ $i=1,2, \ P \subset P_i$, i.e. $P \subset P_1 \cap P_2$. Thus $P=P_1 \cap P_2$. since P is maximal. By lemma 2, P is not prime. A contradiction.

THEOREM 4. Let $P \in \Omega$. P is large if and only if $\{P\} = S(a)$ for no element $a \in A$.

PROOF. Let P be large. Suppose there was a nonzero $b \in A$ such that $\{P\} = S(b)$. Then this implies that $b \notin P$ and $b \in P'$ for all $P' \in \Omega$ with $P' \neq P$. But bP

Young L. Park

202

 $\subset P$. Since an intersection of ideals is an ideal, $bP \subset P \cap \{P' | P' \in \Omega - \{P\}\} = \cap P$ $(P \in \Omega)$. But the semisimplicity of A implies that bP = 0. Since P has zero annihilator, b=0. A contradiction. Thus there is no element a in A such that $\{P\} = S(a)$. Conversely, let $P \in \Omega$ and there is no $b \in A$ such that $\{P\} = S(b)$. Let aP = 0 for an element $a \in A$. Suppose $a \neq 0$. Then $S(a) \neq \phi$. And aP = 0 implies $S(a) \cap S(P) = \phi$ since $S(a) \cap S(a') = S(aa')$. Note that the complement of S(P) with respect to Ω is $\cap Z(a)$ ($a \in P$). By the lemma 1, $P \notin S(P)$, and by the lemma 2, the set $\cap Z(a)$ contains at most one element. Consequently, $S(a) = \{P\}$. A contradiction. Thus a=0. This completes the proof.

Of course, the alternation of above theorem is that $P \in \Omega$ is not large if and only if $\{P\} = S(a)$ for some $a \in A$. Now, we have the following.

COROLLARY, If $\Sigma \neq \phi$, then the elements of Σ are the only isolated points in Ω .

We recall that in the category of compact Hausdorff spaces and continuous maps, a space is projective if and only if it is extremally disconnected [3]. For a completely regular Hausdorff space X, βX denotes its Stone-Čech compactification. It is known in [2] that a compact space X is extremally disconnected if and only if $X=\beta S$ for every dense subspace S. Next, let Γ be a subset of Ω . We observe that, for a nonzero element $a \in A$, S(a) contains an element P of Γ if and only if $a \notin P$, that is $a \notin \cap \Gamma$. Thus a set Γ is dense in

 Ω if and only if $\bigcap \Gamma = (0)$. Proofs of the next two propositions are straightforward.

PROPOSITION 5. A ring is nl-semisimple if and only if its maximal ideal space contains a dense subset of isolated points.

PROPOSITION 6. A ring A is a subdirect product of the fields A/P, $P \in \Sigma(A)$ if and only if it is nl-semisimple.

LEMMA 7. If $\Omega(A)$ is Hausdorff, the following are equivalent: (1) A is nl-semisimple and Ω is projective. (2) $\beta \Sigma = \Omega$.

PROOF. (1) implies (2). Since Ω is projective, it is extremally disconnected. Also $\bigcap \Sigma = (0)$ implies Σ is dense in Ω , and thus $\Omega = \beta \Sigma$. (2) implies (1). Since Σ is discrete, thus $\Omega(=\beta \Sigma)$ is extremally disconnected. Σ is dense in Ω . This implies $\bigcap \Sigma = (0)$.

A Note on nl-Semisimple Ring

Now, we recall in [5] that a compact space Y is said to be the *free space* of D if it is the Stone-Čech compactification of a discrete space D. In the next corollary, A^0 will denote the set of idempotents of A.

COROLLARY 1. Let $\Omega(A)$ be zero-dimensional. The following are equivalent. (1) A^0 is rationally complete and a is nl-semisimple. (2) Ω is the free space of Σ .

PROOF. Since $\Omega(A) \simeq \Omega(A^0)$, Ω is projective.

COROLLARY 2. A Boolean algebra is atomic and complete if and only if its Stone-space is the free space of the set of maximal ideals that are not large.

PROOF. Note that a Boolean algebra A is atomic if and only if $\Omega(A)$ contains a dense subset of isolated points. By the corollary to theorem 4, Σ is the only set of all isolated points in Ω . Thus Σ is dense in Ω , i.e. nl-semisimple. Alsonote that Boolean algebra A is complete if and only if $\Omega(A)$ is projective. Hence $\beta \Sigma = \Omega$. The converse is trivial.

EXAMPLES. It is obvious from proposition 5 that every atomic Boolean algebra is nl-semisimple. Now, let X be a discrete space. Then the free space βX is projective, i.e. extremally disconnected. Thus the regular open subsets of βX are closed. Let B be the Boolean algebra of all regular open subsets of βX . Then $\Sigma(B) \simeq X$, and $\Omega(B) \simeq \beta X$, and hence B is nl-semisimple. Another trivial example of nl-semisimple ring is the ring of all sequences of real num-

University of Petroleum & Minerals University of Toronto

REFERENCES

[1] Dwinger, Ph, Introduction to Boolean algebras, 2nd Rev. Physica-Verlag (1971).

- [2] Gillman, L. and Jerison, M., Rings of continuous functions, Princeton, 1930.
- [3] Gleason, A.M., Projective topological spaces, Ill. J. Math. 2. 482-489 (1953).

[4] Lambek, J., Lecture on rings and modules, Blaisdell. 1933.

 [5] Rainwater, J., A note on projective resolutions, Proc. Amer. Math. Soc. 10, 7348 -735 (1959).