Kyungpook Math. J. Volume 19, Number 2 December, 1979

WALLMAN'S TYPF ORDER COMPACTIFICATIONS II

By Young Soo Park

0. Introduction.

Nielsen and Sloyer [7] has introduced the concepts of ideals of semi-continuous functions, and showed the family of all maximal ideals in the semi-ringof all nonnegative lower semi-continuous functions on a T_1 -space X is a compactification of X under the Stone topology. Also, Brümmer [1] proved that this compactification of X is equivalent to Wallman compactification of X. In [3], as a generalization of Wallman compactification, the ordered compactification $w_0(X)$ of an ordered topological space (X, \mathcal{T}, \leq) with a semi-closed order is constructed.

In this paper, by using the concepts of bi-ideals ([2]), we construct an ordered compactification $\mathfrak{M}_0(X)$ of an ordered topological space (X, \mathscr{T}, \leq) with a semi-closed order. Moreover, we show that two ordered compactifications $\mathfrak{M}_0(X)$ and $w_0(X)$ are order equivalent (i.e. they are iseomorphic). We note that these results reduce to the previous mentioned ones([1], [7]) in the case of a discrete order.

Let (X, \leq) be a partially ordered set and A a subset of X. Then we write $d(A) = \{y \in X : y \leq x \text{ for some } x \in A\}, i(A) = \{y \in X : x \leq y \text{ for some } x \in A\}.$ In particular, if A is a singleton, say $\{x\}$, then we write d(x) (resp. i(x)). A subset A of X is said to be decreasing(resp. increasing) if A = d(A) (resp. A) =i(A)). The order is called *discrete* if $x \leq y$ only when x = y. A map f from a partially ordered set X to a partially ordered set Y is said to be *increasing* (resp. decreasing) if $x \le y$ in X implies $f(x) \le f(y)$ (resp. $f(x) \ge f(y)$) in Y. By an ordered topological space we mean a set X endowed with both a topology x \mathscr{T} and a partial order \leq . For such an ordered topological space (X, \mathscr{T}, \leq) , $\mathcal{U} = \{ U \in \mathcal{F} : U \text{ is increasing} \},\$ Iet

 $\mathscr{L} = \{U \in \mathscr{T} : U \text{ is decreasing}\}.$

Then \mathscr{U} and \mathscr{L} are evidently topologies for X, which are called the *upper*, *lower* topologies respectively ([2], [8]). We say that an ordered topological

¹⁾ This is partially supported by a research grant from the Ministry of Education for 1979.

space X is convex if X has a subbase consisting of the sets in \mathscr{L} and \mathscr{U} , or equivalently, if every open set in X can be written as the intersection of an open increasing set and an open decreasing set. The order is said to be upper (resp. lower) semi-closed if, given any $x \in X$, i(x) (resp. d(x)) is closed. The order is semi-closed if it is both upper and lower semi-closed ([6]).

1. Ordered compactifications of lower semi continuous functions.

We recall that a function f from a topological space X into R is lower semicontinuous if and only if for each $r \in R$, $f^{-1}[(r,\infty)]$ is open in X, where Rdenotes the set of real numbers equipped with the usual topology and order. $Let(X, \mathcal{F}, \leq)$ be an ordered topological space and let

 $\begin{aligned} \mathscr{L}(X) &= \{f : f \text{ is a lower semi-continuous function on } X\}, \\ \mathscr{L}^+(X) &= \{f \in \mathscr{L}(X) : f \text{ is non-negative}\}, \\ \mathscr{L}^i(X) &= \{f \in \mathscr{L}^+(X) : f \text{ is increasing}\}, \\ \mathscr{L}^d(X) &= \{f \in \mathscr{L}^+(X) : f \text{ is decreasing}\}. \\ \text{Then } \mathscr{L}^+(X), \quad \mathscr{L}^i(X) \text{ and } \mathscr{L}^d(X) \text{ form semi-rings under the usual pointwise} \\ \text{`operations.} \end{aligned}$

REMARKS 1.1. (1) U is an open increasing (resp. decreasing) set in an ordered topological space X if and only if its characteristic function χ_U belongs to $\mathscr{L}^i(X)$ (resp. $\mathscr{L}^d(X)$).

(2) The idempotent set of $\mathscr{L}^i(X)$ is equal to the family $\{\chi_U: U \in \mathscr{U}\}$ of all

characteristic functions of open increasing sets, and dually.

The following definition is due to Nielsen and Sloyer [7].

DEFINITION 1.2. A proper subset I of $\mathscr{L}^i(X)$ is called an *ideal* if it satisifies the following three conditions:

- (1) If f and $g \in I$, then $f + g \in I$
- (2) If $f \in I$ and $g \in \mathscr{L}^{i}(X)$, then $gf \in I$

(3) If $f \in I$, then there exists an idempotent $g, g \neq 1$ in $\mathscr{L}^{i}(X)$ such that gf = f, where 1 is defined by 1(x)=1 for all $x \in X$. Ideals in $\mathscr{L}^{d}(X)$ are defined analogously.

Let I be an ideal in $\mathscr{L}^{i}(X)$ and let $f \in \mathscr{L}^{i}(X) - I$. Then the ideal generated by $I \cup \{f\}$, denoted by (I, f) is clearly the ideal $\{m+lf : m \in I, l \in \mathscr{L}^{i}(X)$ and g(m+lf)=m+lf for some idempotent $g(\neq 1)$ in $\mathscr{L}^{i}(X)$.

·

Wallman's Type Order Compactifications II 153

REMARKS 1.3. (1) Let (X, \mathscr{T}) be a T_1 -space. Then each point of X can be associated with a maximal ideal in $L^+(X)$ (i.e. the set of all non-negative lower semi-continuous functions on X) ([7]). But, this statement need not be true in an ordered topological space (X, \mathscr{T}, \leq) with a semi-closed order. For example, let X = [0, 1] be the unit interval equipped with the usual topology and order. For each $x \in X$, let $I_x = \{f \in \mathscr{L}^i(X) : f(x) = 0\}$. Then I_x is an ideal of $\mathscr{L}^i(X)$, but not maximal for each $x \in [0, 1]$. We also note that if the

order on (X, \mathcal{T}, \leq) is discrete, then $L^+(X) = \mathscr{L}^i(X)$.

(2) The set $\{Z(f): f \in \mathscr{L}^i(X)\}$ is precisely the set of all closed decreasing sets in X, and the set $\{Z(f): f \in \mathscr{L}^d(X)\}$ is exactly the set of all closed increasing sets in X, where $Z(f) = \{x \in X : f(x) = 0\}$.

(3) If f and g are elements of $\mathscr{L}^+(X)$, then $Z(f+g)=Z(f)\cap Z(g)$ and Z $(fg)=Z(f)\cup Z(g)$.

The following definition is due to Canfell [2]. DEFINITION 1.4. Let I and J be ideals in $\mathscr{L}^{i}(X)$ and $\mathscr{L}^{d}(X)$ respectively. The pair (I,J) is said to be a *bi-ideal* in $(\mathscr{L}^{i}(X), \mathscr{L}^{d}(X))$ if given $i \in I$ and $j \in J, Z(i) \cap Z(j) \neq \phi$. For given two bi-ideals (I_1, J_1) and (I_2, J_2) , we define a relation $(I_1, J_1) \subseteq (I_2, J_2)$ if and only if $I_1 \subseteq I_2$ and $J_1 \subseteq J_2$. By maximal biideal in $(\mathscr{L}^{i}(X), \mathscr{L}^{d}(X))$ we mean a bi-ideal not contained in any other biideal under the above relation.

REMARK 1.5. We note, by Zorn's lemma, that every bi-ideal is contained in a maximal bi-ideal.

Let $\mathfrak{M}_0(X)$ denote the set of all maximal bi-ideals in $(\mathscr{L}^i(X), \mathscr{L}^d(X))$. The proofs of following two lemmas are similar to those in [2], we will omit them.

LEMMA 1.6. Let $(M, N) \in \mathfrak{M}_0(X)$ and let $f \in \mathscr{L}^i(X)$. Then $f \in M$ if and only if for given $m \in M$ and $n \in N$, $Z(f) \cap Z(m) \cap Z(n) \neq \phi$, and dually for N.

LEMMA 1.7. Let $(M, N) \in \mathfrak{M}_0(X)$. Then the following statements hold. (1) Let f and f' be elements of $\mathscr{L}^i(X)$ and $ff' \in M$. Then either $f \in M$ or $f' \in M$, and dually for N.

(2) Let $f \in \mathscr{L}^{i}(X)$ and $g \in \mathscr{L}^{d}(X)$. Then fg=0 implies either $f \in M$ or $g \in N$.

Define $f^d = \{(M, N) \in \mathfrak{M}_0(X) : f \in M\}$ for given $f \in \mathscr{L}^i(X)$, and

 $g^i = \{(M, N) \in \mathfrak{M}_0(X) : g \in N\}$ for given $g \in \mathscr{L}^d(X)$. Then $\{f^d : f \in \mathscr{L}^i(X)\}$ forms a base for the closed sets in $\mathfrak{M}_0(X)$, since $f^d \cup f'^d = (ff')^d$. Similarly, $\{g^i : g \in \mathscr{L}^d(X)\}$ also forms a base for the closed

sets in $\mathfrak{M}_0(X)$. We denote the topologies in $\mathfrak{M}_0(X)$ which have $\{f^d: f \in \mathscr{L}^i (X)\}$ and $\{g^i: g \in \mathscr{L}^d(X)\}$ as basis respectively by $\mathfrak{M}_{\mathscr{L}}$ and $\mathfrak{M}_{\mathscr{U}}$. Let \mathfrak{M} be the smallest topology containing $\mathfrak{M}_{\mathscr{L}}$ and $\mathfrak{M}_{\mathscr{U}}$. Define a relation \leq on $\mathfrak{M}_0(X)$ as follows: $(M, N) \leq (M', N')$ if and only if $M \supseteq M'$ and $N \subseteq N'$ for each (M, N) and (M', N') in $\mathfrak{M}_0(X)$. Then \leq is obviously a partial order on $\mathfrak{M}_0(X)$ and $(\mathfrak{M}_0(X), \mathfrak{M}, \leq)$ is an ordered topological space. Also it is immediate that

 f^d and g^i are closed decreasing and increasing sets in $(\mathfrak{M}_0(X), \mathfrak{M}, \leq)$, respectively, for given $f \in \mathscr{L}^i(X)$ and $g \in \mathscr{L}^d(X)$. Hence, we note that $\mathfrak{M}_0(X)$ is a convex ordered topological space.

LEMMA 1.8. The convex ordered topological space $(\mathfrak{M}_0(X), \mathfrak{M}, \leq)$ is T_1 -compact.

PRCOF. It is similar to those in [2].

154

The following definition is due to Canfell [2].

DEFINITION 1.9. Let (I, J) be a bi-ideal in $(\mathscr{L}^i(X), \mathscr{L}^d(X))$. Then the biideal (I, J) is said to be *fixed* if there exists a point $p \in X$ such that $p \in \cap$ $\{Z(i), Z(j) : i \in I \text{ and } j \in J\}$

LEMMA 1.10. Let (X, \mathcal{F}, \leq) be an ordered topological space with a semiclosed order. For each $p \in X$, define $M_p^i = \{f \in \mathcal{L}^i(X) : f(p) = 0\}$ and $M_p^d = \{g \in \mathcal{L}^d(X) : g(p) = 0\}$. Then (M_p^i, M_p^d) is a fixed bi-ideal with a point p.

PROOF. This is immediate from the definition.

PROPOSITION 1.11. Let (X, \mathcal{F}, \leq) be an ordered topological space with a semi-closed order. Then the fixed maximal bi-ideals in $(\mathscr{L}^{i}(X), \mathscr{L}^{d}(X))$ are precisely the pairs (M_{p}^{i}, M_{p}^{d}) for $p \in X$. Moreover, these bi-ideals are distinct for distinct points in X.

PROOF. Let (M, N) be a fixed maximal bi-ideal with a point p in X. Then it is easy to see that $(M, N) \subseteq (M_p^i, M_p^d)$. By Lemma 1.10, (M_p^i, M_p^d) is a fixed bi-ideal with a point p. To show maximality of (M_p^i, M_p^d) , let $f \in \mathscr{L}^i(X)$ and $f \notin M_p^i$: then f(p) > 0. Since i(p) is a closed increasing set, X - i(p) is an open decreasing set. By Remarks 1.1, $\chi_{X-i(p)} \in \mathscr{L}^d(X)$. Suppose that $Z(f) \cap Z$ $(\chi_{X-i(p)}) \neq \phi$, say, $x \in Z(f) \cap Z(\chi_{X-i(p)})$. It follows that $x \notin X - i(p)$, and hence $p \leq x$. hence f(p) = 0, which is a contradiction. Therefore, we have $Z(f) \cap Z(\chi_{X-i(p)}) = \phi$.

We also note that $\chi_{X-i(p)}$ belongs to M_p^d . Hence $((M_p^i, f), M_p^d)$ is not a bi-

Wallman's Type Order Compactifications II 155

ideal. We can easily observe that a dual result holds for $g \in \mathscr{L}^d(X)$ and $g \notin M_p^d$. Therefore (M_p^i, M_p^d) is a maximal bi-ideal. Hence the fixed maximal biideals in $(\mathscr{L}^i(X), \mathscr{L}^d(X))$ are precisely the pairs (M_p^i, M_p^d) for $p \in X$. Let $p \neq q$ in X. Then we may assume without of generality that $q \leq p$. Hence $p \notin i(q)$. By Remarks 1.1, $\chi_{X-i(q)} \in \mathscr{L}^d(X)$, and hence $\chi_{X-i(q)}(q)=0$ and $\chi_{X-i(q)}(q)=0$. Hence $\chi_{X-i(q)} \in M_q^d$, but $\chi_{X-i(q)} \notin M_p^d$. It follows that $(M_p^i, M_p^d) \neq (M_q^i, M_q^d)$.

 M_a^d). This completes the proof.

PROPOSITION 1.12. Let (X, \mathcal{T}, \leq) be a compact ordered space with a semiclosed order. Then every bi-ideal in $(\mathcal{L}^i(X), \mathcal{L}^d(X))$ is fixed.

PROOF. Let (I, J) be a bi-ideal in $(\mathscr{L}^i(X), \mathscr{L}^d(X))$. Then the family $\{Z (i), Z(j) : i \in I, j \in J\}$ has the finite intersection property. By compactness of X, the proposition immediately follows.

REMARK 1.13. From Propositions 1.11 and 1.12, we note that if an ordered topological space (X, \mathcal{T}, \leq) is compact with a semi-closed order, then every maximal bi-ideal is of the form (M_p^i, M_p^d) for $p \in X$.

THEOREM 1.14. Let (X, \mathcal{T}, \leq) be a convex ordered topological space with a semi-closed order. Then (X, \mathcal{T}, \leq) is iseomorphic to a dense subspace of $(\mathfrak{M}_0 (X), \mathfrak{M}, \leq)$.

PROOF. Define a map $e: (X, \mathcal{T}, \leq) \longrightarrow (\mathfrak{M}_0(X), \mathfrak{M}, \leq)$ by $e(p) = (M_p^i, M_p^d)$ for

each $p \in X$, Then, by Lemma 1.8, e is clearly injective. Let $p \leq q$ in X. Then $M_p^i \supseteq M_q^i$ and $M_p^d \subseteq M_q^d$. Hence $(M_p^i, M_p^d) \leq (M_q^i, M_q^d)$, that is, $e(p) \leq e(q)$. Hence e is an increasing function. Let $e(p) \leq e(q)$ in $\mathfrak{M}_0(X)$, and assume that $p \leq q$. Then $p \notin d(q)$. Hence $\chi_{X-d(q)} \in \mathscr{L}^i(X)$, $\chi_{X-d(q)}(p) = 1$ and $\chi_{X-d(q)}(q) = 0$. It follows that $\chi_{X-d(q)} \in M_q^i$ and $\chi_{X-d(q)} \notin M_p^i$. Hence $M_q^i \subseteq M_p^i$, which is a contradiction; therefore $p \leq q$. Hence e is an order isomorphism. To show that X is dense in $\mathfrak{M}_0(X)$, it suffices to prove that if $f \in \mathscr{L}^i(X)$ and $g \in \mathscr{L}^d(X)$, then $\overline{|Z(f)|} = f^d$ in $(\mathfrak{M}_0(X), \mathfrak{M}_{\mathscr{L}})$ and $\overline{|Z(g)|} = g^i$ in $(\mathfrak{M}_0(X), \mathfrak{M}_{\mathscr{L}})$, where denotes closure in the given spaces respectively, because if f = g = 0 then $\overline{X} = \mathfrak{M}_0(X)$. Since $Z(f) \subseteq f^d$ and f^d is $\mathfrak{M}_{\mathscr{L}}$ -closed, $\overline{|Z(f)|} \subseteq f^d$. On the other hand, suppose that $f'^d \supseteq Z(f)$ for some $f' \in \mathscr{L}^i(X)$. Then $Z(f') = X \cap f'^d \supseteq Z(f)$. Let $(M, N) \in f^d$. It follows that $f'^d \supseteq f^d$. Therefore $\overline{|Z(f)|} = f^d$ in $(\mathfrak{M}_0(X), \mathfrak{M}_{\mathscr{L}})$.

COROLLARY 1.15. Let (X, \mathcal{T}, \leq) be a convex ordered topological space with a semi-closed order. If (X, \mathcal{T}) is compact, then (X, \mathcal{T}, \leq) is iseomorphic to $(\mathfrak{M}_0(X), \mathfrak{M}, \leq)$.

PROOF. It is immediate from Theorem 1.14 and Remark 1.13. REMARK 1.16. If the given order on X in Theorem 1.14 is discrete, then

the theorem reduces to the main result of Nielsen and Sloyer [7].

2. Equivalence of the two ordered compactifications $\omega_0(X)$ and $\mathfrak{M}_0(X)$

In [3], we constructed the ordered compactification $\omega_0(X)$ for a convex ordered topological space (X, \mathcal{T}, \leq) with a semi-closed order. In this section, we investigate relationship between $\omega_0(X)$ and $\mathfrak{M}_0(X)$. In fact, it turns out that they are order equivalent. Throughout this section, we use the same notations and terminologies as those given in [3].

Let (X, \mathscr{T}, \leq) be an ordered topological space with a semi-closed order. Let *I* be an ideal in $\mathscr{L}^{i}(X)$ and \mathscr{F} a closed filter in (X, \mathscr{U}) . We denote $Z(I) = \{Z(f) : f \in I\}$ and $Z^{-1}(\mathscr{F}) = \{f \in \mathscr{L}^{i}(X) : Z(f) \in \mathscr{F}\}.$

LEMMA 2.1. Let (X, \mathcal{F}, \leq) be an ordered topological space with a semi-closed order. For any ideal I in $\mathcal{L}^{i}(X)$, let \mathcal{F} be the filter generated by Z(I), in symbols, $\mathcal{F} = \mathcal{L}([Z(I)])$. Then \mathcal{F} is a closed filter in (X, \mathcal{U}) .

PROOF. We show that Z(I) is a filter base for \mathscr{F} , consisting only of

decreasing closed sets. Obviously, Z(f) is a decreasing closed set for each $f \in I$. Let $Z(f) \in Z(I)$. Then it is easy to see that $Z(f) \neq \phi$. If Z(f) and Z(g) belong to Z(I), then by Remark 1.3, $Z(f) \cap Z(g) \in Z(I)$. Hence Z(I) is a filter base for \mathcal{F} , that is, \mathcal{F} is a closed filter in (X, \mathcal{U}) .

LEMMA 2.2. Let (X, \mathcal{T}, \leq) be an ordered topological space with a semi-closed order, and let \mathcal{F} be a closed filter in (X, \mathcal{U}) . Then $Z^{-1}(\mathcal{F})$ is an ideal in $\mathcal{L}^{i}(X)$. Moreover $\mathcal{F} = \mathcal{G}([Z(Z^{-1}(\mathcal{F}))])$.

PROOF. It is easy.

REMARK 2.3. We note that Lemmas 2.1 and 2.2 hold dually for $\mathscr{L}^{d}(X)$ and (X, \mathscr{L}) .

By the lemmas and remark, we have the following two lemmas:

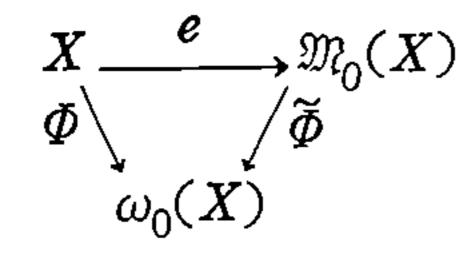
LEMMA 2.4. Let (X, \mathcal{T}, \leq) be an ordered topological space with a semi-closed order, and let (M, N) a maximal bi-ideal in $(\mathcal{L}^i(X), \mathcal{L}^d(X))$. If \mathcal{F} and \mathcal{S}

Wallman's Type Order Compactifications [] 157

are the filters generated by the families $\{Z(f): f \in M\}$ and $\{Z(g): g \in N\}^{r}$ respectively, that is, $\mathcal{F} = \mathcal{G}(Z(M))$ and $\mathbb{G} = \mathcal{G}(Z(N))$, then $(\mathcal{F}, \mathbb{G})$ is a maximal bi-filter in X.

LEMMA 2.5. Let (X, \mathcal{T}, \leq) be an ordered topological space with a semi-closed order. Let $(\mathcal{F}, \mathbb{S})$ be a maximal bi-filter in X. Then $(Z^{-1}(\mathcal{F}), Z^{-1}(\mathbb{S}))$ is a maximal bi-ideal in $(\mathcal{L}^{i}(X), \mathcal{L}^{d}(X))$.

THEOREM 2.6. Let (X, \mathscr{T}, \leq) be a convex ordered topological space with a semi-closed order. Then there exists an iseomorphism $\tilde{\Phi}: \mathfrak{M}_0(X) \longrightarrow \omega_0(X)$ such that the commutativity relation $\tilde{\Phi} \circ e = \Phi$ holds in the following triangle:



PROOF. Define $\Phi: \mathfrak{M}_0(X) \longrightarrow \omega_0(X)$ by $\tilde{\Phi}((M, N)) = (\mathscr{G}[Z(M)], \mathscr{G}[Z(N)])$ for any $(M, N) \in \mathfrak{M}_0(X)$. Then this is well-defined by Lemma 2.4. Now, we shall show that $\tilde{\phi}$ is a required iseomorphism. Firstly, we show that $\tilde{\phi} \circ e$ $= \Phi:$ Let $x \in X$, and let $A \in \mathscr{G}[d(x)]$. Then $d(x) \subseteq A$. Since $d(x) = Z(\chi_{X-d(X)})_{r-1}$ we have $\chi_{X-d(x)} \in \mathscr{L}^{i}(X)$. Hence $\chi_{X-d(x)} \in M_{x}^{i}$. Thus we have $A \in \mathscr{S}[Z(M_{x}^{i})]$. Conversely, let $A \in \mathscr{G}[Z(M_x^i)]$. Then $A \supseteq Z(f)$ for some $f \in M_x^i$, and hence $x \in I$ Z(f). Since Z(f) is a closed decreasing set, $d(x) \subseteq Z(f) \subseteq A$. Hence $A \in \mathscr{S}[d]$ (x)]. Thus we have showed that $\mathscr{G}[d(x)] = \mathscr{G}[Z(M_x^i)]$ for each $x \in X$. Similarly, we can show that $\mathscr{G}[i(x)] = \mathscr{G}[Z(M_x^d)]$. Thus we have $(\mathscr{G}[d(x)], \mathscr{G}[i(x)]) =$ $(\mathscr{G}[Z(M_x^i)], \mathscr{G}[Z(M_x^d)])$ for each $x \in X$. Hence $(\tilde{\Phi} \circ e)(x) = \tilde{\Phi}[e(x)] = \tilde{\Phi}[(M_x^i)]$ $[M^d_x] = (\mathscr{G}[Z(M^i_x)], \ \mathscr{G}[Z(M^d_x)]) = (\mathscr{G}[d(x)], \ \mathscr{G}[i(x)]) = \Phi(x). \text{ Thus } \tilde{\Phi} \circ e = \Phi.$ Secondly, we show that $\tilde{\Phi}$ is an order isomorphism: Let (M_1, N_1) and (M_2, M_2) N_2) be in $\mathfrak{M}_0(X)$, and let $\tilde{\varphi}[(M_1, N_1)] = \tilde{\varphi}[(M_2, N_2)]$, that is, $(\mathscr{G}[Z(M_1)])$, $\mathscr{G}[Z(N_1)] = (\mathscr{G}[Z(M_2)], \mathscr{G}[Z(N_2)])$. We can easily see that $M_1 \subseteq Z^{-1}(\mathscr{G}[Z(M_1)])$ and $N_1 \subseteq Z^{-1}(\mathscr{G}[Z(N_1)])$. Since (M_1, N_1) is a maximal bi-ideal, $(M_1, N_1) =$ $(Z^{-1}(\mathscr{G}[Z(M_1)]), Z^{-1}(\mathscr{G}[Z(N_1)]))$. Similarly, we have $(M_2, N_2) = (Z^{-1}(\mathscr{G}[Z]))$ (M_2)]), $Z^{-1}(\mathscr{G}[Z(N_2)])$). It follows that $(M_1, N_1) = (M_2, N_2)$. Hence $\tilde{\Phi}$ is one to one. Let $(\mathscr{F}, \mathbb{G}) \in \omega_0(X)$. Then by Lemma 2.5, $(Z^{-1}(\mathscr{F}), Z^{-1}(\mathbb{G})) \in \mathfrak{M}_0(X)$. Hence $\tilde{\Phi}$ $[(Z^{-1}(\mathscr{F}), Z^{-1}(\mathbb{G}))] = (\mathscr{G}[Z(Z^{-1}(\mathscr{F}))], \mathscr{G}[Z(Z^{-1}(\mathbb{G}))] = (\mathscr{F}, \mathbb{G})$ by Lemma 2.2. Thus $\tilde{\phi}$ is onto. Clearly $\tilde{\phi}$ is increasing. Let (M_1, N_1) and (M_2, M_2) (N_2) be in $\mathfrak{M}_0(X)$ and let $\widetilde{\Phi}(M_1, N_1) \leq \widetilde{\Phi}(M_2, N_2)$ in $\omega_0(X)$. Then it is easy to show that $(M_1, N_1) \leq (M_2, N_2)$. Therefore $\tilde{\Phi}$ is an order isomorphism.

158

Finally, we show that $\tilde{\Phi}$ is a homeomorphism: For given $f \in \mathscr{L}^{i}(X)$, let $(M, N) \in f^{d}$; then $Z(f) \in \mathscr{S}[Z(M)]$. Hence $\tilde{\Phi}[(M, N)] \in Z(f)^{d}$. Thus we have $\tilde{\Phi}(f^{d}) \subseteq Z(f)^{d}$. Conversely, $(\mathscr{F}, \mathfrak{C}) \in Z(f)^{d}$. Then $Z(f) \in \mathscr{F}$ or $f \in Z^{-1}(\mathscr{F})$. Hence $(Z^{-1}(\mathscr{F}), Z^{-1}(\mathfrak{C})) \in f^{d}$, and therefore $\tilde{\Phi}[Z^{-1}(\mathscr{F}), Z^{-1}(\mathfrak{C})] = (\mathscr{F}, \mathfrak{C}) \in \tilde{\Phi}$ (f^{d}) . Thus $Z(f)^{d} \subseteq \tilde{\Phi}(f^{d})$. Hence we have $\tilde{\Phi}(f^{d}) = Z(f)^{d}$ for given $f \in \mathscr{L}^{i}(X)$. Dually, we have $\tilde{\Phi}(g^{i}) = Z(g)^{i}$ for given $g \in \mathscr{L}^{d}(X)$. Since $\mathfrak{M}_{0}(X)$ and $\omega_{0}(X)$

are convex ordered topological spaces, $\tilde{\Phi}$ is clearly a homeomorphism. Hence $\tilde{\Phi}$ is an iseomorphism from $\mathfrak{M}_0(X)$ onto $\omega_0(X)$. This completes the proof.

REMARK 2.7. If the given order on X in Theorm 2.6 is discrete, then this reduces to the main result of Brümmer [1], that is, $\mathfrak{M}_0(X)$ is the Wallman compactification of a T_1 -space X.

Kyungpook University

REFERENCES

- [1] Brümmer, G.C.L., Note on a compactification due to Nielsen and Sloyer, Math. Ann. 195(1972) 167.
- [2] Canfell, M.J., Semi-algebras and rings of continuous functions, Ph.D. Thesis, Univ. of Edinburgh, 1968.
- [3] Choe, T.H., and Park, Y.S., Wallman's type order compactifications, Pacific J. of

Math. 82(1979) 339-347.

- [4] Gillman, L., and Jerison, M., Rings of continuous functions, Van Nostrand, New York, 1960.
- [5] Hewitt, E., and Stromberg, K., *Real and abstract analysis*, Springer-Verlag, New York, 1965.
- [6] Nachbin, L., Topology and order, Van Nostrand Mathematical Studies 4, Princeton, N.J., 1965.
- [7] Nielsen, R., and Sloyer, C., Ideals of semi-continuous functions and compactifications of T_1 -spaces, Math. Ann. 187(1970) 329-331.
- [8] Priestley, H.A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. (3) 24(1972) 507-530.
- [9] Thron, W.J., Topological structure, Holt, Rinehart and Winston, New York, 1966. [10] Wallman, H., Lattices and topological spaces, Ann. Math. 39(1938) 112-116. [11] Ward Jr., L.E., Partially ordered topological spaces, Proc. Amer. Math. Soc.
 - 5(1954) 144-161.