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THE ORDER OF CYCLICITY OF BIPARTITE TOURNAMENTS 

AND (0, 1) MATRICES 

By Abraham Bermanl’ and Anton Kotzig2
• 

CÞ. Abstract 

A (0,1) matrix is acyclic if it does not have a permutation matrix of order 
2 as a submatrix. A bipartite tournament is acyclic if and only if its adjacency 

matrix is acyclic. The concepts of (maximal) order of cyclicity of a matrix 

and a bipartite tournament are introduced and studied. 

1. Intl'oduction 

AII matrices of this paper are (0, 1). AII graphs are directed. We use the 

graph-theory notation of [4J and the matrix-theory notation of [7J. 

The order 01 cyclicity, μ(G)， of a graph G, is the smaIIest number of arcs 

which must be reversed in G in order to obtain an acyclic graph. 

An (m, n) - (biþartz'te) tournament is an oriented graph G such that V(G) 

=RUC, R= {r l' ..•• r m }, C= {c l' "', cn} and G has mn arcs, each incident 

with a point in R and a point in C. In other words, an (m, n)-tournament is 

。btained by orientation of the complete bipartite graph Km η· 

Cyclicity in ordinary tournaments was studied by Bermond [lJ , Erdös and 

Moon [3J , Jung [5J , Kotzig [6J and Spencer [8J. Here we study the order of 

cyclicity of (ηz ， n)-tournaments. 

There is a natural one to one correspondence between mXn matrices and 

(m, n) tournaments. The rows of a matrix A correspond to the points r l' "', 

작‘ and the columns to the points cl' "', cn of an (m, n)-tournament G A' where 

칸Cj is an arc of G A if and only if aij=l. Thus the 2m
η 

matrices of order mXn 

describe aII possible orientations of Km. n' Notice that the adjacency matrix of 

GA is 

’ 

o A 
B 0 
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where bij=1-aji· 

A matrix is acycUc if it does not have a permutation matrix of order 2 as a\ 

submatrix. A translormaUon of a matrix A is replacing it by another matrix 

which differs from A in exactly one entry. The order 01 cycUczïy of A , μ(A)， 

is the length of the shortest sequence of transformations needed to convert A: 

into an acyclic matrix. 

It is easy to see that every (m, n)-trounament which is not acyclic contains. 

a cycle of length four. Thus, G A is acyclic if and only if A is acyclic and for 

every A , μ(A)=μ(G A)' 

For every two natural numbers, m and n, we define 

μ(ηz ， n)=max μ(A) 
where the maximum is taken over all mxn matrices. Clearly. μ(m， n) is an 

upper bound for the order of cyclicity of all subgraphs of (m, n)-tournaments. 

In this paper we study the function μ(m， 끼 for various values of m and 

n. An upper bound is giγen is Section 3 following some simple observations. 
Some exact values of the function are given in Section 4. Two conjectures 

conclude the paper. 

2. SimpIe observations 

In the sequel we shall use the following relations: 
T 

(1) μ(A)=μ(A')=μCJ-A)=μCJA)=μ(PAQ) 

where J denotes a matrix of ones and P and Q are permutation matr Ïces of 

the appropriate orders. 
(2) μ(A B)는μ(A)+μ(B) 

(3) μ(m. n)=μ(n.m) 

(4) μ(m.l+n)는μ(m.l)+μ(m. n). 

The distance. d(A. B) between two mXn matrices A and B is the minima1 

number of transformations needed to convert A into B. Thus 
(5) μ(A)= mm d(A. B). 

B is acycI ic 

Let li denote the m-vector having ones in the first z' rows and zeros elsewhere. 

In particular. 10 is the zero vector. The lundamental distance of an m-vector 

c. Ø(c). is defined by 

(6) ￠(c) = min d(c,f). 
OSiS??Z v 

A matrix is in a lundamental lorm zf 
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j2>jl=추 A"는A" 
and 

i2>z.1 i AiI늘Aig· 

Etringer and J ackson [2] haγe shown that a matrix is acyclic if and only if 

it can be brought by permuting rows and columns into a fundamental form. 

This, (5) and (6) , yield the following formulas. 

THEOREM 1. Let ‘s!i' denote the set 01 mXn matrices and ? the set 01 permu­

tation matrices 01 order m. Then 

” (7) μ(A)= miI!. ..c’ Ø((PA)') 
PE.3" j=l 

and 
n 

μ(m， %] = max min ￡’ Ø((PA)'). 
AE‘J/ PE.ff' j=l 

3. An 11pper bound 

Let X; denote the family of mX k matrices which 왔 ) different co뻐mns， 
’ 

each ha ving co이lumn 

of cyclicity. We denote this number by ( 짧) 랩 and compute 랩. 
nt_ _~I 'H1 

It is enough to compute 일 for k드l ; J. where [x] denotes the largest in-

teger not greater than x, since ~~ =학;-k by (1). Let 했(i) denote the number 

of columns in any matrix in X; having fundamental distance equaI to i. Since 
m 

X~' is invariant under permutations and 야 (0 =0 for i> k. it follows that 

‘ ..• k … 
(8) ~ï/) 헐= glt따 (0. 

Obviously 

행(0)=1. 

To ca떠lct띠u빼1 

A B 
00 0-. 0 11 ... 1/. 

Clearly. AexXt-l and BεX~=~ and by induction 

(9) δ$(”=(캉)-c.씬1 zf i드k. 
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Su.bstitu.ting (9) in (8) we obtain 

쩔) 했=훤z'(i) -z{씩1 =k( 왔 니
 己과
 

l‘
F 

1 ‘ 
.?J 

m 
J /. 

Thus, 

(10) 햄=k-(짧)-l 월(?/ 
This formula implies, via straight computation. the mαlOtonicity of 했. 

namely, 

k<1뚱 ~s따1<닭· 

Thus max 앞=용 ”‘ • 
" -[흉] 

We denote this value by s(m) and c여npute it from (12). 

Consider two cases: 

(i) m=2r 

, , rm 
ι , • 

;=。 \1 
1 ("m (m - , ’ -

- 2 \“ \ 7 

(ii) m=2r十l

침(?)=웅싼2(~ 
1n both cases 

(11) 
m十 1 2m

-
1 

s(m)= "걷'--'='- - 1m 一

where 111/ is the largest binomial coefficient in (1 十 l)m. 

We observe in passing that 

S(2r약짜1)=융=lim 짧L 

Several values of S(m) are given in the following tableau: 
2345678 

1 2 7 14 38 76 187 
홍(m): τ τ τr 「:- 「:一 τr - -( 

"to state the result referred to in the tittle of the section. 

THEOREM 2. 

(12) μ(m， n)드min{n흥(m)， m웅(n)} 

‘ where 용ηz z's gz'ven z"n (ll). EquaUty z"n (12) holds zf and only zf n=O mod 1m or 

.m프o mod ι. 
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PROOF. By (3) it is enough to show that 

μ(m， n)드%용(m). 

Let A be an mXn matrix with column sums s1' …, S tJ' Then, by (7) 

(13) 

(14) 

% 

μ(A)=mi1! ζ’ rþ((PA)') 
l'E .!:l" j = 1 

= ε g 끊 ￠((PA)i) 
j=l PE‘!!p 1ι 

n m 

=침학드필 옹(m) 

131 

Equality in (14) exists if and only if for every j , 펀틱[ ? , -L- 껄 I r , 

t 

Equality in (13) holds if and only if ~ rþ((PAY) does not depend on !? 
j=l 

This completes the proof and the section. 

4. Sarne exact va]ues {])f μ(m， 찌 

THEOREM 3. 
(15) μ(1， n) =0 

μ(2， n) = I흉 

PROOF. Equation (15) is trivial and is incIuded for the sake of completeness. 

By Theorem 2, μ(2， n)드「흉-

The example 1 0 1 0 \ ! O l O l ---j demonstrates that μ(2， n)는 j 흉 I • 

COROLLARY. 

(16) μ(m， n)드min{μ(m-l， n)+μ(2， n), μ(m， n-l)+μ(m， 2)} 

THEOREM 4. 

μ(3， n) = I 좋% 

PROOF. By Theorem 2, μ(3， n)드| 좋싼. The converse follows from 



132 Abraham Berman and Anton Kolzig 

10 0' 

씨 o 1 0\=2, μ(3， 2)=1 and (4). 

o 0 11 

THEOREM 5. Let k be a nonnegaUve z'nteger. 

Then 

μ(4， 6k+l)=μ(3， 6k+ 1) +μ (2， 6k+ 1) =7k 

μ(4， 6k+2)=μ(3， 6k+2)+μ(2， 6k+2) =7k+2 

μ(4， 6k+3)=μ(3， 6k十3)+μ(2， 6k+3)-1=7k+2

μ(4， 6k+4)=μ(3， 6k+4)+μ(2， 6k+4) =7k+4 

μ(4， 6k+5)=μ(3， 6k+5)+μ(2， 6k+5)=7k+5 

μ(4， 6k+6)=μ(3， 6k+6)+μ(2， 6k+6)=7k+7 

PROOF. By (16), μ(4， n)드μ(2， n)+μ(3， 쩌， We first show that for n :;z!: 3, mod1 

6, one has equality. 

This is clear for n = 1 and 2 and 4, since 
1 0 1 0 

o 1 0 1 
μ\ 1 0 1 0 

o 1 0 1 

For n=6 we observe that 

=4 

1 1 1 000 

1 0 0 1 1 0 
μ1 。 1 0 1 0 1 

0 0 1 0 1 1 

/ 

/ 

1=7 

by Theorem 2. From this we deduce that μ(4， 5) =5, since 
μ(4， 6)드μ(4， 5)+μ(4， 2)~μ(4， 5)늘5 and μ(4， 5)드μ(2， 5)+μ(3， 5)=5. 

We proceed by induction on k : Let n=6k+b, b:;z!: 3. Then 

μ(4， n+6)르μ(4， n) 十μ(4 ， 6)=μ(4 ， n) 十7=μ(3， n)+μ(2， η)+7. 

μ(4， 12+6)드(3， n+6)+μ(2， n+6)=μ(3， n) +μ(2， 꺼 +7. Equality. 

For 1Z =6k+3 we first observe that 2=μ(4， 3)=μ(2， 3)+μ(3， 3)- 1. We show 

tha t in general. μ(4， 6k+3) <7k十 3. Suppose μ(4 ， 6k+3)=7k+3， Let A be a 4x 

(6k+3) matrix with μ(A)=7k十 3. The matrix A cannot have two columns 

with column sum 1 or 3 since in this case 

μ(A)드2+μ(4 ， 6k+l)=7k十2. 

By an homogenizing a row we mean replacing it bya row of zeros or a row 

of ones. Suppose now that A has a column πith a single zero [onel. One can 
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3k十 1 transforma-

one IS 

an 

homogenize the row containing this zero [one] , by at most 

tions. Thus, μ(A)드3k十1+μ(3， 6k+2)=7k+2. Thus all column sums of A are 2. 

Similarly all row sums are 3k+ 1 or 3k+2. By homogenizing 

left with. say, 3k+1 columns with sum=l and 3k+2 columns 

An easy calculation shows that μ(A) <7k+3 also in this case. 

Thus μ(4.6k+3)드7k十2. but 8ince μ(4， 6k+2)=7k十2. the inequa1ity 

equality. 

sum=2. 

18 

a row, 
with 

THEOREM 6. 

μ(5， 5)=6 

μ(5. 6)=7 

μ(6， 6.)=10 

μ(5.10)=14 

μ(5.9)=12 

(17) 

(18) 

(19) 

(20) 

(21) 

First (17). Let PROOF. 

1 

0 

O 

O 

0 

1 

0 1 0 

l 0 
0 1 

1 
0 

’4 

nU 

1A 

nU 

nU 

0 

1 

0 

0 
1 

A= 

Since all rows and columns play thesame role in .A. 

1 

0 
O 

O 

0 1 
1 0 

=6. 0 1 0 1 

1 0 1 

0 1 0 

O 

O 

μ(A)=2+μ 

We proceed to (18). 

μ(4.6)=7 >μ(5.6)늘Z 

μ(5.5)=6 >μ(5.6)<8. 

The proof that μ(5.6)놓8 involves a large number of case disti.nctions and wiIl 
be omìtted. 

Formula (19) follows from 

10=μ(2.6)+μ(5.6)는μ(6.6)늘μ+μ(4.6)=10 

Equation (20) follows from Theorem 2, The same theotem implies that μ(5.9) 

드12. But μ(5， 9) =11 contradicts (20), This proves (21) and completes the 
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proof of the theorem. 

5. Two conjectures. 

The following conjecture is true for n르4. 

CON]ECTURE 1. 

μ(m， n+lm)=μ(m， n)+lm 용(m). 

The paper is concluded with the following suggestion for n=5. 

CON]ECTURE 2. 

μ(5，lOk)=14k μ(5，lOk+1)=14k‘ μ(5， 10k+2)=14k+2 

μ(5，lOk+3)=14k+3 

μ(5，lOk+6)=14k+7 

μ(5，lOk+9)=14k+12. 

μ(5，lOk+4)=14k+5 

μ(5，lOk+7)=14k+9 

Technion, Israel Institute of 

Technology, Haifa, and 

Israel 

μ(5，lOk+5)=14k+6 

μ(5，lOk+8)=14k+1O 

Université deMontréal. 
Montréal, P. Q. 
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