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THE ORDER OF CYCLICITY OF BIPARTITE TOURNAMENTS
AND (0,1) MATRICES

1

By Abraham Berman” and Anton Kotzigz’

0. Abstract

A (0,1) matrix is acyclic if it does not have a permutation matrix of order
2 as a submatrix. A bipartite tournament is acyclic if and only if its adjacency
matrix is acyclic. The concepts of (maximal) order of cyclicity of a matrix
and a bipartite tournament are introduced and studied.

1. Introduction

All matrices of this paper are (0,1). All graphs are directed. We use the
graph-theory notation of [4] and the matrix-theory notation of [7].
The order of cyclicity, u(G), of a graph G, is the smallest number of arcs

which must be reversed in G in order to obtain an acyclic graph.
An (m, n)—(bipartite) tournament is an oriented graph G such that V(G)
=RUC, R={r;, =, 7 }, C={cy, -, ¢, and G has mn arcs, each incident

"
with a point in R and a point in C., In other words, an (m, #n)-tournament is
obtained by orientation of the complete bipartite graph K —

Cyclicity in ordinary tournaments was studied by Bermond [1], Erdos and
Moon (3], Jung [5], Kotzig [6] and Spencer [8]. Here we study the order of
cyclicity of (e, n)-tournaments.

There is a natural one to one correspondence between mXm matrices and

(m, ) tournaments. The rows of a matrix A correspond to the points 7, -,
7z, and the columns to the points ¢, -+, ¢, of an (m, n)-tournament G, where

7:C; is an arc of G, if and only if az-jzl. Thus the 2" matrices of order mX#n

describe all possible orientations of K, ,. Notice that the adjacency matrix of
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where bij=1—aﬁ.
A matrix is acyclic if it does not have a permutation matrix of order 2 as a
submatrix, A transformation of a matrix A is replacing it by another matrix:
which differs from A in exactly one entry. The order of cyclicity of A, u(4),
is the length of the shortest sequence of transformations needed to convert A:
into an acyclic matrix.
It is easy to see that évei‘y (m, n)-trounament which is not acyclic contains.

a cycle of length four. Thus, G, is acyclic if and only if 4 is acyclic and for
every A, [.t(A):ﬂ(GA).
For every two natural numbers, m and 7z, we define

u(m, n)=max p(A4)
where the maximum is taken over all mX#n matrices. Clearly, p(m, n) is an
upper bound for the order of cyclicity of all subgraphs of (m, z)-tournaments.

In this paper we study the function p(m, n) for various values of m and
n. An upper bound is given is Section 3 following some simple observations.
Some exact values of the function are given in Section 4. Two conjectures
conclude the paper.

2. Simple observations

In the sequel we shall use the following relations:

T
(1) n(A)=u(A )=pu(J - A =u(JA) =u(PAQ)
where ] denotes a matrix of ones and P and Q are permutation matrices of’
the appropriate orders.

(2) n(A B)=p(A)+ul(B)
(3) u(m, n) =p(n, m)
(4) pu(m, I +n)=>u(m, 1)+ u(m, n).

The distance, d(A, B) between two mXn matrices A and B is the minimal
number of transformations needed to convert A into B. Thus
(5) w(A)= min d(4, B).

B is acyclic
Let f, denote the m-vector having ones in the first 7 rows and zeros elsewhere.
In particular, f, is the zero vector. The fundamental distance of an m-vector
¢, ¢(c), is defined by

(6) d(c)= min d{cf,).
O0<e<m

A matrix is in a fundamental form if
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P> i => A= 4A"
and
iy, >t = A, zzﬁlZH

Etringer and Jackson [2] have shown that a matrix is acyclic if and only if

it can be brought by permuting rows and columns into a fundamental form.
This, (5) and (6), yield the following formulas.

THEOREM 1. Let & denote the set of mXn mairices and F the sel of permu-
tation matrices of order m. Then

(7) 1(A) = min Z’@f’((PA)J)

P=Z j=1
and

u(m, n) = max min Zgé((PA)’)

Ac¥ P=F j
3. An upper bound
Let X ?;: denote the family of mx(km) matrices which (gz) different columns,
each having column sum A, Clearly, all matrices in X f have the same order

of cyclicity. We denote this number by (zz) E:z and compute 5;:.

It is enough to compute E:z for kg[—?—;—] where [x] denotes the largest in-

teger not greater than x, since E’Z=§“$_ , by (1). Let ()‘f(z') denote the number

of columns in any matrix in Xm having fundamental distance equal to 7. Since

no.

X, 1s invariant under permutations and 5 (z)=0 for >4k, it follows that

), ( )E = 25 (@),
Obviously
5, (0)=L.

To calculate 0 j:(i) for 1<;<<pk, consider a matrix in X? of the form

A B
(00 eee O 11 ees 1>_

Clearly, A€X :’ ! and BEXm_l and by induction

(9) 0, O=(")-(;")
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Substituting (9) in (8) we obtain

) e ) i) o) (),

(10) () féj@)

This formula implies, via straight computation, the monotonicity of E’;.

namely,
m nm m
Thus max é?zé’ ™  We denote this value by £(m) and compute it from (12).
i
B
Consider two cases:
(1) m=2r

(i) m=2r+1

In both cases

w1 2

where [ is the largest binomial coefficient in (14+1)",

We observe in passing that

EQr)—EC@r—1)= % = Iim E-SZ")J

31— 00

Several values of £é(m) are given in the following tableau:
2 3 4 5 6 7 3

.1 2 7 14 38 76 187
ctm) i 3 6 10" 50" 35" 70

'to state the result referred to in the tittle of the section.

THEOREM 2.

(12) u(m, n)<min{nf(m), mé(n)}
where &, is given in (11). Equality in (12) holds if and only if n=0 mod / , 07
m=0 mod /,.
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PROOF. By (3) it is enough to show that

2
ulm, n)<n&(m). |
Let A be an mX# matrix with column sums s;, «+, s, Then, by (7)

1(A) ﬂ%@ E d((PAY)

1 7

(13) Sl =, $((PAY)
1 i
—jg zgﬁm! d((PA)")

(14) = "< 3 E(m)

: . . . . . m m
FEquality in (14) exists if and only if for every j, sje{[—z—-l —[——2—]}.

Equality in (13) holds if and only if _Z'l gé((PA)i) does not depend on Z.
J:

This completes the proof and the section.

4. Same exact values of u(m, 1)

THEOREM 3.
(15) u(1, #)=0

—| 7
n(2, ﬁ)—[ 5 ]
PROOF. Eguation (15) is trivial and is included for the sake of completeness.

By Theorem 2, u(2, n)g[—”—].

2
The example (é ? (1) (i) ) demonstrates that u(2, n)z[%].
COROLLARY.
(16) . uOm, w)<min{u(m—1, v)+p2, n), plm, n—1)+ulm, 2)}
THEOREM A4.

u(3, my=|-5n]

PROOF. By Theorem 2, u(3, ﬂ)_’g[%‘ﬁ] The converse follows from
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1 0 O
01=2, p(3, 2)=1 and (4).

ul 0 1

0 0 1/

THEOREM 5. Let k be a nonnegative integer.

Then

©1(4,6k4+1)=n(3,6k+1)+u(2,6~k+1)="7F

p(4, 6k+2)=u(3, 6k+2)+u(2,6k+2)=7k+2
p(4,6k+3)=p(3,6k+3)+u2,6~k+3)—1=T7Tk+2
pu(4, 6k+4)=u(3,6k+4)+u(2,6k+4)=7k+4
p(4,6k+5)=pn(3,6~k+5)+n(2,6~+5)=7k+5
p(4, 6k+6)=u(3, 6k+6)+un(2, 62+6)=Tk+7

PROOF. By (16), u(4,n)<u(2,n)+un(3,n), We first show that for ##3, mod

6, one has equality.

7

This i1s clear for #=1 and 2 and 4, since

For =6 we observe that

i

1
0
1
0

1
1
0

0

0
1
O
1

1
0
1

0

10\

0 1

10/
0 1

1 0 0 0
01 1 0
0 1 0 1

1 0 1 1

by Theorem 2. From this we deduce that u(4,5)=5, since

u(4,6)<u(4,5)+ul4,2)>u4,5)=>5 and (4, 5)<<u(2,5)+u(8,5)=5.
We proceed by induction on % : Let n=6k-+0, 0#3. Then

pn(d, n+-6)>=>uld, n) +pl4,6)=pl4, ) +7=u(3, n)+u(2, n)+7.

u(4, n4+6)<<(3,n

6)

u(2, 2+6)=u(3, n)+u(2, n)+17.

Equality.

For 7=6F+3 we first observe that 2=u(4,3)=un(2,3)+u(3,3)—1. We show
that in general. u(4,6k+3)<7k+3. Suppose u(4,6k+3)=7k+3. Let A be a 4X
(6k+3) matrix with p(A4)=7%k+3. The matrix A cannot have two columns
with column sum 1 or 3 since in this case

n(A)<2+u(4,6k+1)=T7k+2.

By an homogenizing a row we mean replacing it by a row of zeros or a row

of ones. Suppose now that A has a column with a single zero [one]. One can
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homogenize the row containing this zero [one], by at most 3%Z-+1 transforma-
tions. Thus, u(A)<<3k+1+u(3,6k+2)=7k+2. Thus all column sums of A4 are 2.
Similarly all row sums are 32+1 or 3k+2. By homogenizing a row, one is
left with, say, 3%-1 columns with sum=1 end 3%k42 columns with sum=2.

An easy calculation shows that u(A)<7k£+43 also in this case.
Thus «(4, 652+3)<7k+2, but since u(4,6k+2)=7k+2. the inequality is an
equality.

THEOREM 6.

(17) ©(5,5)=6
(18) 1(5,6)=7
(19) ©(6, 6)=10
(20) ©(5,10)=14
(21) ©(5,9)=12

PROOF., First (17). Let

0 1 0 01
/1 O 1 0 O\
A= 0 1 0 1 O
0 0 1 0 1/
\1 001 0
Since all rows and columns play the same role in 4,
1 0 0 1
0100
w(A)=2+p¢] 1 0 1 0 |=6,
0 1 0 1 /
O 01 O

We proceed to (18).
1(4,6)=T—u(5,6)>7.
1(5, 5) =6—>u(5, 6)<8.
The proof that u(5,6)38 involves a large number of case distinctions and will
be omitted.
Formula (19) follows from
10=u(2,6)+u(5,6)>u(6,6)=>u-+u4, 6)=10
Equation (20) follows from Theorem 2, The same theorem implies that u(5, 9)
<12, But u(5,9)=11 contradicts (20). This proves (21) and completes the
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proof of the theorem.
9. T'wo conjectures.

The following conjecture is true for #<4.
CONJECTURE 1.

uCm, n+1 D=p(m,n)+1_ E(m).

The paper is concluded with the following suggestion for n=>5.

CONJECTURE 2.

u(5, 10k) =14k~ u(5, 10k+1) =14~ u(5, 102+2)=14% 12
1(5, 10k+3) =14%-3 1(5, 10k+4)=14k+5 1(5, 10k +5) =14k +6
u(5, 10E+6)=14k+7 u(5, 102+7)=14£+9 u(5, 105+8) =14k-+10

©(5, 10k+9) =14%--12.
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