THE ORDER OF CYCLICITY OF BIPARTITE TOURNAMENTS AND (0, 1) MATRICES

By Abraham Berman ${ }^{1,}$ and Anton Kotzig ${ }^{2,}$

0. Abstract

A (0,1) matrix is acyclic if it does not have a permutation matrix of order 2 as a submatrix. A bipartite tournament is acyclic if and only if its adjacency matrix is acyclic. The concepts of (maximal) order of cyclicity of a matrix and a bipartite tournament are introduced and studied.

1. Introduction

All matrices of this paper are (0,1). All graphs are directed. We use the graph-theory notation of [4] and the matrix-theory notation of [7].

The order of cyclicity, $\mu(G)$, of a graph G, is the smallest number of arcs which must be reversed in G in order to obtain an acyclic graph.

An (m, n)-(bipartite) tontrnament is an oriented graph G such that $V(G)$ $=R \cup C, R=\left\{r_{1}, \cdots, r_{m}\right\}, C=\left\{c_{1}, \cdots, c_{n}\right\}$ and G has $m n$ arcs, each incident with a point in R and a point in C. In other words, an (m, n)-tournament is obtained by orientation of the complete bipartite graph $K_{m, n}$.

Cyclicity in ordinary tournaments was studied by Bermond [1], Erdös and Moon [3], Jung [5], Kotzig [6] and Spencer [8]. Here we study the order of cyclicity of (m, n)-tournaments.

There is a natural one to one correspondence between $m \times n$ matrices and (m, n) tournaments. The rows of a matrix A correspond to the points r_{1}, \cdots, r_{m} and the columns to the points c_{1}, \cdots, c_{n} of an (m, n)-tournament G_{A}, where $r_{i} c_{j}$ is an arc of G_{A} if and only if $a_{i j}=1$. Thus the $2^{m n}$ matrices of order $m \times n$ describe all possible orientations of $K_{m, n}$. Notice that the adjacency matrix of G_{A} is

$$
\left(\begin{array}{cc}
0 & A \\
B & 0
\end{array}\right)
$$

1. The research was carried out during a visit at the Centre de recherches mathématiques. 2. The research was supported by Grant DGES-FCAC-75.
where $b_{i j}=1-a_{j i}$.
A matrix is acyclic if it does not have a permutation matrix of order 2 as a submatrix. A transformation of a matrix A is replacing it by another matrix which differs from A in exactly one entry. The order of cyclicity of $A, \mu(A)$, is the length of the shortest sequence of transformations needed to convert A into an acyclic matrix.

It is easy to see that every (m, n)-trounament which is not acyclic contains a cycle of length four. Thus, G_{A} is acyclic if and only if A is acyclic and for every $A, \mu(A)=\mu\left(G_{A}\right)$.

For every two natural numbers, m and n, we define

$$
\mu(m, n)=\max \mu(A)
$$

where the maximum is taken over all $m \times n$ matrices. Clearly, $\mu(m, n)$ is an upper bound for the order of cyclicity of all subgraphs of (m, n)-tournaments.

In this paper we study the function $\mu(m, n)$ for various values of m and n. An upper bound is given is Section 3 following some simple observations. Some exact values of the function are given in Section 4. Two conjectures conclude the paper.

2. Simple observations

In the sequel we shall use the following relations:

$$
\begin{equation*}
\mu(A)=\mu\left(A^{T}\right)=\mu(J-A)=\mu(J A)=\mu(P A Q) \tag{1}
\end{equation*}
$$

where J denotes a matrix of ones and P and Q are permutation matrices of the appropriate orders.

$$
\begin{gather*}
\mu(A B) \geq \mu(A)+\mu(B) \tag{2}\\
\mu(m, n)=\mu(n, m) \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
\mu(m, l+n) \geq \mu(m, l)+\mu(m, n) . \tag{4}
\end{equation*}
$$

The distance, $d(A, B)$ between two $m \times n$ matrices A and B is the minimal number of transformations needed to convert A into B. Thus

$$
\begin{equation*}
\mu(A)=\min _{B \text { is acyclic }} d(A, B) . \tag{5}
\end{equation*}
$$

Let f_{i} denote the m-vector having ones in the first i rows and zeros elsewhere.
In particular, f_{0} is the zero vector. The fundamental distance of an m-vector $c, \phi(c)$, is defined by

$$
\begin{equation*}
\phi(c)=\min _{0 \leq i \leq m} d\left(c, f_{i}\right) . \tag{6}
\end{equation*}
$$

A matrix is in a fundamental form if

$$
j_{2}>j_{1} \Rightarrow A^{j_{1}} \geq A^{j_{2}}
$$

and

$$
i_{2}>i_{1} \Longrightarrow A_{i_{1}} \geq A_{i_{2}}
$$

Etringer and Jackson [2] have shown that a matrix is acyclic if and only if it can be brought by permuting rows and columns into a fundamental form. This, (5) and (6), yield the following formulas.

THEOREM 1. Let \mathscr{A} denote the set of $m \times n$ matrices and \mathscr{P} the set of permutation matrices of order m. Then

$$
\begin{equation*}
\mu(A)=\min _{P \in \mathscr{F}} \sum_{j=1}^{n} \phi\left((P A)^{j}\right) \tag{7}
\end{equation*}
$$

and

$$
\mu(m, n)=\max _{A \in \mathscr{A}} \min _{P \in \mathscr{P}} \sum_{j=1}^{n} \phi\left((P A)^{j}\right) .
$$

3. An upper bound

Let X_{k}^{m} denote the family of $m \times\binom{ m}{k}$ matrices which $\binom{m}{k}$ different columns, each having column sum k. Clearly, all matrices in X_{k}^{m} have the same order of cyclicity. We denote this number by $\binom{m}{k} \xi_{k}^{m}$ and compute ξ_{k}^{m}.

It is enough to compute ξ_{k}^{m} for $k \leq\left[\frac{m}{2}\right]$, where $[x]$ denotes the largest integer not greater than x, since $\xi_{k}^{m}=\xi_{m-k}^{m}$ by (1). Let $\delta_{k}^{m}(i)$ denote the number of columns in any matrix in X_{k}^{m} having fundamental distance equal to i. Since X_{k}^{m} is invariant under permutations and $\delta_{k}^{m}(i)=0$ for $i>k$, it follows that

$$
\begin{equation*}
\binom{m}{k} \xi_{k}^{m}=\sum_{i=1}^{k} i \delta_{k}^{m}(i) . \tag{8}
\end{equation*}
$$

Obviously

$$
\delta_{k}^{m}(0)=1
$$

To calculate $\delta_{k}^{m}(i)$ for $1 \leq i \leq k$, consider a matrix in X_{k}^{m} of the form

$$
\left(\begin{array}{ccccc}
A & & B \\
00 & \cdots & 0 & 11 & \cdots
\end{array}\right)
$$

Clearly, $A \in X_{k}^{m-1}$ and $B \in X_{k-1}^{m-1}$ and by induction

$$
\begin{equation*}
\delta_{k}^{m}(i)=\binom{m}{i}-\binom{m}{i-1} \text { if } i \leq k . \tag{9}
\end{equation*}
$$

Substituting (9) in (8) we obtain

$$
\binom{m}{k} \xi_{k}^{m}=\sum_{i=1}^{k}\left[i\binom{m}{i}-i\binom{m}{i-1}\right]=k\binom{m}{k}-\sum_{j=0}^{k-1}\binom{m}{j} .
$$

Thus,

$$
\left.\xi_{k}^{m}=k-\binom{m}{k} \sum_{j=u}^{-1} \begin{array}{c}
k-1 \tag{10}\\
\sum_{j}
\end{array}\right) .
$$

This formula implies, via straight computation, the monotonicity of ξ_{k}^{m}, namely,

$$
k<\left[\frac{m}{2}\right] \Longrightarrow \xi_{k-1}^{m}<\xi_{k}^{m} .
$$

Thus $\max \xi_{k}^{n}=\xi^{m}\left[\frac{m}{2}\right]^{m}$. We denote this value by $\xi(m)$ and compate it from (12).
Consider two cases:
(i) $m=2 r$

$$
\sum_{j=0}^{r-1}\binom{m}{j}=\frac{1}{2}\left(2^{m}-\binom{m}{r}\right)
$$

(ii) $m=2 r+1$

$$
\sum_{j=0}^{r-1}\binom{m}{j}=\frac{1}{2}\left(2^{m}-2\binom{m}{r}\right)
$$

In both cases

$$
\begin{equation*}
\xi(m)=\frac{m+1}{2}-\frac{2^{m-1}}{l_{m}} \tag{11}
\end{equation*}
$$

where l_{m} is the largest binomial coefficient in $(1+1)^{m}$.
We observe in passing that

$$
\xi(2 r)-\xi(2 r-1)=\frac{1}{2}=\lim _{m \rightarrow \infty} \frac{\xi(m)}{m}
$$

Several values of $\xi(m)$ are given in the following tableau:

$$
\begin{array}{cccccccc}
: & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\xi(m): & \frac{1}{2} & \frac{2}{3} & \frac{7}{6} & \frac{14}{10} & \frac{38}{20} & \frac{76}{35} & \frac{187}{70}
\end{array}
$$

to state the result referred to in the tittle of the section.
THEOREM 2.

$$
\begin{equation*}
\mu(m, n) \leq \min \{n \xi(m), m \xi(n)\} \tag{12}
\end{equation*}
$$

where ξ_{m} is given in (11). Equality in (12) holds if and only if $n \equiv 0 \bmod l_{m}$ or $m \equiv 0 \bmod l_{n}$.

PROOF. By (3) it is enough to show that

$$
\mu(m, n) \leq n \xi(m)
$$

Let A be an $m \times n$ matrix with column sums s_{1}, \cdots, s_{n}. Then, by (7)

$$
\begin{equation*}
\mu(A)=\min _{P \in \mathscr{O}} \sum_{j=1}^{n} \phi\left((P A)^{j}\right) \tag{13}
\end{equation*}
$$

Equality in (14) exists if and only if for every $j, s_{j} \in\left\{\left[\frac{m}{2}\right],-\left[-\frac{m}{2}\right]\right\}$. Equality in (13) holds if and only if $\sum_{j=1}^{n} \phi\left((P A)^{i}\right)$ does not depend on \mathscr{P}. This completes the proof and the section.
4. Same exact values of $\mu(m, n)$

THEOREM 3.

(15)

$$
\begin{aligned}
& \mu(1, n)=0 \\
& \mu(2, n)=\left[\frac{n}{2}\right]
\end{aligned}
$$

PROOF. Equation (15) is trivial and is included for the sake of completeness.
By Theorem 2, $\mu(2, n) \leq\left[\frac{n}{2}\right]$.
The example $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & \ldots \\ 0 & 1 & 0 & 1 & \cdots\end{array}\right)$ demonstrates that $\mu(2, n) \geq\left[\frac{n}{2}\right]$.
COROLLARY.
(16)

$$
\mu(m, n) \leq \min \{\mu(m-1, n)+\mu(2, n), \mu(m, n-1)+\mu(m, 2)\}
$$

THEOREM 4.

$$
\mu(3, n)=\left[\frac{2}{3} n\right]
$$

PROOF. By Theorem 2, $\mu(3, n) \leq\left[\frac{2}{3}\{n]\right.$. The converse follows from

$$
\mu\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=2, \mu(3,2)=1 \text { and (4). }
$$

THEOREM 5. Let k be a nonnegative integer.

Then

$$
\begin{aligned}
& \mu(4,6 k+1)=\mu(3,6 k+1)+\mu(2,6 k+1)=7 k \\
& \mu(4,6 k+2)=\mu(3,6 k+2)+\mu(2,6 k+2)=7 k+2 \\
& \mu(4,6 k+3)=\mu(3,6 k+3)+\mu(2,6 k+3)-1=7 k+2 \\
& \mu(4,6 k+4)=\mu(3,6 k+4)+\mu(2,6 k+4)=7 k+4 \\
& \mu(4,6 k+5)=\mu(3,6 k+5)+\mu(2,6 k+5)=7 k+5 \\
& \mu(4,6 k+6)=\mu(3,6 k+6)+\mu(2,6 k+6)=7 k+7
\end{aligned}
$$

PROOF. By (16), $\mu(4, n) \leq \mu(2, n)+\mu(3, n)$, We first show that for $n \neq 3$, mod 6 , one has equality.

This is clear for $n=1$ and 2 and 4 , since

$$
\mu\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)=4
$$

For $n=6$ we observe that

$$
\mu\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)=7
$$

by Theorem 2. From this we deduce that $\mu(4,5)=5$, since

$$
\mu(4,6) \leq \mu(4,5)+\mu(4,2) \Rightarrow \mu(4,5) \geq 5 \text { and } \mu(4,5) \leq \mu(2,5)+\mu(3,5)=5
$$

We proceed by induction on $k:$ Let $n=6 k+b, b \neq 3$. Then

$$
\begin{aligned}
& \mu(4, n+6) \geq \mu(4, n)+\mu(4,6)=\mu(4, n)+7=\mu(3, n)+\mu(2, n)+7 . \\
& \mu(4, n+6) \leq(3, n+6)+\mu(2, n+6)=\mu(3, n)+\mu(2, n)+7 . \text { Equality. }
\end{aligned}
$$

For $n=6 k+3$ we first observe that $2=\mu(4,3)=\mu(2,3)+\mu(3,3)-1$. We show that in general. $\mu(4,6 k+3)<7 k+3$. Suppose $\mu(4,6 k+3)=7 k+3$. Let A be a $4 \times$ $(6 k+3)$ matrix with $\mu(A)=7 k+3$. The matrix A cannot have two columns with column sum 1 or 3 since in this case

$$
\mu(A) \leq 2+\mu(4,6 k+1)=7 k+2 .
$$

By an homogenizing a row we mean replacing it by a row of zeros or a row of ones. Suppose now that A has a column with a single zero [one]. One can
homogenize the row containing this zero [one], by at most $3 k+1$ transformations. Thus, $\mu(A) \leq 3 k+1+\mu(3,6 k+2)=7 k+2$. Thus all column sums of A are 2. Similarly all row sums are $3 k+1$ or $3 k+2$. By homogenizing a row, one is left with, say, $3 k+1$ columns with sum $=1$ and $3 k+2$ columns with sum=2. An easy calculation shows that $\mu(A)<7 k+3$ also in this case.

Thus $\mu(4,6 k+3) \leq 7 k+2$, but since $\mu(4,6 k+2)=7 k+2$. the inequality is an equality.

THEOREM 6.

$$
\begin{align*}
& \mu(5,5)=6 \\
& \mu(5,6)=7 \tag{18}\\
& \mu(6,6)=10 \\
& \mu(5,10)=14 \\
& \mu(5,9)=12
\end{align*}
$$

(20)
(21)

PROOF. First (17). Let

$$
A=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Since all rows and columns play the same role in A,

$$
\mu(A)=2+\mu\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=6
$$

We proceed to (18).

$$
\begin{aligned}
& \mu(4,6)=7 \Longrightarrow \mu(5,6) \geq 7 . \\
& \mu(5,5)=6 \Longrightarrow \mu(5,6) \leq 8 .
\end{aligned}
$$

The proof that $\mu(5,6) \neq 8$ involves a large number of case distinctions and will be omitted.

Formula (19) follows from

$$
10=\mu(2,6)+\mu(5,6) \geq \mu(6,6) \geq \mu+\mu(4,6)=10
$$

Equation (20) follows from Theorem 2. The same theorem implies that $\mu(5,9)$ ≤ 12. But $\mu(5,9)=11$ contradicts (20). This proves (21) and completes the
proof of the theorem.

5. Two conjectures.

The following conjecture is true for $n \leq 4$.
CONJECTURE 1.

$$
\mu\left(m, n+l_{m}\right)=\mu(m, n)+l_{m} \xi(m) .
$$

The paper is concluded with the following suggestion for $n=5$.
CONJECTURE 2.

$$
\begin{array}{lll}
\mu(5,10 k)=14 k & \mu(5,10 k+1)=14 k & \mu(5,10 k+2)=14 k+2 \\
\mu(5,10 k+3)=14 k+3 & \mu(5,10 k+4)=14 k+5 & \mu(5,10 k+5)=14 k+6 \\
\mu(5,10 k+6)=14 k+7 & \mu(5,10 k+7)=14 k+9 & \mu(5,10 k+8)=14 k+10 \\
\mu(5,10 k+9)=14 k+12 . & &
\end{array}
$$

Technion, Israel Institute of Technology, Haifa, Israel

Université de Montréal;
and Montréal, P.Q.
Canada

REFERENCES

[1] J.C. Bermond, The circuit-hypergraph of a tournament, Colloquia Mathematica Societatis Janos Bolyai 10. Infinite and finite sets, Keszthely (Hungary) 1973.
[2] R.C. Entringer and D.E. Jackson, Matrices permutable to *matrices, J. of Comb. Th. 11, 303-306, (1971).
[3] P. Erdös and J.W. Moon, On sets of consistent arcs in a tournament. Canad. Math. Bull. 8, 269-271, (1965).
[4] F. Harary, Graph Theory, Addison Wesley, Reading, 1969.
[5] H. A. Jung, On subgrphs without cycles in a tournament. Combinational Theory and its Applications, II, (Proc. Colloq., Balatonfüred 1969), pp. 675-677. North Holland, Amsterdam, 1970.
[6] A. Kotzig, On the maximal order of cyclicity of antisymmetric directed graphs, Disc. Math. 12, 17-25. (1975).
[7] M. Marcus and H. Minc, Survey of Matrix Theory and Matrix Inequalities, Pundle, Weber and Schmidt, Boston, 1964.
[8] J. Spencer, Optimal ranking of tournaments Networks 1, 135-138, (1971-72).

