Kyungpook Math. J. Volume 19, Number 1 June, 1979

BANACH *-ALGEBRA VALUED INNER PRODUCTS

By Younki Chae and Ilbong Jung

1. Introduction

W.L. Paschke [2] investigated right modules over B^* -algebra B which possess a B-valued inner product respecting the module mapping. J.G. Bennett [1] studied properties of vector spaces equipped with B^* -algebra valued inner products. In this paper, we will be obtained some properties of vector spaces equipped with Banach *-algebra valued inner products.

2. Notation and Preliminaries

A Banach algebra A with an involution * satisfying $||a^*|| = ||a||$ for all $a \in A$ will be called a *Banach* *-algebra. Throughout this paper, A denotes a Banach *-algebra with a multiple identity e and X denotes a complex linear space. Ais reduced if $\{a \in A | f(a^*a) = 0 \text{ for all positive functionals } f \text{ on } A\} = \{0\}$. B^* algebras are reduced. A is symmetric if the inverse $(e+a^*a)^{-1}$ exists in A for all $a \in A$. A is symmetric if and only if $-a^*a$ is quasi-regular in A for all $a \in A$. If A is reduced, then A is symmetric ([3] Corollary, p266, and \mathbb{I} Pro-

position, p. 303). All algebras and linear spaces are those over the complex field \mathcal{Q} . It is assumed that all algebras possess a multiple identity e.

3. A-valued inner product spaces

DEFINITION 3.1. X will be called an A-valued inner product space if it is equipped with a map $\langle \cdot, \cdot \rangle : X \times X \longrightarrow A$ such that

(i)
$$\langle \cdot, \cdot \rangle$$
 is linear in the first entry,

(ii) $\langle x, x \rangle \ge 0$, i.e. $\langle x, x \rangle$ is a positive element of A, for all $x \in X$,

(iii)
$$\langle x, y \rangle = \langle y, x \rangle^*$$
, for all $x, y \in X$.

6

The map $\langle \cdot, \cdot \rangle$ is an A-valued inner product on X_c

Suppose J is a *-subalgebra of a symmetric Banach *-algebra A and define $\langle x, y \rangle = y^*x$ for $x, y \in J$. Then J is an A-valued inner product space. Suppose J is a *-subalgebra of a *-algebra A, B is a Banach *-algebra, and $\Phi: A \longrightarrow B$ is a positive operator (i.e. Φ is linear and $\Phi(a^*a) \ge 0$, for all $a \in A$) with $\Phi(a^*)$

Younki Chae and Ilbong Jung

 $=\Phi(a)^*$, for all $a \in A$. Define $\langle a, b \rangle = \Phi(b^*a)$ for $a, b \in J$. Then J is a B-valued inner product space. Otherwheres, examples of such objects are numerous. A-valued inner product $\langle \cdot, \cdot \rangle$ is a conjugate linear in the second entry. The conditions of A-valued inner product space are independent of each other. An A-valued inner product space X will be called definite if $\langle x, x \rangle = 0$ only if x=0. In general, A-valued inner product spaces are not necessarily definite.

Hence we may consider the following proposition.

PROPOSITION 3.2. Suppose A is reduced and X is an A-valued inner product space. Let N be the set of elements x in X such that $\langle x, x \rangle = 0$. Then N is the linear subspace of X, and the quotient space X/N forms a definite A-valued inner product space.

PROOF. Let f be a positive functional on A. A map $(x, y) \longrightarrow f(\langle x, y \rangle)$ defines a pseudo-inner product on X. By Cauchy Schwarz-inequality, $f(\langle x+y, x+y \rangle)=0$, for $x, y \in N$. Since A is reduced, $\langle x+y, x+y \rangle=0$, for $x, y \in N$. Hence N is a linear subspace of X. Define $\langle x+N, y+N \rangle = \langle x, y \rangle$, for x, $y \in N$. Then $\langle \cdot, \cdot \rangle$ is well-defined, and it is a definite A-valued inner product.

Let X be a complex linear space φ^2 with coordinate vector operations. Let A be the algebra of all matrices of the form

$$|\alpha, \beta\rangle$$

$0, \alpha$

with $\alpha \in \mathcal{C}$, $\beta \in \mathcal{C}$. Define

70

$$\left\| \begin{pmatrix} \alpha & , & \beta \\ 0 & , & \alpha \end{pmatrix} \right\| = |\alpha| + |\beta| \text{ and } \begin{pmatrix} \alpha & , & \beta \\ 0 & , & \alpha \end{pmatrix}^* = \begin{pmatrix} \overline{\alpha} & , & \overline{\beta} \\ 0 & , & \overline{\alpha} \end{pmatrix}^.$$

Then it is well-known that A is a Banach *-algebra. It is easy to show that A is not reduced. Define

$$< (\alpha_1, \beta_1), (\alpha_2, \beta_2) > = \begin{pmatrix} 0, \alpha_1 \overline{\beta}_2 + \beta_1 \overline{\alpha}_2 \\ 0, 0 \end{pmatrix}$$

Then X is an A-valued inner product space. We can take x, $y \in N$ with $x+y \notin N$. Thus the hypothesis in 3.2. Proposition, that A is reduced, is essential.

Suppose X is an A-valued inner product space. Let P_A be the set of all positive functionals f on A such that $f(e) \leq 1$. Define

$$\|x\|_{X} = \sup f(\langle x, x \rangle)^{\frac{1}{2}}, f \in P_{A}.$$

Banach *-Algebra Valued Inner Products 71

12

For $f \in P_A$, $x \longrightarrow f(\langle x, x \rangle)^{\frac{1}{2}}$ is a semi-norm on X. Hence $\|\cdot\|_X$ is a semi-norm on X. When A is reduced and $\langle \cdot, \cdot \rangle$ is definite, $\|\cdot\|_X$ is a norm on X.

Define $||x||_{*} = || < x, x > ||^{\frac{1}{2}}$. Then $|| \cdot ||_{*}$ is not always a semi-norm on X. If A is a symmetric Banach *-algebra, then $||x||_{X} \le ||x||_{*}$. If A is a B*-algebra, then $||x||_{X} = ||x||_{*}$.

PROPOSITION 3.3. Suppose A is a symmetric Banach *-algebra, and X is an A-valued inner product space.

(i) Assume that $||a||^2 = ||a^2||$, for all $a \in A$. Then $|| < x, y > || \le ||x||_X ||y||_X$, for all $x, y \in X$. In particular, $||x||_X = ||x||_*$, for all $x \in X$.

(ii) Assume that A is reduced. Then $\langle x, y \rangle \ge \langle y, x \rangle$ if and only if $f(\langle x, y \rangle) \le ||x||_X ||y||_X$, for all $f \in P_A$.

PROOF. (i)Let x, y be elements of X. By Schwarz-inequality, $|f(\langle x, y \rangle)|^2 \leq f(\langle x, x \rangle) f(\langle y, y \rangle) \leq ||x||_X^2 ||y||_X^2$, for all $f \in P_A$. Hence $|f(\langle x, y \rangle)| \leq ||x||_X$ $||y||_X$, for all $f \in P_A$. Since A is commutative ([6], p262) by ([3] Corollary 4, p308), $\lim ||\langle x, y \rangle^n ||^{1/n} = \sup f(\langle x, y \rangle)$, where the supremum is taken over all indecomposable normalized positive functionals f. By the hypothesis, $||\langle x, y \rangle| = \lim ||\langle x, y \rangle^{2^*} ||^{1/2^*} = \lim ||\langle x, y \rangle^n ||^{1/n} \leq ||x||_X ||y||_X$.

(ii) The proof is obvious.

REMARKS 3.4. (1) 3.3 Proposition (i) is not true if A fails to be the condition that $||x||^2 = ||x^2||$, for all $x \in A$.

(2) 3.3 Proposition (ii) is not true if the condition that A is reduced, is omitted.

4. A-valued inner product modules

DEFINITION. 4.1. An A-valued inner product space X will be called an A-valued inner product module if it is a right A-module satisfying

 $\langle xa, y \rangle = \langle x, y \rangle a$, for all $x, y \in X$, $a \in A$.

W. L. Paschke [2] proved the following propositions for the B^* -algebra valued inner product modules (pre-Hilbert B-modules). In this section, we consider them in A-valued inner product modules X.

PROPOSITION. 4.2. Suppose A is a commutative Banach *-algebra and X is an A-valued inner product module. Then $||xa||_X \leq ||x||_X ||a||$, for all $x \in X$, $a \in A$.

Younki Chae and Ilbong Jung

PROOF. Let a be an element of A. For $f \in P_A$, let φ be a positive functional on A defined by $\varphi(z) = f(a^*za)$. Since $\varphi(b^*b) \leq ||b^*b||\varphi(e)$ for all $b \in A$, $f(a^*b^*ba)$ $\leq \|b^*b\|f(a^*a)$, for all $b \in A$. Since A is commutative, it is easy to show that $||xa||_X \leq ||a|| ||x||_X$, for all $x \in X$, $a \in A$.

Let B be a symmetric Banach *-algebra. Then $||b*b||e-b*b\geq 0$, for all $b\in B$.

By ([1], p6), we have

72

PROPOSITION 4.3. Suppose B is a symmetric Banach *-algebra, and X is an A-valued inner product space. Then a left-module action of B on X satisfying $\langle bx, y \rangle = \langle x, b^*y \rangle$ for all x, $y \in X$, $b \in B$ has properties that (i) $\langle bx, bx \rangle \leq ||b||^2 \langle x, x \rangle$, for all $x \in X$, $b \in B$, and (ii) $||bx||_X \le ||b|| ||x||_X$, for all $x \in X$, $b \in B$.

PROPOSITION. 4.4. Suppose A is a reduced Banach *-algebra and B is a closed *-subalgebra of A. If $T: B \rightarrow A$ is a linear map such that for some $K \ge 0$, we have $T(x)^*T(x) \leq Kx^*x$, for all $x \in B$. Then T(x) = T(e)x, for all $x \in B$.

PROOF. Define $T_0: B \longrightarrow A$ by $T_0(x) = \{1/2(K + ||T(e)||^2)\}^{\frac{1}{2}} (T(x) - T(e)x).$ Then $T_0(e)=0$. Easy computations show that $T_0(x)^*T_0(x) \le x^*x$. Define a pseudonorm on A as following

$$|x| = \sup f(x^*x), f \in P_A$$

Since A is reduced, A is an A*-algebra with |x| as an auxiliary norm ([4], Corollary 4.6.10, p226). Let \overline{A} be a completion of A by $|\cdot|$. Then \overline{A} is a B^* algebra. Let \overline{B} be a closure of B in \overline{A} . Then \overline{B} is a closed *-subalgebra of \overline{A} . Since $|T(x)| \leq K|x|$, T is a bounded operator w.r.t. $|\cdot|$ and T_0 is a bounded operator w.r.t. $|\cdot|$. Indeed, there exists k > 0 such that $|T_0(x)| \le k|x|$, for all $x \in B$. By ([5], 17 Theorem, p23), there exists an extension bounded operator $\overline{T}_0: \overline{B} \longrightarrow \overline{A}$ of T_0 . Since \overline{T}_0 is continuous, $\overline{T}_0(x) * \overline{T}_0(x) \le x * x$, for all $x \in \overline{B}$. By ([2], 2.7 Proposition), $\overline{T}_0(x) = \overline{T}_0(e)x$, for all $x \in \overline{B}$. Since $T_0(e) = 0$, T(x) = T(e)x, for all $x \in B$.

LEMMA 4.5. Suppose A is a symmetric and X is an A-valued inner product module. Then $\langle y, x \rangle \langle x, y \rangle \leq || \langle y, y \rangle || \langle x, x \rangle$, for all $x, y \in X$.

Suppose A is a reduced Banach *-algebra, B is a closed *-subalgebra of A, $(X, \langle \cdot, \cdot \rangle_B)$, is a B-valued inner product module, and $(Y, \langle \cdot, \cdot \rangle_A)$, is a defin-

•

Banach *-Algebra Valued Inner Products 73

ite A-valued inner product module. Then, by 4.4 Proposition, 4.5 Lemma, and ([2], 2.8 Proposition), we have

PROPOSITION 4.6. If $T: X \longrightarrow Y$ is a linear map such that $\langle Tx, Tx \rangle_A \leq \langle x, X \rangle_A$

x > B, for all $x \in X$. Then T is a bounded module map.

Suppose A is reduced, B is a closed *-subalgebra of A, $(X, < \cdot, \cdot >_B)$, is a B-valued inner product module, $(Y, < \cdot, \cdot >_A)$, is an A-valued inner product mo-

dule, and $T: X \longrightarrow Y$ is a linear map such that $\langle Tx, Tx \rangle_A \leq \langle x, x \rangle_B$, for all $x \in X$. Assume that there exists a nonzero element $\hat{\xi}$ of X such that $\langle T\hat{\xi}, T\hat{\xi} \rangle_A = \langle \hat{\xi}, \hat{\xi} \rangle_B$. Then we may be claimed that $\langle Tx, T\hat{\xi} \rangle_A = \langle x, \hat{\xi} \rangle_B$, for all $x \in X$. Let x be an element of X and t be any real number. Then we have $t(\langle T\hat{\xi}, Tx \rangle_A + \langle Tx, T\hat{\xi} \rangle_A) - t(\langle \hat{\xi}, x \rangle_B + \langle x, \hat{\xi} \rangle_B) \leq \langle x, x \rangle_B - \langle Tx, Tx \rangle_A$. Since t is arbitrary, $\langle T\hat{\xi}, Tx \rangle_A + \langle Tx, T\hat{\xi} \rangle_A = \langle \hat{\xi}, x \rangle_B + \langle x, \hat{\xi} \rangle_B$. It follows that $\langle Tx, T\hat{\xi} \rangle_A = \langle x, \hat{\xi} \rangle_B$. Let f be an element of P_B . Then X/N_f is a pre-Hilbert space with an inner product $(x+N_f, y+N_f)=f(\langle x, y \rangle_B)$, where $N_f = \{x \in X | f(\langle x, x \rangle_B) = 0\}$. Let $(H_f, \|\cdot\|_f)$ be a completion of X/N_f . Define $X+N_f \longrightarrow f(\langle x, \hat{\xi} \rangle_B)$ is a well-defined linear functional on X/N_f . Since $|f(\langle x, \hat{\xi} \rangle_B)| \leq \|x+N_f\|_f \|\hat{\xi}+N_f\|_f$, there exists $T_{(f,\hat{\xi})} \in H_f$ such that $f(\langle x, \hat{\xi} \rangle_B)$ $=(x+N_f, T_{(f,\hat{\xi})})$ and $\|T_{(f,\hat{\xi})}\|_f \leq \|\hat{\xi}+N_f\|_f$. Let $\hat{y}_f = y+N_f$. Suppose $g \in P_B$ such that $|g(x)| \leq |f(x)|$, for all $x \in B$. Since $N_f \subset N_g$, $x+N_f \longrightarrow x+N_g$ of X/N_f into X/N_g is a contractive map and extends a contractive map $V_{(f,g,\hat{\xi})}$ of H_f into

 H_g . For $x \in X$, let $V_{(f,g,\xi)}(\hat{x}_f) = \hat{x}_g$. Then we have the following proposition by ([2], 3.1 Proposition).

PROPOSITION 4.7 Let A, B, X, Y, and T be as above. Assume that there exists a nonzero element ξ of X such that $\langle T\xi, T\xi \rangle_A = \langle \xi, \xi \rangle_B$ and f, $g \in P_B$ with $|g(x)| \leq |f(x)|$, for all $x \in X$. Then

$$V_{(f,g,\xi)}(T_{(f,\xi)}) = T_{(g,\xi)}.$$

Kyungpook University

REFERENCES

[1] J.G. Bennett, Induced Representations of C*-algebras and completely positivity, Tr-ans. A.M.S. 246(1978), 1-36.
[2] W. L. Paschke, Inner Product modules over B*-algebras, Trans. A.M.S. 182,

Younki Chae and Ilbong Jung

(1973), 443-468.

<u>74</u>

•

[3] M.A. Naimark, Normed algebras, Wolters-Noordhoff Publishing, Groningen, The-Netherlands, 1972 (Original Russian edition, 1955).

:1

.

- [4] C.E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, N.J. 1960.
- [5] Dunford, N., and J.T. Schwarz, *Linear Operators*, Vol.1, Int. Publ. Inc. New York, 1958.

[6] W. Rudin, Functional Analysis, McGraw-Hill Inc., New York, 1973.