BANACH *-ALGEBRA VALUED INNER PRODUCTS

By Younki Chae and Ilbong Jung

1. Introduction

W.L. Paschke [2] investigated right modules over B^{*}-algebra B which possess a B-valued inner product respecting the module mapping. J. G. Bennett [1] studied properties of vector spaces equipped with B^{*}-algebra valued inner products. In this paper, we will be obtained some properties of vector spaces equipped with Banach *-algebra valued inner products.

2. Notation and Preliminaries

A Banach algebra A with an involution * satisfying $\left\|a^{*}\right\|=\|a\|$ for all $a \in A$ will be called a Banach ${ }^{*}$-algebra. Throughout this paper, A denotes a Banach *-algebra with a multiple identity e and X denotes a complex linear space. A is reduced if $\left\{a \in A \mid f\left(a^{*} a\right)=0\right.$ for all positive functionals f on $\left.A\right\}=\{0\}$. B^{*} algebras are reduced. A is symmetric if the inverse $\left(e+a^{*} a\right)^{-1}$ exists in A for all $a \in A . A$ is symmetric if and only if $-a^{*} a$ is quasi-regular in A for all $a \in A$. If A is reduced, then A is symmetric ([3] Corollary, p266, and II Proposition, p. 303). All algebras and linear spaces are those over the complex field \mathscr{C}. It is assumed that all algebras possess a multiple identity e.

3. A-valued inner product spaces

DEFINITION 3.1. X will be called an A-valued inner product space if it is equipped with a map $\langle\cdot, \cdot\rangle: X \times X \longrightarrow A$ such that
(i) $\langle\cdot, \cdot\rangle$ is linear in the first entry,
(ii) $\langle x, x\rangle \geq 0$, i.e. $\langle x, x\rangle$ is a positive element of A, for all $x \in X$,
(iii) $\langle x, y\rangle=\langle y, x\rangle^{*}$, for all $x, y \in X$.

The map $\langle\cdot, \cdot\rangle$ is an A-valued inner product on X.
Suppose J is a ${ }^{*}$-subalgebra of a symmetric Banach *-algebra A and define $\langle x, y\rangle=y^{*} x$ for $x, y \in J$. Then J is an A-valued inner product space. Suppose J is a *-subalgebra of a *-algebra A, B is a Banach ${ }^{*}$-algebra, and $\Phi: A \longrightarrow B$ is a positive operator (i. e. Φ is linear and $\Phi\left(a^{*} a\right) \geq 0$, for all $a \in A$) with $\bar{\Phi}\left(a^{*}\right)$
$=\Phi(a)^{*}$, for all $a \in A$. Define $\langle a, b\rangle=\Phi\left(b^{*} a\right)$ for $a, b \in J$. Then J is a B-valued inner product space. Otherwheres, examples of such objects are numerous. A-valued inner product $\langle\cdot, \cdot\rangle$ is a conjugate linear in the second entry. The. conditions of A-valued inner product space are independent of each other.
An A-valued inner product space X will be called definite if $\langle x, x\rangle=0$ only if $x=0$. In general, A-valued inner product spaces are not necessarily definite. Hence we may consider the following proposition.

PROPOSITION 3.2. Suppose A is reduced and X is an A-valued imner product space. Let N be the set of elements x in X such that $\langle x, x\rangle=0$. Then N is thelinear subspace of X, and the quotient space X / N forms a definite A-valued inner product space.

PROOF. Let f be a positive functional on A. A map $(x, y) \longrightarrow f(\langle x, y\rangle)$ defines a pseudo-inner product on X. By Cauchy Schwarz-inequality, $f(<x+y$, $x+y\rangle)=0$, for $x, y \in N$. Since A is reduced, $\langle x+y, x+y\rangle=0$, for $x, y \in N$. Hence N is a linear subspace of X. Define $\langle x+N, y+N\rangle=\langle x, y\rangle$, for x, $y \in N$. Then $\langle\cdot, \cdot\rangle$ is well-defined, and it is a definite A-valued inner product.

Let X be a complex linear space \mathscr{C}^{2} with coordinate vector operations. Let A be the algebra of all matrices of the form

$$
\left(\begin{array}{ll}
\alpha, & \beta \\
0, & \alpha
\end{array}\right)
$$

with $\alpha \in \mathcal{C}, \beta \in \mathcal{C}$. Define

$$
\left\|\left(\begin{array}{cc}
\alpha, & \beta \\
0, & \alpha
\end{array}\right)\right\|=|\alpha|+|\beta| \text { and }\left(\begin{array}{ll}
\alpha, & \beta \\
0, & \alpha
\end{array}\right)^{*}=\left(\begin{array}{ll}
\bar{\alpha}, & \bar{\beta} \\
0, & \bar{\alpha}
\end{array}\right) .
$$

Then it is well-known that A is a Banach *-algebra. It is easy to show that A is not reduced. Define

$$
\left\langle\left(\alpha_{1}, \beta_{1}\right), \quad\left(\alpha_{2}, \beta_{2}\right)\right\rangle=\left(\begin{array}{l}
0, \alpha_{1} \bar{\beta}_{2}+\beta_{1} \bar{\alpha}_{2} \\
0, \\
0
\end{array}\right) .
$$

Then X is an A-valued inner product space. We can take $x, y \in N$ with $x+y \notin$ N. Thus the hypothesis in 3.2. Proposition, that A is reduced, is essential.

Suppose X is an A-valued inner product space. Let P_{A} be the set of all positive functionals f on A such that $f(e) \leq 1$. Define

$$
\|x\|_{X}=\sup f(\langle x, x\rangle)^{\frac{1}{2}}, f \in P_{A} .
$$

For $f \in P_{A}, x \longrightarrow f(\langle x, x\rangle)^{\frac{1}{2}}$ is a semi-norm on X. Hence $\|\cdot\|_{X}$ is a semi-norm on X. When A is reduced and $\langle\cdot, \cdot\rangle$ is definite, $\|\cdot\|_{X}$ is a norm on X.
Define $\|x\|_{*}=\|\langle x, x\rangle\|^{\frac{1}{2}}$. Then $\|\cdot\|_{*}$ is not always a semi-norm on X. If A is a symmetric Banach ${ }^{*}$-algebra, then $\|x\|_{X} \leq\|x\|_{*}$. If A is a B^{*}-algebra, then $\|x\|_{X}=\|x\|_{*}$.

PROPOSITION 3.3. Suppose A is a symmetric Banach ${ }^{*}$-algebra, and X is ant A-valued inner product space.
(i) Assume that $\|a\|^{2}=\left\|a^{2}\right\|$, for all $a \in A$. Then $\|\langle x, y\rangle\| \leq\|x\|_{X}\|y\|_{X}$, for all $x, y \in X$. In particular, $\|x\|_{X}=\|x\|_{*}$, for all $x \in X$.
(ii) Assume that A is reduced. Then $\langle x, y\rangle \geq\langle y, x\rangle$ if and only if $f(\langle x$, $y>) \leq\|x\|_{X}\|y\|_{X}$, for all $f \in P_{A}$.

PROOF. (i)Let x, y be elements of X. By Schwarz-inequality, $|f(\langle x, y\rangle)|^{2}$ $\leq f(\langle x, x\rangle) f(\langle y, y\rangle) \leq\|x\|_{X}^{2}\|y\|_{X}^{2}$, for all $f \in P_{A}$. Hence $|f(\langle x, y\rangle)| \leq\|x\|_{X}$ $\|y\|_{X}$, for all $f \in P_{A}$. Since A is commutative ([6], p262) by ([3] Corollary 4, p308), $\lim \left\|\langle x, y\rangle^{n}\right\|^{1 / n}=\sup f(\langle x, y\rangle)$, where the supremum is taken over all indecomposable normalized positive functionals f. By the hypothesis, $\|<x$, $y>\|=\lim \|\langle x, y\rangle^{2^{*}}\left\|^{1 / 2^{n}}=\lim \right\|\langle x, y\rangle^{n}\left\|^{1 / n} \leq\right\| x\left\|_{X}\right\| y \|_{X}$.
(ii) The proof is obvious.

REmARKS 3.4. (1) 3.3 Proposition (i) is not true if A fails to be the condition that $\|x\|^{2}=\left\|x^{2}\right\|$, for all $x \in A$.
(2) 3.3 Proposition (ii) is not true if the condition that A is reduced, is omitted.

4. A-valued inner product medules

DEFINITION. 4.1. An A-valued inner product space X will be called an A valued inner product module if it is a right A-module satisfying $\langle x a, y\rangle=\langle x, y\rangle a$, for all $x, y \in X, a \in A$.
W. L. Paschke [2] proved the following propositions for the B^{*}-algebra valued inner product modules (pre-Hilbert B-modules). In this section, we consider them in A-valued inner product modules X.

PROPOSITION. 4.2. Suppose A is a commutative Banach ${ }^{*}$-algebra and X is an A-valued inner product module. Then $\|x a\|_{X} \leq\|x\|_{X}\|a\|$, for all $x \in X, a \in A$.

PROOF. Let a be an element of A. For $f \in P_{A}$, let φ be a positive functional on A defined by $\varphi(z)=f\left(a^{*} z a\right)$. Since $\varphi\left(b^{*} b\right) \leq\left\|b^{*} b\right\| \varphi(e)$ for all $b \in A, f\left(a^{*} b^{*} b a\right)$ $\leq\left\|b^{*} b\right\| f\left(a^{*} a\right)$, for all $b \in A$. Since A is commutative, it is easy to show that $\|x a\|_{X} \leq\|a\|\|x\|_{X}$, for all $x \in X, a \in A$.

Let B be a symmetric Banach ${ }^{*}$-algebra. Then $\left\|b^{*} b\right\| e-b^{*} b \geq 0$, for all $b \in B$. By ([1], p6), we have

PROPOSITION 4.3. Suppose B is a symmetric Banach *-algebra, and X is an A-valued inner product space. Then a left-module action of B on X satisfying $\langle b x, y\rangle=\left\langle x, b^{*} y\right\rangle$ for all $x, y \in X, b \in B$ has properties that
(i) $\langle b x, b x\rangle \leq\|b\|^{2}\langle x, x\rangle$, for all $x \in X, b \in B$, and
(ii) $\|b x\|_{X} \leq\|b\|\|x\|_{X}$, for all $x \in X, b \in B$.

PROPOSITION. 4.4. Suppose A is a reduced Banach ${ }^{*}$-algebra and B is a closed *-subalgebra of A. If $T: B \longrightarrow A$ is a linear map such that for some $K \geq 0$, we have $T(x)^{*} T(x) \leq K x^{*} x$, for all $x \in B$. Then $T(x)=T(e) x$, for all $x \in B$.
PROOF. Define $T_{0}: B \longrightarrow A$ by $T_{0}(x)=\left\{1 / 2\left(K+\|T(e)\|^{2}\right)\right\}^{\frac{1}{2}}(T(x)-T(e) x)$. Then $T_{0}(e)=0$. Easy computations show that $T_{0}(x)^{*} T_{0}(x) \leq x^{*} x$. Define a pseudonorm on A as following

$$
|x|=\sup f\left(x^{*} x\right), f \in P_{A} .
$$

Since A is reduced, A is an A^{*}-algebra with $|x|$ as an auxiliary norm ([4], Corollary 4.6.10, p226). Let \bar{A} be a completion of A by $|\cdot|$. Then \bar{A} is a B^{*} algebra. Let \bar{B} be a closure of B in \bar{A}. Then \bar{B} is a closed ${ }^{*}$-subalgebra of \bar{A}. Since $|T(x)| \leq K|x|, T$ is a bounded operator w.r.t. $|\cdot|$ and T_{0} is a bounded operator w.r.t. $|\cdot|$. Indeed, there exists $k>0$ such that $\left|T_{0}(x)\right| \leq k|x|$, for all $x \in B$. By ([5], 17 Theorem, p23), there exists an extension bounded operator $\bar{T}_{0}: \bar{B} \longrightarrow \bar{A}$ of T_{0}. Since \bar{T}_{0} is continuous, $\bar{T}_{0}(x)^{*} \bar{T}_{0}(x) \leq x^{*} x$, for all $x \in \bar{B}$. By ([2], 2.7 Propostion), $\bar{T}_{0}(x)=\bar{T}_{0}(e) x$, for all $x \in \bar{B}$. Since $T_{0}(e)=0, T(x)=T$ (e) x, for all $x \in B$.

LEMMA 4.5. Suppose A is a symmetric and X is an A-valued inner product module. Then $\langle y, x\rangle\langle x, y\rangle \leq\|\langle y, y\rangle\|\langle x, x\rangle$, for all $x, y \in X$.

Suppose A is a reduced Banach ${ }^{*}$-algebra, B is a closed ${ }^{*}$-subalgebra of A, $\left(X,\langle\cdot, \cdot\rangle_{B}\right)$, is a B-valued inner product module, and $\left(Y,\langle\cdot, \cdot\rangle_{A}\right)$, is a defin-
ite A-valued inner product module. Then, by 4.4 Proposition, 4.5 Lemma, and ([2], 2. 8 Proposition), we have

PROPOSITION 4.6. If $T: X \longrightarrow Y$ is a linear map such that $\langle T x, T x\rangle_{A} \leq\langle x$, $x>_{B}$, for all $x \in X$. Then T is a bounded module map.

Suppose A is reduced, B is a closed *-subalgebra of $\left.A,(X,<\cdot, \cdot\rangle_{B}\right)$, is a B valued inner product module, $\left(Y,\langle\cdot, \cdot\rangle_{A}\right)$, is an A-valued inner product module, and $T: X \longrightarrow Y$ is a linear map such that $\langle T x, T x\rangle_{A} \leq\langle x, x\rangle_{B}$, for all $x \in X$. Assume that there exists a nonzero element ξ of X such that $\langle T \xi$, $T \xi\rangle_{A}=\langle\xi, \xi\rangle_{E}$. Then we may be claimed that $\langle T x, T \xi\rangle_{A}=\langle x, \xi\rangle_{B}$, for all $x \in X$. Let x be an element of X and t be any real number. Then we have $t\left(\langle T \xi, T x\rangle_{A}+\langle T x, T \xi\rangle_{A}\right)-t\left(\langle\xi, x\rangle_{B}+\langle x, \xi\rangle_{B}\right) \leq\langle x, x\rangle_{B}-\langle T x, T x\rangle_{A}$. Since t is arbitrary, $\langle T \xi, T x\rangle_{A}+\langle T x, T \xi\rangle_{A}=\langle\xi, x\rangle_{B}+\langle x, \xi\rangle_{B^{\prime}}$. It follows that $\langle T x, T \xi\rangle_{A}=\langle x, \hat{\xi}\rangle_{\mathrm{B}}$. Let f be an element of P_{B}. Then X / N_{f} is a pre-Hilbert space with an inner product $\left(x+N_{f}, y+N_{f}\right)=f\left(\langle x, y\rangle_{B}\right)$, where $. N_{f}=\left\{x \in X \mid f\left(\langle x, x\rangle_{\mathrm{B}}\right)=0\right\}$. Let $\left(H_{f},\|\cdot\|_{f}\right)$ be a completion of X / N_{f}. Define $X+N_{f} \longrightarrow f\left(\langle x, \xi\rangle_{\mathrm{B}}\right)$ is a well-defined linear functional on X / N_{f}. Since $\left|f\left(\langle x, \xi\rangle_{\mathrm{B}}\right)\right| \leq\left\|x+N_{f}\right\|_{f}\left\|\xi+N_{f}\right\|_{f}$, there exists $T_{(f, \xi)} \in H_{f}$ such that $f\left(\langle x, \xi\rangle_{\mathrm{B}}\right)$ $=\left(x+N_{f}, T_{(f, \xi)}\right)$ and $\left\|T_{(f, \xi)}\right\|_{f} \leq\left\|\xi+N_{f}\right\|_{f}$. Let $\hat{y}_{f}=y+N_{f}$. Suppose $g \in P_{\mathrm{B}}$ such that $|g(x)| \leq|f(x)|$, for all $x \in B$. Since $N_{f} \subset N_{g}, x+N_{f} \longrightarrow x+N_{g}$ of X / N_{f} into X / N_{g} is a contractive map and extends a contractive map $V_{(f, g, \xi)}$ of H_{f} into H_{g}. For $x \in X$, let $V_{(f, g, \xi)}\left(\hat{x}_{f}\right)=\hat{x}_{g}$. Then we have the following proposition by ([2], 3.1 Proposition).

PROPOSITION 4.7 Let A, B, X, Y, and T be as above. Assume that there exists a nonzero element ξ of X such that $\langle T \xi, T \xi\rangle_{A}=\langle\xi, \xi\rangle_{B}$ and $f, g \in P_{B}$ with $|g(x)| \leq|f(x)|$, for all $x \in X$. Then

$$
V_{(f, g, \xi)}\left(T_{(f, \xi)}\right)=T_{(g, \xi)}
$$

Kyungpook University

REFERENCES

[1] J.G. Bennett, Induced Representations of C^{*}-algebras and completely positivity, Tr ans. A.M.S. 246(1978), 1-36.
[2] W. L. Paschke, Inner Product modules over B^{*}-algebras, Trans. A.M.S. 182,
(1973), 443-468.
[3] M. A. Naimark, Normed algebras, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1972 (Original Russian edition, 1955).
[4] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, N. J. 1960.
[5] Dunford, N., and J.T. Schwarz, Linear Operators, Vol. 1, Int. Publ. Inc. New York, 1958.
[6] W. Rudin, Functional Analysis, McGraw-Hill Inc., New York, 1973.

