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ON EXTENDED TOPOLOGIES

By Charles D, Tabor

1. Introduction

The concept of a simple extension of a topology was first introduced by
Norman Levine [2]. We may state his definition of a simple extension of a
topology as follows: Let (X, .77) be a topological space where .7 is some
topology on X, and let A be a subset of X such that A& . Then the
topology 7 (A)={UUWU’'NAI|U, U'&€7} is called a simple extension of 7 .
It is the purpose of this paper to introduce a concept of extending & by an
-arbitrary number of subsets of X, to give some theorems concerned with
extended topologies, and to consider the idea of extending one topology by the
members of an open basis of another topology.

2. Arbitrary extensions of .9

Let (X, 97) be a topological space and let 4 and B be subsets of X which
are respectively not 7 -open and not 7 (A)-open. We will let 9 (A)(B)
.denote a simple extension of a simple extension topology; i.e., the simple
-extension topology 7 (A4) is extended by B. Let 7 (4, B) denote the extension
of J by A and B simultaneously; i.e., (A4, B)={NUONAUWONBUW
NANB)| N,0,0,G&7}. Clearly 9 (A)(B)=9 (A,B) because 7 (A)(B)=
{loudnNoNiIu@BNiMudAnmi)Hio, o', M, M7 } ={oU4nNo)UBNM)
UBNANM)|0, O, M, M'&7 }.

Let G=1{A4,|A,CX, A&, acA and G'={C,=N{A,laSA} |4 a finite
subcollection of 4; N{A,|la&EA} not expressible in the form U{U, N4, a4}
Uu; U, U9 ; oEW]}.

Then the extension of .7~ by all the members of &G (i.e., the extension of
9" by every member of G simultaneously) is denoted .9~ [A,] and is defined
to be the collection

{UU NA acAUIVIU NC, loeEW}TUUIU, U, U, E9 : aEA: 0EW].
Set GUG'={B; | B4&G or B;EG, pE(AUW)}. Then I [A =T [Bgl since
A ={U{U NA a3 UUU NClocsW}UU| U, U, U,E5 ;acd:
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w&EW} and every 7 [Bgl-open set may be expressed in the form UV NB;sl 6
e(AJW)H UV where Vﬁ, veys, fe(AUW). Therefore in the future (uniess.
otherwise stated) we shall assume that an arbitrary extension .7~ [Da-] (Y =
{D;|D;CX, DyeES, 0€4}) of J is one in which every .9 [D;]-open set is
expressibe in the form U{U;ND;|0&€d UU where Us, UE T, FEAL

THEOREM 1. Let G={4,1A,CX, A &I, o&A}. Then T [A,] is equivalent
10 a well-ordered successios: of simple extensions.

PROOF. Our proof will be by transfinite induction. By Zermelo’s Theorem
we can well-order the collection G. Let P, denote the proposition that .7~
[A,) 4y 18 a succession of simple extensions where a<<ar” for each A, in the
extension, Py is trivially true since 9 [4;]=9 (4;) is a simple extension.
From above P, is true since 9 [A,]l, =9 (4;, A)=75 (4;)(A4y). Assume
that P, is true for every «a such that a<a’; i.e., assume .9 [Aa]a,@r is a.
succession of simple extensions, Let K=U{U, NA,|laE4, a<a’} UU be arbi-
trary in J [Agacer Where U, U,&9, a&d. We can write K=U{U N4, la
c4, alatUU NAE,HUU. Set V=U{UNA,laed, ala’} UU. Now VETIT
[A) e and K=VUWUNAy) belongs t0 T [Ay) yeu(Ay) since V, U, ET”
[Ayl gcorw Therefore I [Ay] q et TT [Ayl gt (Apr). Let M=WUW’'NA,) be
arbitrary in 9 [Ayl ycn(Ay) where W, WET [A ] yer- We can write W=
U{W N4 lacd, a<la’'}UO and W =U{W, /N4, laeEd, a<la’} UO" where W,
0, W/, 07, acA. Hence M=WU[U{W,/NALiaEl a<la’}NA,1U0ON
AD=WUIUW NA,NA lacd, a<la’}]UO'NA,). It is obvious that W,
U{w, N4,NAplaEl, a<la’}, and (O'NA,) each belong to J [4,] <y SO
that MEYT [A)yco- Hence I [A ) yca=T [A,]4cu(Ay) and since I
[Agl pcar is @ succession of simple extensions, I [A,]l cn(4y) is also a
succession of simple extensions. Therefore P, is true and this completes the

proof.
3. Some properties of extended topologies.

THEOREM 2. Let . | and F o be two topologies for a set S. Then 9 C.9 ,.
iff 9 5 is an extension of 5 1, and in this case I =9 {[0,] where G=1{0,|0,
&9 1, O,1is a member of an open basis for T ,, a&A}.

PROOF. Let 7, be an extension of 7 ;. Then by the definition of an:
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extension topology we have 9 C.7 ..

Conversely let 9 C.9 o Suppose Z'5 is an open basis for 9, Let o#=%,—
7 1=10,la&4}. Consider [0, ={U{U,/NO|lacAtUU’|U,, UET, a&=
A}, Let A=U{U,/NO,lacAUU’” be arbitrary in .9 {[0,] whereU ), U'&5,,
aEA. Since I C9 5 we have U/, UET 4y a&A Hence U/NONET 5 «
&/, so that A&9 ,. Therefore I 1[0,]C5 5 Now let B be arbitrary in 9,
Then B=U{U4lU,EZ, BET =U{UgUsE0, BErTUIUU4IUET,, BET}]
which is of the form of an element of 7 110,] since Ug=UgNS for Ugcr,
&' and since UUglUzer;, BEN=U'€5 . Thus J,C5;(0,] and
therefore v 1[0, =5 0.

THEOREM 3. Let .9 ; and 9 o be topologies for a set X, F an arbitrary
filier o X, and A, and A, the sets of convergence points of # with respeci to
I 1 and T, respectively. If Go={T|TET 1,Ty is a member of an oper iLesis
for 5 o, a&A}, then the set C=A:(\Ay is the set of convergence points of F
with respect to 9 5 iff F 3= 1[T,l.

PROOF. Let Z, be an open basis for %, and set Go={T|T 7 1, T ,EZ >,
acAt. Let 9 3= {[T,] and let # be an arbitrary filter on X. Suppose p

is an arbitrary point in C=A(\B where A is the set of convergence points of
# with respect to 7 {, B is the set of convergence points of # with respect
to I 4 (If C=¢, then # will converge to no point of X with respect to .7 5
since we show below that # converges to no point in X — (ANB) with respect
to 7 a.) Then # —p with respect to .9 ;, and # —p with respect to J ..
Let Ng e an arbitrary 9 s-open neighborhood of p, say N;’=U U, NT, oA}
UU” where U’, U,//E€5 |, a&E4. Now p belongs to at least one of the memiers
of the union which forms Ng. If peU’'e7;, then U'€%# since F —p with
respect to 1 and since U’ is a J j-neighborhood of p. Consequently NEE
& since U'CH;. On the other hand, if p&U,NT, for some a&4, then &
U, and p&7,. Thus U,/EF since .F —p with respect to 9, and T, &5
since # —p with respect to 9 5. Therefore U, NT &%, so that NﬁEﬁ' since
U a'ﬂT{ICNg. Since Ng is an arbitrary . s-open neighborhood of p we see that
every .“ s-neighborhood of p belongs to % ; i.e., # —p with respect to . .
Hence, #  converges to every point of C with respect to 5 3. We shall now
show that # converges to no other points with respect to .9 5. Let ¢ be an
arbitrary point in X—(ANB). Then either # ——g with respect to J | or F#
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/'q with respect to .77;. Suppose F +q with respect to 77;. Then there exists
a 7 ;-neighborhood N of ¢ such that N /&% . Since N /&7 5 also, N,/ is a
7 sneighborhood of q. Thus # +¢ with respect to .9 5 if F +¢ with respect
to 7 ;. Now suppose # +¢q with respect to .97, Then there exists a .7 o-

neighborhood Ng of ¢ such that Nﬁ&f’" . There exists a 9 ,-open set 7' such
that qETCN‘?. If T&9 | also, then T&.J 4, and clearly T& % which implies

F +q with respect to I3 If T &9, then T=9pUXNT)ES ;5 and since
T&ESF we see that F +¢ with respect to .7 5. Therefore in either case F +yq
with respect to % 5 if # +¢ with respect to 7 ,. Hence, # converges to no

point of X —C.
Conversely, suppose for every filter # on X that C=ANB is the set of

convergence points of # with respect to 7 5 where A is the set of conver-
gence points of # with respect to .7 ,. We wish to show that .9 ;=5 [T}
where the T, belong to Go. Let W be arbitrary in 7 3 Let us construct, ior
every pEW, a filter F p= {F|pU pﬂTpCFCX for some 9 j-open set U, of p
and for some .7 ,-open set T, of p}. For each p&W, let A, be the set of con-
vergence points of S , with respect to .97;, and let B, be the set of conver-
gence points of &, with respect to 5 5. Then, by hypothesis, C,=A4,MNB, is
the set of convergence points of # , with respect to J 3 Then p&C,=A4,NB,
and hence, W& # , since W is a J gneighborhood of p. We now prove a

lemma.

LEMMA 3.1. Let % p be constructed as above, for every p&EW. Then U{U,N
T,1peWtUU=W for some sets U,U pEF 1» PEW, UCW and some sets TPEF 2%
PEW such that the U, and T, belong to T » Jor each pEW.

PROOF. Let p” be arbitrary in W. Then there exist U prs Ty such that p'&E
-Up.ﬂTp;CU{UpﬂTp\pEW} UU where U, U5, pEW, UCW and T ,E5 ,,
PEW such that the U, and T, belong to S#, for each p&W. Thus WC

UW,NT,[pEW}UU for appropriate U,, T,, where p&W and UCW. These
“appropriate” U, and T, must be chosen such that p&U,NT ,CW {for each p&E
W. This can be done since W&# , for each p&W. Then U{U,NT,Ip&W}UU

CW and therefore U{U,NT,[p€EW}UU=W. It is evident that for some T 3
open sets W it might be that U,=¢ for all but finitely many pEW; i.e., we
mlght have W:(UPIHTPI)U(UpEUTPE)U'"U(UpnnTp")UU Where p]_,?d: **% Pn:



On extended topologies | 61

cW. -

Thus we have 9 C 7 ([T,].

Now let N=U{U,/NT a4 YU’ be arbitrary in 7 {[T,] where U’, U,/&
7 ;,a=A. For each point ¢ in N set F# .= {FlgeWCFCX, W some 9 5-0pen
set containing ¢}. Then S is a filter on X for which # —g with respect
to 93 If C, is the set of convergence points of # , with respect to s,
then by hypothesis ¢&C =A,NB, where A, is the set of convergence points of
F . with respect to J ), and B, is the set of convergence points of 5,
with respect to .97, Hence, every .J ;-neighborhood of ¢ belongs to # , and
every 7 o-neighborhood of ¢ belongs to &# .~ JLhus, In particular, N&F
since N contains either a .9 -open set of ¢ or a 9 ,-open set of g¢ We now
prove another lemma.

LEMMA 3.2, Let # , be constructed as above, for each ¢q=N. Then N=U{W,
|gEN} for some sets W &5 ,,q&N such that the W, velong to F  for each
qEN.

PROOF. Let ¢’ be arbitrary in N. Then there exists a 9~ g-open set W,
which belongs to S  such that ¢’€W _ CUW [¢=N} for certain J j-open
sets W, which belong to %, respectively for each ¢ in N. Therefore NCU
{W, 1qEN} for certain J j-open sets W, (WQEF , for each ¢&N) such that
W CN for each ¢g&N. By the way S#  is constructed we know there exists
some J g-open ses W, containing ¢ such that W CN since N&# , for each
g=N. Hence, N =U{quqEN} for appropriate sets W &7, ¢=V such that
the W, belong to S# , for each ¢g&N.

Thus N can be expressed as a 7 y-open set and since N is arbitrary in
7 ,[T,] we have that J {[T,]C.7 3. Hence, by Lemmas 3.1. and 3.2 J 3=
I 1 [Tl

Obviously, in Theorem 3 we may replace G, by G;=Uz|lUs&ET ;, U g 1S a
member of an open basis for J ;, &I} and S ,I[T,] by 5 o[U 5l since 57
[T,]=5"51Ugl. From Kowalsky [1, p. 56] we see that J 3;=A(F [, T o),
the inf topology of .7, and J ,, in the complete lattice of all topologies for

X. Therefore 7 5 is actually the weakest topology which is simultaneously
stronger than J; and J ,,

THEOREM 4, Let (X, J ) be a topological space and G= {4,14,CX, A, &
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I, acd}l. Then I [A =9 (U{d,lacd}) iff A,Ncl[U{d,lac4} —-4,]=¢
for every a&=A,

PROOF. Suppose that A Ncl[U{4d, lacA}—A,]1=¢ for every acA Let
UU_ NA,lacA UU be arbitrary in 9 [A,] where U,, U&S9, a&A. Let a°
be an arbitrary fixed index from 4. Then A, -NcllU{A,la&E4}—A, :]1=0.
Hence, for every point p&EA4,., there exists a 9 -open set Vp of p such that
V,O[U{4,laedt — Ayl =¢. Thus there exists the J -open set V,.=U{V,[p&E
A .} such that A,.CV, and V_ -N[U{A4, a4} —A4,]=9. Set W _.=U_NV 4.
Then W,-NA_.=U_ NV, NAyp=U_, A, since A,-CV ,, and W_ N[U{4,!
oMy —A,.]=¢ since W, ,.CV .. We may do this for each a&4. Therefore we
have U{U NA, lacA}=U{W _NA, ia&4} and for each acA, W, N[U{4, la &
A —A,1=¢. Now we can write U{W_ N4, lacQUU=[(U{W  lac4})N(U{4,
la&A})]1U U because if a particular W, 1inersects U{4,la&4}, then this
intersection is contained in A_. Since U{W ,|la€E4} is 7 -open, say U{W,la
41 =W, we see that U{U NA lacAUU=[WNWU{4,lacE4})]UU which is
of the form of a member of . (U{4,la&4}). Hence, J [4 ]CT5 (U{4,lac
A1), Now let UU[U'N(U{A, la€4})] be arbitrary in 9 (U{4,|la&4}) where
U, U&7 . Then UUIUNU{4 lacA)]=UU[U{UNAlae4}] which is of
the form of a member of .9 [4,]. Hence .5 (U{4,lac4} )5 [A,], and con-
sequently 9 [A, 1= (U{4, la&4}).

Conversely, let 9 [A,)=9 (U{4, la€4}). Let a’ be an arbitrary index
from A. Assume that A,.Ncl[U{A4,la&4} —A,]1#¢. Then there exists a point
p in A,Ncl[U{A,laE4}t —A,] such that for every 9 -open neighkorhood U,
of p,U,NAy7#¢ and U,N[U{4,|la€d} - A, 17#0. Now (U,NA4A,)EST [4,], but
(U pﬂAar)Eﬂ' (U{4,|ae4}) only if there exists a .7 -open set V such that (U 5
NA=VN(U{4,lacd}). Now since p&lU NA4A,=VN(U{4la€4}), V 1s a
7 -open neighborhood of p, and therefore VN [U{A,|la&4} —A, ]1#¢. But VN
(Uldylaedt - A, 1CVN(U{4, lacd)=U,NA,) implies (X—A,) N4, 70, a
contradiction. Thus the assumption is false and A, Ncl[U{4, a4} —A,]1=0¢

for every a’&EA.

THEOREM 5. Let (X, 9 ) be a topological space and let A and B le subsels
of X such that A, BET . Then 9 (A)C9 (B) iff [(Bdr+-A4)NAIC[(Bdr+B)N
B] and there exists U'€.9 such that U NB=AB.
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PROOF. Assume that there exists U'&.9 such that U ’ﬂBzAﬂB and that
{(Bdr +~A4)NAIC[(Bdr j,_B)ﬂB] . In order to show that .7 (A)C.7 (B) we need
only show that A& (B). We may write A={4— [(Bdr ~A4A)NA]} U {(Bdr +4)
A}, But [(Bdr ~4A)NAIC{(Bdr ~B)N Bl implies that [(Bdr ~ANAICANB=
U’'NB. Hence A={A—-[(Bdr ~A)NAI}UWU’'NB), and since {A— [(BdrgsA4)
Al} is % -open and (U'NB) is .7 (B)-open we have A&7 (B).

Conversely, assume .7 (A)C.9 (B). Then there exist U,V'&7 such that
A=UUV'NBE=U0UIUNV)OINBI=UUU'NB]. Thus there exists U'&E.Y such
that ANB=U'MB. Now since A—B=U~B and U&5 we have [(Bdr+~4)NA4]
—B=¢, and since (Bdr ~A)N(Int -B)=(Bdr +U’ )N ({nt+B) we have [(Bdr s
A)NAIN(Int ~B)=¢. Consequently [(Bdr ~A)NAIC[(Bdr~B)NB].

The following corollary is now immediate.

COROLLARY 5.1. Let (X, 97) be a topological space and ACX, BCX such
that A,B&ETI . Then 7 (A)=9 (B) iff [(Bdr+~A)NAl=[(Bdrs+B)NB] and
there exist U, V'&9 such that UNB=ANB=V"'NA.

In the next theorem we have an equivalent condition to UUNB=ANB=V'NA.

THEOREM 6. Let (X, .9 ) be a tepological space and let A and B be subsets

of X such that A, BET . If 9 (A)=9 (B), then the following conditions are
equivalent :

(1) ANcl(B-A)=¢=BNcl(A—B).
(i1) There exist U, V' &9 such that UNB=ANB=V’'NA.

PROOF. (i)=(ii). Since BNcl(A—B)=¢@ we know that there exists a .7 -
open set V such that BCV and VN(A—-B)=¢. Therefore VNA=ANB.
Similarly ANcl(3—A)=0¢ implies that there exists a .9 -open set U’ such that
A'NB=ANBAB.

(11)=2(). Since J (A)=2 (B) we have (Bdr ~4A)NA=(Bdr »~B(NBCANB=
U’'MNB. Therefore we write A=[(Bdr+-A)NA)UInt ~A=U'NB)UInt -4, and
consequently we have ACU’'UInt »~4). Set U=U"Ulnt ~A. Now ANB=U'NB
implies B—A=B—-U’. Hence there exists the .7 -open set U such that ACU
and UNB—-A)=¢. Thus ANcl(B—A)=¢. Similarly BNcl(A—B)=4.

Corollary 5.1 can now be restated as the following theorem:

THEOREM 7. Let (X, .9 ) be a topological sapce and ACX, BCX; A, B&
T Then T (A)=T (B) iff (Bir~A)NA=Bdr »~B)NB aid ANcl(B-A4A)=
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o=BNcl(A—-B).

4, Extension ef a topolegy by the members of an open basis for ancther:
topolosy

Let 97, and 9, be two topologies for a set X. If one of these topologies:
is a subcollection of the other, then by Theorem 2 the stronger topology

is simply an extension of the weaker topology. This extension 1is acquired
by extending the weaker topology by the members of an open basis.

for the stronger topology which do not belong to the weaker topology.
However, if 9 &7 , and J 7 ; we may extend one of these topologies
by the members of an open basis for the other which do not belog to the-
former topology and get a third topology (a topology which is stronger than.
both .v7; and 7, and not coinciding with either). It is the purpose of this:

section to investigate some properties this third topology might have if 9 ;
and %, have certain properties.

In the remainder of this section 7| and .7, shall denote topologies. for:
the set X such that 915, J,&7 ;. We shall also set Go=1{By| By is a:
member of an open basis for 97, such that Bg&E5™, &'t and J =7 | [Bgl.

THEOREM 8. Ilet (X, 1) be Ty, Ty, 0r To. Ther (X, I )=(X, I, [Bgl )
is respectively Ty, Ty, or To.

PROOF. In view of Theorem 1 (2, p. 23] and Theorem: 1' of this paper, the:
proof is complete.

COROLLARY 8.1. et (X, F 1) be Tg Ty, or Ty and let Gi=1{A,1A, is a

member of an open basis for J; such that A ET o, a€A}. Tken (X, I )=:
(X, F o[A,]) is respectively Ty, T;, or T..

THEOREM 9. Let (X, 9 1) and (X, F o) be regular spaces. Then (X, I )
1S regilar.

PRCOF. For a subset C of X we let cl* (), cl? (0),. cl*(C) denote respec-
tiveiv the 7 ;-ciosure, the J ,-closure, and the 9 -closure of C. Let £ be an:
arbitrary point in X and let U{UgNBgzlElTUU  (where Ue U, LET)
he an arbitrary .9 -open set such that ﬁEU{UﬁﬂBﬁl,SEF} UU. If s&U, then.
there exists a % ;-open set V (and thus 9 -open) such that &V Cc*(V)C
CII(V)CUCU{UﬁﬂBﬁl,BEF} UU since (X, 5 ;) is regular. Now suppose p&EU.
Then p&(UsNBg) for some S&I. Since (X, J ) and (X, F ,) are regular,.
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there exist 9 ;-open and .9 5-open sets V5 and Dy respectively such that p&

V5C011(V5)CU 3 and ﬂEDﬁCclz(Dﬁ)CBﬁ. Now X —-cll(Vﬁ.) is 7 ;-open (and.
thus % -open), and X —clz(DB) is 7 5-open (and thus 9 -open). Consequently-
(X —cl'VRIULX —clP(Dp] =X — [cl' (V) Ncl*(Dp)] is F-open so that cl'(V )
r‘clz(Dﬁ) is 7 -closed. Therefore we have pE(VﬁﬂDﬁ)Ccl*(VﬁﬂDﬁ)Ccll(Vﬁ)
r‘clz(Dﬁ)C(UﬁﬂBﬁ) since cl*(VﬁﬂDﬁ) is the smallest .7 -closed set containing:
Vs(1Dg Obviously (V3MNDg) 1s 7 -open. Hence (X, J7) is regular.

Before proving the next theorem we shall need the following lemma.

LEMMA 10.1. An arbitrary 7 -closed subset of X is of the form ({K £U(GB;

NF) |l where F, K g (BET) are I {-closed subsets of X and the Gﬁ o=
I’) are F ,-closed subsets of X.

PROOF. Let M be an arbitrary .7 -closed subset of X. Then there exists a
7 -open set U{UﬁﬂBﬁl,BEF} UU (where Us, U5, BEI') such that M=X
—[UWUgNBglBEelUUI=N{X-UNB | lNNX-U)=N{X-Ug U(X—
Bp|SEMNX -U)=NI{FgUGRI &I NE where F=(X-U), Fg=(X-Up), B-
&I, are J j-closed and the Gg=(X - Bp), fEI", are J 5closed. Now we can.
write N{FUG3BETNF=N{KgU(GgNF)|BET where Kg=(FgNF), pET.

THEOREM 10. Let (X, ;) and (X, 7 ,) be completely regular spaces. Themn:
(X, F) is completely regular.

PROOF. Let p be an arbitrary point in X and let N{KU(GgNF)| SEI'}
be an arbitrary 7 -closed set (where Kg, F are J ;-closed, &I, and Gg=X"
— By, BE!l’) such that pEN{KZUGsNF)|FE}. Then there exists at least
one 5'&/" such that p& [Kﬁ,U(GﬁﬂF)] and this implies that peEK ¢ and PEE
(GoNF). And peE(G,NF) implies that p&EG, or pEF.

Case 1. p&K and p&EGs. Then there exist real-valued functions f (7
-continuous) and g (J g-continuous) on X such that f(p)=g(p)=0, f(K;)=g
(Ge)=1, and 0<f (2)<1, 0<g(x)<1 for every xEX since (X, ;) and (X,
7 ,) are completely regular. Set 2(x)=max[f(x), g ()], x&X. We shall show"
that 2 1s a 9 -continuous function from X onto £ =1[0, 1]. Let O be an arbitrary-
Z (. -open set (Z' (¥ is the relative usual topology on .#). Then O=U{l_ |«
&4} where the I, are Z'[).7-open intervals. Now k'1(0)=k_1(U I, lacA})=-
U{Iz“l(fa)laEA}. Suppose I, has right endpoint b,. Since Z2(x)=max[f(x),
g(x)], *€X we have r (I )={f""Up—-g (b, 1UNIU{g 'U)—F '([o,.
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1]}. (Note: if 4,=1 and b, &1, we shall set [b,, 1l1=¢; if b,=1 and b, ,&]I,
then let [5,, 11={1}.) Since g is 9 ,continuous it is also .7 -continuous
beccause J .7, Hence g"l([ba, 1]) is a 7 -closed set. Similarly since f is
" -continuous, it is also .7 -continuous and so f (7 o) 18 7 -open. Therefore
{f"'l(fa)—g“l([ba, 11D} isa J -open set. It can be shown, in a similar
manner, that {g~'(7,)~ f"l([ba,, 110} is a 9 -open set. Consequently 2~ (O)
is a .7 -open set so that % is a 9" -continuous function from X onto .Z.

Case 2. p&EK; and p&F, Then there exist real-valued functions f(J9 ;-con-
tinuous) and g(.7 ;-continuous) on X such that f (p)=g(p)=0, . f(K g) =g (F)
=1, and 0<f(x)<1, 0<g(x)<1 for every x&X since (X, 7 1) is completely

regular. Set h(x)=max[f(x), g(x)], x&X. The proof that % is .7 -continuous
from X onto =10, 1] is similar to that in Case 1.

In either case above we have Z(»)=0 and k(N {K5U(GﬁﬂF)lﬁEF})=l SINCce
N{KUGaNF)IBEN CIK 5 UGENF)] and k(KpUGNF] =1 Thus (X,
<) is completely regular,

Now 1if (X, J 1) and (X, J5) are both normal, the space (X, 97) is not
necessarily normal, as is shown in the following example.

EXAMPLE 1. Let S be the set of non-negative real numbers and let & be
the topology on S whose bhasis is made up of right-half open intervals; i.e.,

intervals of the form {x|e<<x<d} where 0<<a<d. The topological space (S, )
1s Hausdorff and is shown to be paracompact by Sorgenfrey [3]. The space

(S, Z), where Z 1s the usual topology on S whose hasis is made up of open
intervals (i.e., intervals of the form {x|e<x<8} where 0<a<d and intervals
of the form [0,5) for Z'-neighkorhoods of 0), is countable at infinity (see
Kowalsky [1, p. 901). Let X=SxS, J,={UXV|UeZ#, V&Z}, and I o=
{Uxvivez, ves}. Consider the topological space (X, J ). By a
theorem from Kowalsky [1, p. 153] (X, . ;) is paracompact. It is obviously
Hausdorff. Thus (X, .9 ;) is normal. Similarly (X, 9 ,) is normal. Let G,=
{Bg| Bz is a member of an open basis for 5, such that Bgs&&. 9 ;, f&/’}. The
Bj are of the form (e, b)X[c, d) where @, b, ¢, d are non-negative real
numbers. Now consider the space (X, J )=(X, J [Bgl). The topology 7
contains sets of the form [e, )X [c, d) where a, b, ¢, d are nonnegative real
numbers, Let H be the set of all points (¥, y) of X such that z+y=1 and
[(x—-l)2+y2] /2 is rational, and let X be the set of all points (x, ») of X such
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that x+y=1 and [(x—l)z-l-yz] 172 is irrational. The sets H and K are disjoint
7 -closed subsets of X which cannot be separated by .7 -open sets (See Sor-
genfrey [3, p. 632] for the proof that (SXS, #ZX#) is not normal). Thus
(X, 9 ) is non-normal.

In conclusion we give an example in which (X, ) is non-compact, and
(X, 1) and (X, J ,) are both compact spaces.

EXAMPLE 2. Let X={(x, y)|0<2<1, 0<y<l1}:i.e., X is a closed unit
square with its left boundary removed. Consider the topology 7 ; on X which
consists of usual open sets for a Mobius band represented by X. A 9 ;-neigh-

borhood basis for a point p=(x, y) where 0<2<1, 0<y<1 is just the collection
of open spheres about p contained in X. A .9 ;-neighborhood basis for a point

p on the upper or lower boundary of X (which is not on the right boundary
of X) is just the collection of open hemispheres about p contained in X. For
a point p=(x, y) on the right boundary of X, say x=1, y=y;, a member of
the .97 {-basis for p would be an open hemisphere (intersected with X) about
p, together with the open hemisphere (intersected with X) about (0,1—y;) of
the same radius as the hemisphere about p. Let us denote such a member of
J 1 by Oy (91, 7)=W(y,, )UV(y;, 7) where W(y;, 7) is the hemisphere
about (1, yy), V(y;, 7) is the hemisphere ahout (0, 1—y;), and 7 is the radius
of the hemispherés. It is obvious that (X, .7 ;) is compact. Now consider the
topology 97, on X which consists of usual open sets for a right circular

cylinder cut along one of its generators and folded out (represented by X).
The 9 ,-neighborhood bases of all points in X except those on the right

boundary are the same as the .7 ;-neighborhood bases. For a point p=(1, »;)
on the right boundary of X, a member of the .7 5,-basis for p would be an
open hemisphere (intersected with X) about p, together with the open hemis-
phere (intersected with X) about (0, y;) of the same radius as the hemisphere
about p. Let us denote such a member of 9 5 by O,(y;, #)=W(y;, rI)UU(3y,

r) where W(y;, 7) is defined as above, U(y;, #) is the hemisphere about

(0, y1), and 7 1s the radius of the hemispheres. It is also obvious that (X, 7 ,)
1S compact.

Let Go={Bg|Bj is a member of an open basis for J 5 such that Bg&9 |,
BEl’}. Thus G, is the collection of 97 ,-neighborhood bases for all points on
the right boundary of X. Now if y;#1/2 and #»<|1/2—y,| we have 0;(y;, 7)
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N0y (y1, 7)=W(y,, 7). Hence W(y,, r)&€9 =79 |[Bgl if r<|1/2-y(| and y;7
1/2. Now consider the following .7 -open covering of X:
E={W(yy 7)]y7#1/2 and »<|1/2—-y,1} U {0,(1/2, 1/4)}
UU,IU,={(x, y)|1/e<2<1, 0=<3y<1}, 2=2,3, -},
The covering & obviously has no finite subcovering. Hence (X, 97) is
non-compact. |

Louisiana Tech. University
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