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MINIMAL SIMPLE EXTENSIONS OF TOPOLOGIES
By Norman Levine

1. Intreduction

In [2], the author introduced the concept of a simple extension .7 (4) of a
topology .7~ on a set X (see Definition 2. 1).

A simplz extension need not be a minimal exXtension, that is, there may
exist a topology & on X for which I C¥C7 (4), 9 #¥#7 (A) (see
Example 2.4). It is the purpose of this paper to study simple extensions of
topology which are minimal.

In [2], the basic problem was to investigate the properties that are preserved
under simple extensions, that is, if (X, ) has a certain property, when will
(X,.7 (A)) have the same property ?

In the present paper, we characterize minimal simple extensions (Theorem
3.1) and explore basically the same problem for such extensions.

2. Background

DEFINITION 2.1. Let (X,.9 ) be a space and ACX, A9 . Then 7 (A4) is
the collection of sets of the form 0,U(0,N4), O, and O, in .57, and is called
the simple extension of 7 by A (see [2]). We shall call 9 (4) a minimal
stmple extension if for each topology Z for which 9 C#C.9 (A), then I =%
or Z =7 (4). In this case, we write .7 imp.? (4) (9~ immediately precedes
J (4.

THEOREM 2.2. Ilet (X, 9 ) be a space and ACX, AE.9 . Then
(1) 7 (A) is a topology for X

2) T CT (A and

(3) T (A)=sup{7, {p, 4, X}}.

This is Theorem 1.1.2 in [1].

THEOREM 2.3. Let (X,9) be aspace and ACX, AET . If ¥ is a topology
Jor X and T CH 9 (A), then =9 (A) iff ASY.

This is Lemma 1. 1.7 in [1].
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EXAMPLE 2.4. Let X=1{a,b,c} and .9 ={¢, {a}, X}. Let B={}. Then .9 (B)
is a simple extension of .7, but .7 imp79 (B) is false. |

NOTATION. In a space (X,.7), B° denotes the interior of B, c¢(B) the
closure of B and B the complement of B.

3. The Fundamental Theerem

THEOREM 3.1. Let (X, 7 ) be a space and ACX, AES . Then 7 imp 9~
(A) (see Definition 2.1) iff

(1) A—A° is indiscrete and

(2) 09, OUMUA-A°)ET (A)—9 implies that O—A° and A-—-A° are
separated.

PROOF. Necessity. Let 7 imp.9 (4) : (1) we show that A—A° is indiscrete.
It suffices to show that 0.9, ON(A—A°)#¢ implies that OOD(A—A4°). Let
then b&0N(A—-A4°), 09 and e=A—A°. Now ONAE.S lest b&ONACA°.
Hence 9 C.7 (ONA)C.Z (A) and since .7 #.7 (ONA), it follows that v (O
NA)=9 (A). But A&7 (A) and therefore AE7 (ONA). Thus there exist
0O,, 0, in 9 such that A=0,U0,N(0ONA)). If a€£0, then e&0,CA°, acon-
tradiction. Thus A—A°CO0. (2) Suppose O and OU(A-A°)ey5 (A)—-T .
If ON(A—-A°)#¢p, then OD(A—A°) and OU(A—-A°)=0&9, a contradiction.
Hence ON(A—A°)=¢ and ONc(A—A°)=¢. It follows then that (O—A°)Nc(4
— A°)=¢. We show now that (A—-A°)XNc(0—-A4°)=¢. Now 7 C7 (OU(A-
A°))C. 9 (A) and since OU(A—-A°)ET, then 9 #.79 (OU(A—A°)). It tollows
then that 9 (A)=2 (OU(A—-4")) and A&7 (OUU(A—A°)). There exist then
O, and O, in 5 for which A=0,U0,NOU4-4°)))=0,U0,N0)U0,N(A-
A®)). Since A&, it follows that O,N(A—A°)#¢ and by (1) above, O,D(4
- A°). It suffices to show that O,N(0—-A4°)=¢. But O,N(0-A4°)C0 NOCA®
and 0,N(0—-A4°)CEA4°. Thus 0,N(O0—-A4°)=0¢.

Sufficiency. Suppose (1) and (2) hold. We will show that 9 imp9 (A4).
Suppose  CZ .9 (4) and . #%Z. By Theorem 2.3, it suffices to show that
AcZ. Let U*=0*UO,*NA)ez -7, 05, 0,9 . Then U*=0,*U
(0,NA°)UO, N(A-A")) and hence O,*N(A—A°)F#¢p lest U*es™. By (1)
0,"DA4-A° and U*=0,*U(0,*NA°YUA-A°)ET (A)—F . Let O0=0,U(0,*N
A°) ;then OU(A-A°)&E 7 (A)—F and by (2), (O—A°) and (A-A°) are
separated. Thus (A—A°)Nc(O—-A°)=¢p. Now A°UU*NEc(0-A°))&EZ and
A°UU*NECc(0-A°))=A°U(OUA-A°)) NCc(0O-A°))=A"UONEc(O-A4"))
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UA—-A4A°)=A°U ((0—-A°)NECc(0O- A" ) U(ONAINEc(O-A)) U(A-A")=A"
U(A—-A%)=A. Hence AEZ.

COROLLARY 3.2. Let (X,.9) be a space and ACX, AES . Then I impT (4)
iff (@) A—A° is indiscrete and (b)) 09, OU(A-A°)YET (A)—-T implies
that (A—A°)Nc(0O—A°)=0.

PROOF. If 9 imp7 (4), then (a) holds by (1) of Theorem 3.1 and (b)
holds by (2) of Theorem 3.1. Now let (a) and (b) hold. By Theorem 3.1,
it suffices to show that (0O—A°)Nc(A—A°)=¢ when O&5 and OU(A-
AHeE T (A -9 . But by (a), ON(4A—A°)=¢ and thus ONc(A—-A°)=¢. Hence
(O—-A°)Nc(A-A")=0.

COROLLARY 3.3. Let (X, .9) be a space and ACX, AE S . If 7 imp 7 (A4),
and (X, 9 ) is separable, then (X, 7 (A)) is separable.

PROOF. Let {x,:;7=1} be dense in (X,.9 ) and take y&A—A°. Then {y}U
{z, : =1} is dense in (X, 7 (4)). For let 920,U(0,NA)ET (4A). Then O,U
(O,NA)=0,U0,NA°)U0,N(A—A4")).

Case 1:0,N(A-A°)=¢, Then (0,U0,NAN {x,: i=1} 4.

Case 2. 0,N(A—A°)#¢$. Then by (1) of Theorem 3.1, 0,D04-A° and yE
0,U(0,NA).

-

See Theorem 8 in [2] in this connection.

EXAMPLE 3.4. Let X be an infinite set and x*¥ a fixed element of X. If

7 ={0:0CX and x*¢0 or £*&€0 and €O is finite}, then .9 imp 7 (A) for
no ACX.

PROOF. Let 2*&A4 and let €4 be infinite. Then €A=B,UB, where B,NB,
=@, B, and B, both being infinite. Let O=A4"UB,. Then OU(4-A4°)E7 (4)

-9, but 0O—A° and A—A° are not separated for x*<(A—-A°)Nc(O—-A°).
(See (b) of Corollary 3.2.)

COROLLARY 3.5. Let (X, 9 ) be a space and AE7 . If 9 imp9 (4), CCA,
CUCA not closed, then CCA°.

PROOF. ANECES and hence (A°NECYUA-A°INCOYET . It follows

then from (a) of Corollary 3.2 that A—A°CE&C and thus (A—A°)NC=¢. Hence
ccAas.

COROLLARY 3.6. Let (X, .9) be a space and AETI . For each OE.9, suppose
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ACO or OCA. Then .7 imp.9 (A4).

PROOF. We employ Corollary 3. 2.

(a) Suppose ON(A—A°)7ZP. Then OZA lest OCA°. Thus ACO and A—-A°
CO. Hence A—-A° is indiscrete.

(b) Suppose O&.9 and OU(A-AE I (4) -9 .
Case 1. ACO. Then OU(A—-A°)=0&.9", a contradiction.

Case 2, OCA. Then OCA° and 0—-A°=¢@. Thus O—A° and A-A° are
separated.

Corollary 3.6 yields the following.

EXAMPLE 3.7. Let X be the reals and let 7 ={0 . 0=¢, 0=X or O=(~oo,
a) for some eEX}. Let A=(—o0,1]. Then 9 imp.9 (A4).

COROLLARY 3.8. Let (X,.9) be a space with the following property: O&S T
implies that €COEST . If AET, then 7 impd (A) iff A—A° is indiscrete.

PROOF. We employ Corollary 3.2. Let O&€9 and OU(A-A°)&E 9. But
(A—A°XNc(0O-A4°)=(A4A—-A°)XNO0—-A°) (since O—A4° is closed). If (A—A°)N(O
—A°)#¢, then OU(A—-A°)=0&75 since A—A° is indiscrete.

COROLLARY' 3.9. Let (X, 9) be a space with the following property: ¢=0OCRB
CX, O=9 implies that BE 7 . (For example, F isthe cofinite, or cocountable
topology.) If {x*}&ET, then J imps ({x*}).

PROOF. (a) {x*}— {«*}°={x*} and is indiscrete. (b) If O&€9 and OU {x*}
&7, then O=¢ and O— {x*}° and {x*} —{x*}° are separated.

COROLLARY 3.10. Let (X,.9) be a space and AET . Then 7 (A)=9 U {4}
iff (1) 09, ON(A—-A°)F#P implies that ODA and (2) ONECAFQ implies that
OUAET,

PROOF. Suppose that 9 (A)=.9 U{4}.

(1) Supoose that O&.9 and ON(A—A°)#¢. Then by (a) of Corollary 3.2,
ODA—-A°. But ONA=(A-AHUONA°)ET U{4}. If 0DA°, then 0DA. If
O0MA°, then ONA#A and hence ONAEY . Thus (A-A°)UONA°)ES and
(A-A°)UONA°)UA°=AE.9, a contradiction.

(2) Suppose ONEAF#@p. Then OUAE T (4A)—- {4} =7 . Conversely, suppose
that (1) and (2) hold. Let O,U(0O,NAEST (A)-7. If O,N(A—-A°)=¢, then
0,U0,NA)&7, a contradition. Hence 0,04 and thus O,U4AdeS (4)-7,
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and O,U4&5". By (2), O,N€A=¢ and O;CA. Hence O,U(0,NA)=A.

COROLLARY 3.11. Let (X,.9) be a space of the first cafegory and suppose
that 7 impS (A). Then T (A) is of the first category iff (A—A°)Nc(A®)F#o.

PROOF, Sufficiency. Let X=U{F,:7=1} where EF,&7 for all 2. Then F,
is closed in (X,.9(4)) for each 7. Suppose further that the J —int F,=¢ for
each 7. We will show that the 9 (4)—int F,=¢ for each i Suppose on the
contrary that @#OIU(OzﬂA)CFZ- for some ¢. Then 0,N(A—A°)7#¢ and by (a)
of Corollary 3.2, 0,054-A°. Then O,NA°#¢ and F, has a nonempty
7 —int, a contradiction.

Necessity. Suppose that (A—A°)Nc(4A°)=¢. Now AET (4) and A—c(4°)E
7 (A). It follows then that A—A°&.9 (A4). It is clear that A— A° is indiscrete

in 7 (A) as well as in 9. Suppose that X=U{F* :7/=1}, where CF &7 (4)

for all z. It follows that A— A°CF* for some ¢ and hence the 9 (A) —intF FFEQ.
Thus (X, .9 (A4)) is not of the first category.

LEMMA 3. 12. Léz‘ (X, 7)) bé a space and x*&X. Suppose {x*} is not closed,

but x*&0&9 implies that c({x*})CO. Then 7 1imp.9 ({x*}UCc({x*})) and
7 1mp7 (E{x*}). -

PROOF. See Corollary 5.4 and Corollary 6. 4.

LEMMA 3.13. Let (X, .9) be a first axiom Hausdorff space. Then .9 imp 9 (A)
for no ACKX. ' S

PROOF. Suppose on the contrary that 7 imp? (A) for some A& . Then
€A is not closed; take e€ANc(EA4). Then there exists a sequence of distinct

points x,&€A such that e=lim x;. Let E=1a, x,, x4, %5 '} Clearly E is compact
and hence closed in (X,.7 ). Let O=CE, Then OU(A—A°)=0UA since A°C
0. But OUAceS (A)—-9 (if OUAE, then x; is eventually in OUA). Thus

O0U4-4°)e5 (A)—-7, but ac(4-A4°)Nc(0—-A4") (e=lim x5 ;). This con-
tradicts (b) of Corollary 3.2,

See Theorem 1.4.3 in [1].

THEOREM 3. 14.

Let (X, .9 ) be a first axiom space and rvegular. Then (X, 7 )
ts Hausdorff iff 9 imp? (4) for no ACKX.

PROOF. The necessity follows from Lemma 3. 13.
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Sufficiency. That (X,.57) is a T; space follows from Lemma 3,12. T, plus:

regular implies Hausdorff.

COROLLARY 3.15. Let (X, ) be melrizable. Then. 7 imp.7 (A) for no-
ACKX.
4, A°=¢

THEOREM 4.1. Let (X, 9 ) be a space and AE.T . If A°=¢, then 9 imp.9 (A)-
iff (1) A is indiscrete and (2) OUAETZ implies that O and A are separated
whenever 0.9 .

PROOF. This follows from Theorem 3.1 and the fact that OUA always is.
in 9 (4).

COROLLARY 4.2, Let (X, 7 ) be a space and {x}&E.F . Then 7 imp9 ({x})-
iff 09 and OU{x} &9 itmplies that x&Ec(O).

COROLLARY 4.3. Let (X, 9 ) be a space, ¢0FACO*, AF0*E 9 and OF
minimal open. Then I imp 7 (A).

PROOF. Firstly, A9 and A°=¢. We show that A is-indiscrete, Suppose-
0.9 and ONA7#¢d. Then ONO*#¢p and since O* is minimal open, it follows.
that 00N 0*=0*DA.

Secondly, suppose O=.9" and OUAES . Now ONA=¢ lest 0OA4 and OUA.
&7 . Hence OYO*=¢ and ANc(0)=¢. It follows then that O and A are

separated.

THEOREM 4.4, Let (X, ) be a space and 9 imp7 (A). Suppose BCX and:
B°DA°, Then B&€9 (A)—9 iff B—B°=A—-A°,

PROOF. Necessity, (B°A° is not used in this part of the proof.) Let B&-
7 (A)—7 . Then 9 C7 (B)CZ (A) and .7 #.7 (B). Hence J (B)=.9 (A4).
and B&5 (4), A&7 (B).

Thus B=0,U(0,NA) for some 0.5 and B=0,U0,NA°)U(4—-4°). But.
B=B°U(B—-B5°). 1t follows then that B—B°CA—A4°.

Also, A=0,*U0,*NB)=0,*U0,*NB°)UB-B°)=A4°U(4-4"). It follows.
that A—A°CB—B° and hence A—-A°=B—B°.

Sufficiency. Let A—A°=B~B°. Then B—B°#¢ and B&Z£.7 . We show that.
Bey (A). Now B=B°U(B-B°)=B°UA"U(A—-A4°)=B°U4E.7 (A).

COROLLARY 4.5. Let (X,.7 ) be a space, .7 imp.9 (A) and A°=¢. Let BCX..
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Then B&€ 9 (A)—9 iff B—B°=A.

PROOF. This follows from Theorem 4.5 and the fact that B°DA°.

COROLLARY 4.6. Let (X, 9 ) be a space and 7 imp9 (A). If A°=¢, then
A is the smallest member of 9 (A)—7".

PROOF. Let BE7 (A)—-.9". Then BOB—B°=A by Corollary 4.5.
5. A Indiscrete

THEOREM 5.1. Zet (X, ) be a space, ACX, AUCc(A)ET and A indiscrete..
Thern 9 imp9 (AUCc(A)).

PROOF. Let Z be a topelogy for X for which 9 CZC.9 (AUCc(A4)), I #Z.
Let U=0,U0,N(AUCc(A))EZ ~7 . Then 7 CT (U)CZCIT (AUEc(A)).
By Thecrem 2.3, it suffices toc show that AUEc(A)ET (U). Now O,NA#O
lest UEJ". Hence 0,DA. 0,NA=¢ lest UE5. It follows then that O,Nc(4)

=¢ and 0,C€c(4). Thus AUCc(A)=Cc(A)U(0,N(0,U0,N(AUC(A))))="
EcAUONUDHET (U).

COROLLARY 5.2. ILet (X, 9 ) be a space, A indiscrete and c(A)—A not-
closed. Ther 9 imp9 (AUCc(A)).

PROOF. We need only show that AUCc(A)ES . But E(AUEc(A))=c(4A)N:
@A=c(A)— A which is not closed.

COROLLARY 5.3. Let (X,.9) be a space and x*&X. If c({x*})— {x*} is not
closed, thern 7 imp.7 ({x*}UCc({x*})).

PROOF. This follows from Corollary 5.2 and the fact that {#*} is indiscrete..

COROLLARY 5.4. Let (X, .7 ) be a space and {x*} not closed. If x*&0&75,
then c({x*})CO. Ther 7 imp ({x*}UCc({x*})).

PROOF. We use Theorem 5.1. If {#*}UCc({x*})&ES, then c({x*})={x*}
and {x*} is closed.

COROLLARY 5.5. Let (X,.9) be a space and A indiscrete. If AET and is:
dense, then 7 imp7 (A).

PROOF. A=AU Cc(A)&.9". By Theorem 5.1, .7 imp.? (AUCc(A))=T (4)..
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6. €A Indiscrete

LEMMA 6.1. Let (X,.9) be a space, AL, €A indiscrete. Then .7 imp.9 (4A)
iff CACOET, ONA&ET implies that X=A" UO.

PROOF. Necessity., Let CACO&ES and ONA&S . It suffices to show that
A—A°CO. By (a) of Corollary 3.2, it suffices to show that (A—A°)NOC#.
Now ONA=0NA HUONA-A"))eE7. It follows then that ON(A—A°)#o.

Sufficiency. Suppose Z i1s a topology for X and I C¥C.9 (A), I #%. We
will show that Z=.9(4). By Theorem 2.3, it suffices to show that A&EZ.
Let U*&Z — 5 . Then U*=0,*U(0,*NA4) where 07 . It follows that O,*
NA&E7 and hence O,*CA. Thus O,*NE€A#¢P and since €4 is indiscrete, it
follows that 0,*2O€A. Thus €ACO,* and O0,NA€&S . Hence X=A°UO,
Now O N€A=¢. If not, then 0,*D€4 and U*=0,*U(0,*NA)=0,*U0,*—
€4)=0,7U0,*5", a contradiction. Hence "OI*CA. Since X=A°UO0.%, it
follows that A=(A°NADUWO,NA=4A"U0,*NAD=4°U0,*U0,*NA)=4"U
J*E/ .

THEOREM. 6.2. Let (X, 9 ) be a space and AET . Assume ©A is indiscrele.
‘Ther .7 imp.9 (A) iff CACOE.S , ONAET implies that c(EA)CO.

PROOF. Necessity. Suppose €ACO0&Y and ONAES . Then by Lemma
6.1, X=A°UO. But ¢c(EA)Cc(EA°)=CA°CO.

Sufficiency. Suppose €EACOE&YS and ONA&ES . By Lemma 1, it suffices
‘to show that X=A4°UO. Now ¢(€A)CO and A°Nc(€A)=¢. Therefore X=
CA°UC(EA)COUACX.

COROLLARY 6.3. Let (X,.7) be a shace and AEI . If €A is indiscrete and
CACOET implies c(EA)CO, then 7 imps (4).

COROLLARY 6.4. Let (X,.9) be @ space and x*&X. If {x*} ts not closed and
X*CO0E T implies that c({x*})CO, then 7 impI (E{x*}).

See Theorem 1.2.3 in [1].

COROLLARY 6.5. Let (X, .F) be regular and {x*} mnot closed. Then
I 1mpI (€ {x*}).

7. Connectedness

THEOREM 7.1, Let (X,.9) be a space, ACX and 7 impZ (A). Suppose
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C, and C, are separated subsets of CA. Then c(CONc(C,)NA=4.

PROOF. Suppose on the contrary that r&c(CpDNc(C)NA. Let 0=&c(C,).
We will show that (1) 9 C9Z (AUO) and 9 #.9 (AUO) and (2 9 (AUO)
C7 (A) and J (AUO)#7 (A4). (1) and (2) imply that 9 imp7 (4) is
false.

(1) It suffices to show that AUO&EY . Suppose AUOE Y. Then x€0*C
AUO, 0*&€9". But O*NC,#¢: take y&O*NC, Then y&c(C,). Now y&A
and hence y&€0=C¢((,). Thus y&c(C,)NEe(C,), a contradiction.

(2) Since AUOE7 (A4), it follows from Theorem 2.2 that . (AUO)C.7 (A).
It suffices then to show that A€.9 (AUO). Suppose that A&7 (AUJO). Then
there exist O, and O, in 7 such that A=0,U(0,N(4U0)). Now x€&0, and

2&0,NO0 lest x&c(C;). Therefore x&0,NA and hence O,NC;7#¢. Take z&0,
NC,; ; then 2&€c(C,)=0. Thus z&€0,NOCA. Hence 2&C;NA4. But C.NA4=¢,
a contradiction. |

COROLLARY 7.2. Let (X,7) be a space and 5 impJ (A). If €A=C,UC,
where C; and C, are nonempty separated sets, then (1) C, or C, is closed (but
2ot both) and (2) ©A° is disconnected.

PROOF. C, and C, cannot both be closed lest AES . Now C€AFc(EA4)
=c(CPUc(C,). Take x&€ANc(€A4). Assume z&c(Cy). Then x€&C, and hence
C, is not closed. Now A”ﬂc(Cl) =¢ and hence x&(A—A4A°)Nc(C 1). Since
A—A° is indiscrete by (a) of Theorem 3.2, it follows that A—A°Cec(C,). Then
(A-A°)NeC,)=¢ lest ANc(CPNec(CDA~A®#¢ contradicting Theorem 7. 1.
Hence ¢(C,)CEA=C,UC,. Thus ¢(C)CC, and C, is closed. From the proof

of (1), it follows that €4°=c¢(C,)UC, and hence EA° is disconnected.

COROLLARY 7.3. Let (X,.9) be a space and .9 imp.? (A). Suppose CA° is
disconnected. Then €A is disconnected.

PROOF. Let €A°=C,UC, where C;, and C, are disjoint nonempty closed
sets. Now A—A° is indiscrete and contained in €A4°. We may assume A—A°

CC,. But A-A°#C, lest €A=C, and A&€I . Then €4=(C;—(4-4°)UC,
and ©A is disconnected.

COROLLARY 7.4 Let (X,9) be a space and 7 imp? (A). Then €A is
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connected iff €A° is connected.

COROLLARY 7.5. Let (X, 9 ) be a space and 7 imp.7 (A). If A°=¢, then
€A is connected iff X is connected.

COROLLARY 7.6. Let (X,7 ) be a space, 7 imp? (A) and A closed. Ther
X is connected iff A and €A are connected.

PROOF. Sufficiency. Suppose X=0,U0, where O, and O, are nonempty
disjoint open sets. We may assume ACO, and €4CO0,. It follows then that
A=0,&5, a contradiction.

Necessity. We show firstly that €A is connected. Suppose on the contrary
that €4 is not connected. Since €A is open, then €A4=0,U0, where O, and

O, are nonempty disjoint open sets. By Corollary 7.2, we may assume that
O, is closed. Then O, is a clopen proper subset of X and X is not connected.

Next we show that A is connected. Suppose on the contrary that A=E,UE,
where E, and E, are nonempty disjoint closed sets. Since A—A° is indiscrete,
we may assume that A—A° CFE;. Then E,=A°(CE, as the reader can verify.
Hence E, is a proper clopen subset of X.

8. A Closed

THEOREM 8.1. Let (X, 9 ) be a space and A closed in X. If (X, 7 ) is
regular, then (X, 7 (A)) is regular.

This is Theorem 2 in [2]. Note that .7 imp.? (A4) is not required here.

EXAMPLE 8.2. Let X={a,8} and 9 ={$,X}, A={e}. Then (X,J ) Iis
regular, 9 imp? (4), but (X,7 (A)) is not regular. Note that A is not
closed in (X, .9 ).

THEOREM 8.3. Let (X, 9 ) be a space and A a closed subset of X. If I
khas a clopen base, them 9 (A) has a clopern base. (9 imp7 (A) is not needed
here., )

PROOF. Let 2£0,U(0,NA)ET (A4).

Case 1. x&0;. Then there exists a clopen set O* in %~ such that x&€0*CO,
CO,U(0,NA). Then O* is clopen in .9 (4).

Case 2. x¢£0,. Then x&0,NA and hence there exists a clopen set O¥ in 9
such that x&€0%CO0,. Thus x&€0*NACO,NACOU0O,NA4) and O¥NA is



Minimal Simple Extensions of Topologies 53
clopen in .97 (4).
Example 8.2 shows that A closed must be assumed.

THEOREM 8.4, Let (X,.9) be a connected door space. Then .7~ is maximal
relative to connectness.

PROOF. Let S C%, 9 #%, Z a topology for X. We will show that (X,
Z') is not connected. Let A€Z -9 . Then 9 C7 (A)CZ. Since A&,
then A is closed in (X, ). Thus A is clopen in & (4) and (X, 9 (4)) is
not connected. It follows then that (X,%’) is not connected.

THEOREM 8.5. Let (X,.9 ) be extremally disconnected, A a closed subset of
X and 9 imp7 (A). Then 7 (A) is extremally disconnected.

PROOF. Let B; and B, €9 (4), B;NB,=¢. Let c* be the closure operator
in 9 (4). We will show that ¢*(B,)Nc*(B,)=0p.

Case 1. B) and B, are in J". Then ¢*(B,)Nc*(By)Cc(B)Ne(B,y)=¢.

Case 2. B,&7 , B,&7 . By Theorem 4.4, B;=B,"U(4-A°) and B,=B,"U
(A—-A°). Thus B;NB,DA—-A"#¢, a contradiction.

Case 3. B,&5, B,&5 . Then B,=B,"UU(A—A°) again by Theorem 4.4.
Now ¢*(B;)(NB,=¢ and hence ¢*(B)N(A—-A")=¢. Thus ¢*(B)Nc*(4—-A4°)C
c*(BPNe(A—-A°)=c*(BPN(A—A)=¢. Therefore c¢*(B)Nc*(B,)=(c*(B;)N
¢*(B,))U(c*(BpNe*(A—-A°))Ce(BpNe(By ) =9.

EXAMPLE 8.6, Let X={a,0,c} and J ={¢, {8}, X}. Let A={a}. Then (X,

) is extremally disconnected, but .7 (4)=1{9¢, 1ia}, {8}, {a, b}, X} is not. Note
that A is not closed nor does .7 imp.7 (A).

9. A—A° Not Closed

THEOREM 9,1, Let (X, 9 ) be a space, 7 imp.9 (A) and A—A° not closed.
If (X. 7)) is compact (or Lindelof or countably compact), then (X, 7 (4)) is
compact (or Lindelof or countably compact).

PROOF. We will only prove the compact case. Suppose then that X=U {B,
- &4} where B, &9 (A) for all a&4.

Case 1. B,&7 for all a&4. Then clearly X=B, U--UB, for some a4
Case 2. B &7 for some a*&4. It follows from Theorem 4.4 that X=(A4—
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A°)UITU {Bn a&4t]. Since A—A° is not closed, then (A— A“)OB;# for some o
in 4 and hence A-— A”CBQ_,# since A—A° is discrete. It follows then that X =
L) {B : &4} and each B &7 . Compactness of (X. .7 (A4)) is now immediate.

THEOREM 9.2. Let (X, 7)) be a space, .9 imp 9 (A) ard A—A° not closed.
If (X, 7)) is sequentially compact, then (X, 9 (A)) is sequentially compact.

PROOF. It suffices to show that if {x,} is convergent in the space (X,
7 ), then {x,} is convergent in (X, 7 (4)). To this end, suppose lim x =x
in (X, ), but lim x,=y in (X, J (A)) for no y&X. Then for each yEX,
there exists a B =7 (A) such that yEB and x, is not eventually in B But
1EB,E9 (A)— f’ and hence by Theorem 4.4 fs:CB J(A—~A°). Therefore X

A—-4A°. It follows then that X=(A—-A4°) U U{By.yEX} and X = U{B
y&EX} (see the reasoning in Case 2 of Theorem 9.1). But xEB for. some y

and hence x, is eventually in By*, a contradiction.

THEOREM 9.3. Let (X, .7 ) be connected, 9 imp9 (A) and A— A° not closed.
Then (X, 9 )) is connected.

PROOF. Suppose on the contrary that X=B,UB, where B; and B, are in
7 (A), disjoint and nonempty. |

Case 1. B, and B, are in J . Then X is not connected, a contradiction.

Case 2. B{&9, B,&9 . Then by Theorem 4.4, B;=B;U(4—A4°) and B,=
B;U (A—A°) and B,NB,DA—-A°#¢, a contradiction.

Case 3. B&9 , B,£7 . Then B,=B,U(4-A4°) and X=B,UB,U(4-4°).
Then A—-A° is closed, a contradiction.

See Theorem 9 in [2].

THEOREM 9.4. Let (X, 9 ) be normal, 7 imp.9 (A) and A—-A° not closed.
Then (X, 9 (A)) is normal.

PROOF. Let X=B,UB, where B, and B, are in .7 (A).

Case 1. By and B, are in J . Then there exist F; and F, 9 -closed and
hence .9 (4)-closed such that X=F,UF,, F,CB.,

Case 2. By and B, are not in . By Theorem 4.4, B,—B;=A—A4" and
hence X=B,UB,U(4—A4°). It follows then that (A—A°) is closed, a contra-

diction.
Case 3. B,€Y , B,£F (A)—9 . Then B,=B,U(A—-A4°) and X=B,UB,U
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(A-A4°). If B;ﬂ(A-A"):ng», then A—A° is closed, a contradiction. If B;ﬂt
(A—-A°)#¢, then B;DA-A° and X=B;UB, Procede as in Case 1.

See Theorem 5 in [2].

The Ohio State University
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