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MINIMAL EXTENSIONS OF TOPOLOGIES 

By Norman Levine 

1. Introduction 

In [2J , the author introduced the concept of a simple extension ‘5T(A) of a 

topology ..r on a set X (see Definition 2.1). 

A simple extension need not be a minimal extension, that is, there may 

exist a topology 3! on X for which ‘7ζ3!c‘5T(A) ， ‘r~3!~‘r(A) (see 
Example 2.4). It is the purpose of this paper to study simple extensions of 

topology which are minimaI. 

In [2J , the basic problem was to investigate the properties that are preserved 

under simple extensions, that is, if (X, ‘r) has a certain property, when will 

(X’ ‘5T(A)) have the same property? 

In the present paper, we characterize minimal simple extensions (Theorem 

3. 1) and explore basically the same problem for such extensions. 

2. Background 

DEFINITION 2. 1. Let (X,..r) be a space and AζX， A$..r. Then ‘.r(A) is 

the collection of sets of the form 0 1 U(02nA) , 0 1 and O2 in ..r, and is called 

the si때le extension of ..r by A (see [2]). We shall call ‘r (A) a minimal 

simple extension if for each topology 3! for which ‘7ζ3!c‘.r(A)， then ‘5T=3! 

or 3! =..r (A). In this case, we write ‘5Timp..r(A) ιr immediately precedes 
..r (A)). 

THEOREM 2.2. Let (X,.3• ) be a space and ACX, A$‘r. Then 
(1) .3• (A) z's a topology for X 

(2) ..rζ3←(A) and 

(3) ..r(A)=sup{‘r , {Ø, A , X}}. 

This is Theorem 1. 1. 2 in [lJ. 

THEOREM 2.3. Let (X,..r) be a spαce and AζX， A졸‘r. If 3! z's a topology 
for X and ..rζ3!c..r(A)， then ~=‘.r(A) z:ηr AE3!. 

This is Lemma 1. 1. 7 in [lJ. 
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EXAMPLE 2. 4. Let X = {a. b. c} and ‘T= {rþ. {a}.X}. Let B= {b}. Then Y(B) 

is a simple extension of ‘:T. but ‘Timp‘:T (B) is false. 

NOTATION. In a space (X. ‘ :T). W denotes the interior of B. c(B) the 
closure of B and 강B the complement of B. 

3. The Fundamental TheoI'em 

THEOREM 3. 1. Let (X. Y) be a space and ACX. AE;l:Y. Then ‘:TimpY 
(A) (see Dκfz'ni!z'o1Z 2. 1) zfl 

(1) A-Ao z's ùzdiscrete a1i뼈 

(2) 0εT. OUCA-AO )ε:TCA)- ‘7 쩌plz"es that O-Ao and A-Ao are 

separated. 

PROOF. Necessity. Let ‘:Timp‘:T(A) ; (1) we show that A-Ao is indiscrete. 
It suffices to show that 0ε‘r. On(A-AO)~rþ implies that O::J(A-AO). Let 

then bεOn(A-AO ). 0ε:T and aεA-AO . Now OnA졸‘:T lest bεonACAO

. 

Hence Yι:TCOnA)ζ:T (A) and since ‘T~YCOnA). it follows that ,;7"CO 

nA)=YCA). But AεT CA) and therefore AεY(OnA). Thus there exist 

0 1' O2 in Y such that A=01 uco2n COnA)). If a줄O. then aε01CAO ， a con­

tradiction. Thus A-AoCO. (2) Suppose 0εY and OUCA-AO)EYCA)-Y. 

If OnCA-AO)~rþ， then 。그(A-AO ) and OUCA-AO)=OεT， a contradiction. 

Hence On(A-AO)=rþ and Onc(A-AO)=rþ. It follows then that (O -AO)nc(A 

_AO)=rþ. We show now that CA-AO)ncCO-AO)=rþ. Now ‘:TCYCOUCA­

A
O

))ι:TCA) and since OUCA-AO )졸‘Y-， then ‘:T~‘Y-COUCA-AO )). It foIlows 
then that YCA)=YCOUCA-AO)) and AεY-(OUCA-AO )). There exist then 

0 1 and O2 in ‘Y- for which A=01 U(02nCOUCA-AO)))=01 u C02n O) UC02nCA­

A O)). Since A졸‘Y-， it foIIows that 02nCA-AO)7얘 and by (1) ahove, OZ그CA 

_AO). It suffices to show that O:2;nCO-AO)=rþ. But 02nCO-AO)ζ0-ηOCA。

and 0ιnCO-AO)C강AO . Thus 02nCO-AO)=rþ. 

Sufficiency. Suppose (1) and (2) hold. We will show that YimpYCA). 

Suppose ‘Y-C~cYCA) and ‘Y-~~. By Theorem 2.3, it suffices to show that 

Aεliì'. Let U*=Or* U COz*nA)Eliì' -Y, Or*ει:T， O2
용εY. Then U*=Or* U 

co/nAO)Uco/nCA-AO)) and hence 0감nCA-AO)~rþ lest U*ε」?. By (l) 

of그A-AO and U*=01*UCO센AO)UCA-AO )εY-CA) -Y. Let O=ol*Ucotn 
A O) ; then OUCA-AO

)εYCA)-Y and by (2) , CO-AO) and (A--A O) are 

separated. Thus CA-AO)ncCO-AO)=rþ. Now A O u (U*n~c(O -Ao ))Eliì' and 

AOucu*n강cCO-AO )) =Ao UCCOU (A- AO)) n ~cCO-AO)) =Ao uconεcCO-AO

)) 
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UC4-AO)=AOU ((O-AO)n강c(O-AO )) U((OnAO)n강c(O-AO )) U (A-AO)=Ao­

U(A-AO)=A. Hence AεW. 

COROLLARY 3.2. Let (X,..5T) be a space and AζX， AE，t:‘!T. Then ‘!Timp‘:T(A) 

術 (a) A-Ao is indiscrete and (b) 0ε:T， OU(A一 AO)ε:T(A)- ‘:T z.mPUes 

that (A-AO)nc(O-AO)=cþ. 

PROOF. If ‘:Timp‘:T(A) , then (a) holds by (1) of Theorem 3.1 and (b) 

holds by (2) of Theorem 3. 1. Now let (a) and (b) hold. By Theorem 3.1, 
it suffices to show that (O -AO)nc(A-AO) =cþ when 0ε:T and OU(A­

AO )ε:T(A) -..5T. But by (a) , On(A-AO)=cþ and thus Onc(A-AO)=cþ. Hence 

(0- AO) nc(A - A O) =cþ. 

COROLLARY 3.3. Let (X,..5T) be a space and ACX, A졸‘!T. 11 ..5Timp..5T(A) , 
and (X，5'η is separable, then (X ,..5T(A)) z.s separable. 

PROOF. Let {Xi : i르 1} be dense in (X ,..5T) and take yεA-AO. Then {y} U 

{잔 : Z르 1} is dense in (X , ..5T(A)). For let (67" 0 1 U (02nA)ε3τA). Then 01U 

(02nA) =01 U (02nAO) u(Ozn (A-AO)). 

Case 1 : 02n(A一 AO)=cþ， Then (01 U(02nAO))n {Xi : z.르 1} 7" cþ. 

Case 2: 02nCA-AO)낯cþ. Then by (1) of Theorem 3. 1, O2그A-A
O and yE 

01 U (02nA). 

See Theorem 8 in (2] in this connection. 

EXAMPLE 3.4. Let X be an infinite set and x* a fixed element of X. If 
‘:T={O: OCX and 였줄o or 셨EO and 강o is finite} , then ‘:Timp..5T(A) for 

no ACX. 

PROOF. Let X싹εA and let 강A be infinite. Then 강A=B1 UB2 where B1nB2 
=(6, B1 and B2 both being infinite. Let O=AoUB!. Then OU(A-AO )ε..5T(A) 

-‘r , but O-Ao and A一AO are not separated for 였든(A-AO)nc(O-AO ). 

(See (b) of Corol1ary 3.2.) 

• 

COROLLARY 3.5. Let (X ,..5T) be a space ánd AE,t:‘:T. 11 ‘:Timp..5T(A) , CζA. 

CU강A ηot closed, theχ CCAO. 

PROOF. An 강C종..5T and hence (AOn~C)U((A-AO)n~C)E，t:..5T. It fol1ows 

then from (a) of CoroIIary 3.2 that A一AOC강C and thus (A-AO)nc= <þ. Hence 

CCAO• 

COROLLARY 3.6. Let (X ,..5T) be a space alld A E,t:..5T. Foγ eαch 0ε ..5T， suppose 
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AcO or OCA. Then Yimp‘r(A). 

PROOF. We emplûy Corollary 3.2. 

(a) Suppose On(A-AO)~Ø. Then Oct.A lest OCAo
• Thus ACO and A-A。

CO. Hence A - A 0 is indiscrete. 

(b) Suppose 0εr and OU(A-AO )εY(A)- ‘r. 

Case 1. AζO. Then OU(A-AO)=Oεr， a contradiction. 

Case 2. OCA. Then OCA o and O-A' =ø. Thus O-Ao and A-Ao are 
separated. 

Corollary 3.6 yields the following. 

EXAMPLE 3.7. Let X be the reals and let ‘r={o:o=ø, O=X orO=(-∞， 

a) for some aεX}. Let A=(-∞， 1]. Then YimpY(A). 

COROLLARY 3.8. Let (X, Y) be a space with the following property: 0ε7 

쩌Plies that 강0εr. If A~‘r， then Yimp‘r(A) z!f A-Ao z's z"1zdiscrete. 

PROOF. We employ Corollary 3.2. Let 0εr and OU(A-AO )흩‘r. But 

(A-AO)nc(O-AO)=(A-AO)n(O-AO) (since O-Ao is cIosed). If (A-AO)nCO 

-AO) o/=Ø, then OU(A-AO)=OεY since A - A 0 is indiscrete. 

COROLLARY 3.9. Let (X , Y) be a s엉acewz"!h the followz'ng property: Ø~OCB 

ζX， 0εr z'mPUes that Bεr. (For exanφle， Y is the cojz'nz"te, or cocountable 

topology.) If {감} 양‘r， the:z ‘rimpY({셨}). 

PROOF. (a) {x*} - {x하。 ={x하 and is indiscrete. (b) If 0εr and OU {x*} 

~Y， then O=ø and 0- {x하。 and {x*} - {x*} 0 are separated. 

COROLLARY 3. 10. Let (X, Y) be a space and A풍ιr. Then Y(A) =YU {A} 

z!f (1) 0εr， On(A-AO ) 낯# 쩌zpUes that 0:그A and (2) on강A~Ø implz'es that 

OUAεr. 

PROOF. Suppose that Y(A)=YU {A}. 

(1) Supoose that 0εr and 0 n (A - A 0) o/=ø. Then by (a) of Corollary 3. 2, 
。그A-AO . But onA=(A-AO)UCOnAO )ε3’-U {A}. If 。그A。’ then 。그A. If 

O~AO ， then onA~A and hence onAε3’-. Thus (A-AO)UCOnAO )ε51 and 

(A-AO)U(OnAO)UAO =Aεr， a contradiction. 

(2) Suppose on강Ao/=Ø. Then OUAεY(A)-{A}=‘r. Conversely, suppose 

that (1) and (2) hold. Let 0 1 U COznA)ε37(A)-37. If O2n(A-A。)=@， then 

01 U (02nA)εY， a contradition. Hence O2그A and thus 0 1 UAεY(A)-..:T， 
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and OlUA졸‘:T. By (2) , oln강A=rþ and OlCA. Hence OlUCOZnA)=A. 

COROLLARY 3.11. Let CX, Y) be a space of the first category and sχppose 

that ‘:Timp‘rCA). Tlzen YCA) is of the first categoγy zff CA-AO)ncCAO)~rþ. 

PROOF, Sufficiency. Let X = U {Fi : i르 1} where 강F2εY for a11 i. Then Fi 

is cIosed in CX,YCA)) for each i. Suppose further that the ‘:T -int 진=rþ for 

each i. We will show tha t the Y CA) - in t 판매 for each i. Suppose on the 

contrarythat rþ~01U C02nA)CFi for some i. Then 02nCA-AO)~rþand by Ca) 

of Coro11ary 3.2, O2그A-A
O • Then o2nAo~rþ and Fi has a nonempty 

‘r - int, a contradiction. 
Necessity. Suppose that CA-AO)ncCAO)=rþ. Now Aε.rCA) and A-cCAO )ε 

‘:TCA). It fo11ows then that A-A。ε3τA). It is clear tha t A - A 0 is indiscrete 

in ‘.r CA) as we11 as in Y. Suppose that X = U {F;* : 껄 1}, where 강Fzfε.rCA) 

for a11 i. It fo11ows that A-AOCF;* for some z' and hence the YCA)-intFi쌓rþ. 

Thus CX, YCA)) is not of the first category. 

LEMMA 3.12. Let CX, ‘:T) be a space and 감εX. Supþose {감} is not cl osed, 
but x*εoεY implz"es that cC {감} )CO. Then Yimp‘:TC {셨}UεcC {x*})) and 

Yimp‘:T C강 {상}). 

PROOF. See Coro11ary 5.4 and Corollary 6.4. 

LEMMA 3.13. Let CX, Y) be a first axiom Hausdorff space. Then YimpYCA) 

for lZO ACX. 

PROOF. Suppose on the contrary that ‘:Timp‘.r CA) for some AEEY. Then 
강A is not closed; take aεAncC강A). Then there exists a sequence of distinct 

points xiε강A such that a=limx;. LetE={a, xZ'x4, x6, ... }. ClearlyEiscompact 

and hence closed in CX’‘:T). Let 0=강E. Then OUCA-AO)=OUA since AOC 

O. But OUAε:TCA)- ‘r Cif OUAε:T， then xi is eventua11y in OUA). Thus 

OUCA-AO)ε.rCA) -Y, but aεCA-AO)ncCO-AO ) Ca=lim xZi +1)' This con­

tradicts Cb) of Coro11ary 3. 2. 

See Theorem I. 4. 3 in [1]. 

THEOREM 3. 14. Let CX, ‘:T) be a fiγst axiom space and regulaγ• Tlzeη CX,Y) 

is Haκsdoκff iff ‘.rimpYCA) for lW AζX. 

PROOF. The necessity fo11ows from Lemma 3.13. 
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Sufficiency. That (X, ‘:T) is a T1 space follows from Lemma 3.12. T 1 plus; 

regular implies Hausdorff. 

COROLLARY 3. 15. Let (X,.!T) be metrz"zable. Then ‘;Tïmp‘r (A) for lZO ,. 

AζX. 

4. A O =ø 

THEOREM 4.1. Let (X , Y) be a space aná A종‘r. If AO =ø, then .!Timp‘:T(A) , 

zff (1) A z's z'ndz'screte and (2) OUA졸‘:Tz'ηzpUes that 0 and A are separated 
μ)henever 0εY. 

PROOF. This follows from Theorem 3.1 and the fact that OUA always is , 

in YCA). 

COROLLARY 4.2. Let (X , ‘:T) be a space and {x} 졸.!T. Then ‘7"ïmpYC {x}) ‘ 
zff 0ε:T and OU{x} 졸Y z'mPUes that x$.c(O). 

COROLLARY 4.3. Let (X , ‘r) be a space, Ø~Aζ0*， A~O*E‘:T a쩌 O*,­

mz'nz'mal open. Then ‘rimpY(A). 

PROOF. Firstly, AE;흔‘:T and A 0 =ø. We show that A is- indiscrete. Suppose 

oεY and OnA~ø. Then ono*얘 and since Q* is minimal open, it follows 

that 。그ono*=o*그A. 

Secondly, suppose 0ε:T and OUA종‘r. Now onA=ø lest 。그A and OUA 
εY. Hence ono*=ø and Anc(O)=ø. It follows then that 0 and A are 

separated. 

THEOREM 4.4. Let CX, Y) be a space and ‘rimp‘r(A). Sμ:ppose BCX and; 
B。그AO . Then Bε.!T(A) -.!T z'ff B一BO=A-AO •

PROOF. Necessity. (B。그AO is not used in this part of the proof.) Let Bε 

YCA)-Y. Then .!TζYCB)C‘r(A) and ‘r~‘:TCB). Hence ‘r(B)= ‘rCA) 

and BεTCA)， AεY(B). 

Thus B=OlU (02nA) for some Oiεr and B=Ol UC02nAO)UCA-AO). But 

B=BO UCB-BO). It follows then that B-B。ζA-A
O

.

AIso, A=Ot*U (O강nB) =Ot*U (0양nBO)U CB-Bo )=Ao UCA-AO). It follows 

that A-AoCB-Bo and hence A-Ao=B-Bo. 

Sufficiency. Let A-Ao=B-Bo. Then B-Bo~Ø and B$.!T. We show that 
BεYCA). Now B=BoU (B-BO)=BoUAoUCA-AO)=BoUAε:T(A). 

COROLLARY 4.5. Let CX, ‘:T) be a space, YimpY(A) a1Zd AO =ø. Let BCX. 
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Then BεYCA)-‘r iff B-Bo=A. 

PROOF. This follows from Theorem 4.5 and the fact that B。그AO • 

COROLLARY 4.6. Let CX, Y) be a space and ‘rimp‘rCA). If AO =tþ, then 

A is the smallest member of ‘rCA)-Y. 

PROOF‘. Let BεrCA)-‘r. Then B그B-B O =A by Corollary 4.5. 

5. A Indiscrete 

THEOREM 5. 1. Let CX, ‘r) be a space, ACX, AU강cCA)양Y and A z.ndiscrete. 

Then ‘rimp‘rCAU강cCA)). 

PROOF. Let zf be a topology for X for which YcZfcYCAU강cCA))’ ‘r =;6Zf. 
Let U=Ol U C02nCAU강cCA))εZf-Y. Then ‘7ι':TCU)CZfC‘rCAUé:cCA)). 

By Theorem 2.3, it suffices to show that A U강cCA)ε:TCU). Now 02nA=;6 tþ 

lest Uε:r. Hence O2그A. OlnA=tþ lest Uεr. It follows then that OlncCA) 

=tþ and OlC강cCA). Thus A UεcCA) =강cCA)U C02n C01 U C02 nCAU강cCA)))) = 

강cAUCO끼U)εrCU). 

COROLLARγ 5.2. Let CX, ‘:T) be a space, A iηdiscrete and cCA) - A not ‘ 

closed. Then .rimp‘':TCAU강cCA)). 

PROOF. We need only show that AU강c(A)$Y. But 강CAU강cCA)) =cCA) n! 

강A=cCA)-A which is not cIosed. 

COROLLARY 5.3. Let CX, Y) be a space and x*εX. If cC {x*} ) - {x*} z's not ‘ 

closed, then ‘rimpYC{셨}UεcC{셨})). 

PROOF. This follows from Corollary 5.2 and the fact that {x펙 is indiscrete. ‘ 

COROLLARY 5.4. Let CX, ‘ ':T) be a space and {x*} not closed. If x*εoε:T， 

then cC {셨} )CO. Then ‘:T imp C{셨} Ué:cC {셨})). 

PROOF. We use Theorem 5. 1. If {감}U강cC{셨})εy， then cC{양})={셨} 

and {x*} is cIosed. 

COROLLARY 5.5. Let CX, Y) be a space and A z'ndz.screte. If A풍‘.r and is 

dense, then YimpYCA). 

PROOF. A=AU 강cCA)$Y. By Theorem 5. 1, ‘:Timp‘rCAU강cCA)) =‘rCA)ι 
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6. 강A Indìscrete ’ 

LEMMA 6. 1. Let CX, ‘:T) be a space, A졸‘:T， 강A indiscrete. Then YimpY CA) 

짜f 강ACOεY， onA졸‘:T z'mpUes that X=AoUO. 

PROOF. Necessity. Let 강ACOε:T and onA풍‘:T. It suffices to show that 

A-AOCO. By Ca) of Corollary 3.2, it suffices to show that CA-AO)nO i"" rþ. 

Now onA=conAO)UCOnCA-AO ))풍ι'T. It foUows then that onCA-AO )용rþ. 

Sufficiency. Suppose ~ is a topology for X and ‘:TCZ!ζYCA)， Yi""~. We 

τ:v ill show that 31 = ‘:TCA). By Theorem 2.3, it suffices to show that Aε~. 

Let [앤ε'1/ -Y. Then u*=or* ucoz* nA) where 0πεY. It follows that 0강 

:nA졸Y and hence 0감<tA. Thus oz*n강A뼈 and since 강A is indiscrete, it 

follows that Oz*그강A. Thus 강ACOZ* and o z*nAf;fY. Hence X =Ao UOz*. 
'Now Otn~A=rþ. If not, then 0감그강A and U*=Or* U co강nA)=ol*UCOZ*-
강A)=Ol*UOz*εY， a contradiction. Hence D1*CA. Since X=Ao UO감， it 

follows that A=CAo nA)Ucoz* nA)=Ao ucoz*nA)=Ao uo1*ucoz*nA)=Ao U 
，u*ε31. 

THEOREM. 6. 2. Let CX’ ‘:T) be a space a1Zd A졸‘:T. Assume 강A is Í1zdiscrete. 

7hen ‘:Timp‘:TCA) 짜f~ACOε:T， OnAf;fY impUes that cC강A)CO. 

PROOF. Necessity. Suppose (강ACOε..;r and onA롤‘9'. Then by Lemma 

‘ 6.1 , X=AoUO. ButcC강A)CcC강AO )=강AOcO. 

Sufficiency. Suppose êACOε:T and OnAf;fY. By Lemma 1,. it suffices 

to show that X=AoUO. Now cC강A)CO and A O ncc강A) =rþ. Therefore X = 

강AOU강cC강A)COUAOCX. 

COROLLARY 6.3. Let CX, ....,4') be a spαce and A$Y. 11 강A z's z'ndiscrete and 

N ‘~Aζ0εY impUes cC강A)CO， thelZ ‘:TimpYCA). 

COROLLARY 6.4. Let CX, ‘:T) be a space and x*EX. 11 {셨} z's not closed a1Zd 

었εoε'T i쩌Ues that cC {셨} )CO, the1Z ‘:Timp‘:T C강{셨}). 

See Theorem 1. 2. 3 in [1]. 

COROLLARY 6.5. Let CX, ‘:T) be regular and {x*} not closed. Then 

， Yimp‘rC강 {셨}). 

7. Connectedness 

THEOREM 7. 1. Let CX, Y) be a space, ACX and ‘:TimpYCA). 51φpose 
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C 1 and C2 are separated subsets 01 강A. Then C(C1)nc(C2)nA=ø. 

PROOF. Sllppose on the contrary that xεc(C1) nC(C2) nA. Let 0=강c(c2). 
We will show that (1) YζY(AUO) and ‘:T=p‘r(AUO) and (2) ‘r(AUO) 

cY(A) and ‘:T(AUO) =p‘:T(A). (1) and (2) imply that ‘:TimpY (A) is 

false. 

(1) It suffices to show that AUO종‘!T. Suppose AUOε:T. Then xε0*ζ 

AUO, 0*ε:T. But 0*nc2낯ø; take yε0*nc2• Then yεc(C2). Now ygEA 

and hence yε0=강c(C2). Thus yεc(c2)n강c(C2) ， a contradiction. 

(2) Since AUOεfτA) ， it follows from Theorem 2.2 that ‘r(AUO)CY(A). 

1t suffices then to show that A E;l:Y(AUO). Suppose that Aε:T(AUO). Then 

there exist 0 1 and O2 in ‘r such that A=Ol UCO씨 (AUO)). Now xE;l:01 and 

X풍02no lest x종C(C1). Therefore xε02nA and hence 02nc1 =PØ. Take zεO2 
nC1 ; then zε강c(C2) =0. Thus zε02nocA. Hence zεc1 nA. But c1nA=ø, 
a contradiction. 

COROLLARY 7.2. Let (X, ‘:T) be a s양ace and Yimp.!T(A). 11 강A=C1UC2 
where C1 and C2 are 1Zonempty separated sets, then (1) C1 or C2 is closed (bμt 

1Z0t both) alzd (2) 강AO is dz'scon1zected. 

PROOF. C1 and C2 cannot both be dosed lest Aε:T. Now 강A=pc(~A) 

=C(C1)UC(C2). Take xεAnc(강A). Assume xεC(C1). Then x롤C1 and hence 

C1 is not closed. Now A O nc(C1) =ø and hence xε(A-AO)nc(C1). Since 

A-AO is indiscrete by (a) of Theorem 3.2, it follows that A-AOCc(C1). Then 

(A-AO)nc(C2)=ø lest Anc(C1)nc(C2)그A-A。낯ø contradicting Theorem 7. 1. 

Hence c(C2)C강A=C1 UC2. Thus c(C~CC2 and C2 is closed. From the proof 

.of (1), it follows that 강AO =c(C1)UC2 and hence 강A 0 is disconnected. 

COROLLARY 7.3. Let (X, Y) be a space and ‘rimpY(A). S째pose 강AO is 

disco1Z1zected. Then 강A is disconnected. 

PROOF. Let 강AO =C1 UC2 where C1 and C2 are disjoint nonempty closed 

sets. Now A-Ao is indiscrete and contained in ~Ao. We may assume A-A。

ζC1. But A-A。낯C1 lest 강A=C2 and AεY. Then 강A=(C1 -(A-A
O ))UC2 

and 강A is disconnected. 

COROLLARY 7.4 Let (X, ‘:T) be a space a쩌 ‘:TimpY(A). Then 강A is 
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comzected zfl 강AO is connected. 

COROLLARY 7.5. Let (X, ‘~) be a space and ‘.9""imp‘.9"" (A). 11 A O =rþ, theκ 

강A is connected zfl X is connected. 

COROLLARY 7.6. Let (X, ‘.9"") be a space, ‘.9""impY(A) and A closed. Then 

X is connected zfl A and 강A are connected. 

PROOF. Sufficiency. Suppose X =01 U02 where 0 1 and O2 are nonempty 

disjoint open sets. We may assume AC01 and 강ACO;z. It follows then thàt 

A=OlEY, a contradiction. 

Necessity. We show firstly that εA is connected. Suppose on the contrary 

that ~A is not connected. Since 강A is open, then 강A=Ol U02 where 01 and 

O2 are nonempty disjoint open sets. By Corollary 7.2, we may assume that 

0 1 is closed. Then 0 1 is a clopen proper subset of X and X is not connected. 

Next we show that A is connected. Suppose on the contrary that A=E1 UE2 
where E 1 and E 2 are nonempty disjoint closed sets. Since A-Ao is indiscrete, 

we may assume that A-Ao CE l" ThenE2=A
o nεE1 as the reader can verify. 

Hence E 2 is a proper clopen subset of X. 

8. A Closed 

THEOREM 8. 1. Let (X, ‘.9"") be a space and A closed z'n X. 11 (X, ‘.9"") is 

regular, then (X , ‘.9""(A)) is regμlar. 

This is Theorem 2 in [2]. Note that ‘.9""imp...9τA) is not required here. 

EXAMPLE 8. 2. Let X = {a, b} and ‘r={rþ, x }, A={a}. Then (X,Y) is 

regular, ‘.9""imp‘.9""(A) , but (X,Y(A)) is not regular. Note that A is not 

closed in (X, Y). 

THEOREM 8.3. Let (X, ‘r) be a space and A a closed subset 01 X. 11 Y 

has a clopen base, then Y(A) has a clopm base. (‘.9""impY(A) is not needed 

here.) 

PROOF. Let xε01 U C02nA)ε.9"" (A). 

Case 1. xε01， Then there exists a clopen set 0* in ‘~ such that xε0%IOl 

ζ01 U C02nA). Then 0* is clopen in ‘~(A). 

Cαse 2. x~Ol' Then xε02nA and hence there exists a c1open set O# in f­

such that xε0#CO2· Thus xε0#nAc02nAC01 U C02nA) and O#nA is 

• 
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clopen in ‘9""' (A). 

Example 8.2 shows that A closed must be assumed. 

THEOREM 8.4. Let (X, ‘9""') be a connected door space. Then ‘9""' z.s maximal 

?’elative to connectness. 

PROOF. Let ‘rc~’ ‘r~~， ~ a topology for X. We w iII show that CX, 

~) is not connected. Let Aε~-‘9""'. Then ‘7ι9""'CA)C~. Since A종‘r， 

then A is closed in CX, ‘9""'). Thus A is clopen in ..:T(A) and (X , ‘rCA)) is 

not connected. It foIIows then that (X，~) is not connected. 

THEOREM 8.5. Let CX, ‘r) be extγemally disconnected, A a closed subset of 

X and ..:Timp‘rCA). Theχ ‘r (A) is extreηzally disconnected. 

PROOF. Let Bl and B 2 ε9""'(A) , B1nB2=rþ. Let c* be the closure operator 

in ‘rCA). We w iII show that c*CB1)nc*CB2)=rþ. 

Case 1. Bl and B2 are in ..:T. Then c*(B1) nc*(B2)CcCB1) nc(B2) =rþ. 

Case 2. B1줄‘9""'， Bl$ . ..:T. By Theorem 4.4, B1=B1
0 UCA-AO) and B2=B2

0 U 

(A-AO). Thus BlnB2::JA-Ao~rþ， a contradiction. 

Case 3. Blε9""'， B2훌‘r. Then B2=B2
0 U CA - A O) again by Theorem 4.4. 

Now c*(B1)nB2=rþ and hence c율(B1)nCA-AO)=rþ. Thus c*(B1)nc*(A-AO)C 

c*(B1)nc(A-A
O )=c융CB1) n CA - A O) =rþ. Therefore c*(B1) nc*(B2) = Cc*CB1) n 

c*(B2
0
)) U Cc*(B1) nc*(A - A O ))Cc(B1) nc(B2

0
) =rþ. 

EXAMPLE 8. 6. Let X = {a, b, c} and ‘r={rþ, {b}, X}. Let A={a}. Then (X, 

..:T) is extremaIIy disconnected, but ..:TCA) = {rþ, {a}, {에 , {a, b} , X} is not. N ote 

tha t A is not closed nor does ‘9""'imp.‘r(A). 

9. A-Ao Not Closed 

THEOREM 9.1. Let (X, ..:T) be a space, ‘rimp‘9""'(A) and A-Ao 1ZOt closed. 

lf CX. ‘r) is compact (or Lindelof or countably compact) , then (X, ‘r(A)) is 

compact Cor Lindelof or countably compact). 

PROOF. We wilI only prove the compact case. Suppose then that X = U {Bα 
: αεLI} where Baεr(A) for aII αεLI. 

Case 1. Baε..:T for aII aεLI. Then clearly X = B a, U ... U B，따 for some αiεLI. 

Case 2. Ba*풍‘9""' for some 암εLI. lt foIIows from Theorem 4.4 that X=(A-
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AO)U [U {Bα : αεLl} ]. Since A - A 0 is not closed, then CA 一 AO)nBα# for some α# 

in Ll and hence A-AoCBα# since A-Ao is discrete. It folIows then that X= 
니 {Bα : αεLl} and each B aεY. Compactness of CX. YCA)) is now immediate. 

THEOREM 9.2. Let CX, ‘r) be α space, ‘rimpYCA) αnd A-Ao not closed. 

If CX, Y) is sequentz'ally compact, thelZ CX, YCA)) is sequentially compact. 

PROOF. It suffices to show that if {xn} is convergent in the space CX, 

‘r) , then {Xn} is convergent in CX, YCA)). To this end, suppose lim Xn=X 

in CX, ‘r) , but lim Xn=y in CX, ‘;T'CA)) for no yεx. Then for each yεX， 

there exists a B yεYCA) such that yεBy and xt is not event때ly in By. But 
xεBxεrCA)-‘;T' and hence by Theorem 4. 4 xεBxUCA-AO ). Therefore Xε 

A-AO. It follows then that X=CA-AO) U U{By:yεX} ， and X=U{BZ : 
yεX} Csee the reasoning in Case 2 of Theorem 9.1). But XεBy* for. some y싹 

and hence Xn is event뻐ly in By*' a contradiction. 

THEOREM 9.3. Let CX, ‘r) be connected, ‘rimp‘;T'CA) and A一AO not closed. 

Then CX, ‘r)) is connected. 

PROOF. Suppose on the contrary that X =Bl UB2 where B1 and B2 are in 

‘ ;T'CA) , disjoint and nonempty. 

Case 1. Bl and B2 are in ‘r. Then X is not connected, a contradiction. 
Case 2. Bl풍Y， BlEY. Then by Theorem 4.4, B1=B ì. UCA-AO) and B2= 

B2UCA-AO
) and B1nB2그A - A 0 ~ø， a contradiction. 

Case 3. B품Y， B2든Y. Then Bl=B씨CA-AO ) and X=B2U허UCA-AO ). 
Then A - A 0 is closed, a contradiction. 

See Theorem 9 in [2]. 

THEOREM 9. 4. Let CX’ ‘;T') be normal, ‘rimpYCA) and A-Ao not closed. 
Then CX, YCA)) is normal. 

PROOF. Let X=B1 UB2 where Bl and B2 are in ‘rCA). 

Case 1. B1 and B2 are in ‘r. Then there exist F1 and F2 Y-closed and 

hence ‘;T'CA)-closed such that X=F1UF2’ 
FiCBi• 

Case 2. Bl and B2 are not in Y. By Theorem 4.4, Bi-Bí=A-Ao and 
hence X=B~UB;UCA-Æ). It follows then that CA-AO) is closed, a contra­

diction. 

Case 3. B1ε5T， BzεrCA)-‘5T. Then B2=B2UCA一 AO) and X=B1UB2U 
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CA-AO). If BìnCA-AO)=tþ, then A-Ao is cIosed, a contradiction. 

CA-AO)~tþ， then B1그A-A
O and X=B1UB2• Procede as in Case 1. 

If B1n ‘ 

See Theorem 5 in [2]. 

The Ohio State University 
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