MINIMAL SIMPLE EXTENSIONS OF TOPOLOGIES

By Norman Levine

1. Introduction

In [2], the author introduced the concept of a simple extension $\mathscr{T}(A)$ of a topology \mathscr{T} on a set X (see Definition 2.1).
A simple extension need not be a minimal extension, that is, there may exist a topology \mathscr{U} on X for which $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A), \mathscr{T} \neq \mathscr{U} \neq \mathscr{F}(A)$ (see Example 2.4). It is the purpose of this paper to study simple extensions of topology which are minimal.
In [2], the basic problem was to investigate the properties that are preserved under simple extensions, that is, if (X, \mathscr{T}) has a certain property, when will ($X, \mathscr{T}(A)$) have the same property?
In the present paper, we characterize minimal simple extensions (Theorem 3.1) and explore basically the same problem for such extensions.

2. Background

DEFINITION 2.1. Let (X, \mathscr{T}) be a space and $A \subset X, A \notin \mathscr{T}$. Then $\mathscr{T}(A)$ is the collection of sets of the form $O_{1} \cup\left(O_{2} \cap A\right), O_{1}$ and O_{2} in \mathscr{T}, and is called the simple extension of \mathscr{T} by A (see [2]). We shall call $\mathscr{T}(A)$ a minimat simple extension if for each topology \mathscr{U} for which $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A)$, then $\mathscr{T}=\mathscr{K}$ or $\mathscr{U}=\mathscr{I}(A)$. In this case, we write $\mathscr{T} \operatorname{imp} \mathscr{T}(A)(\mathscr{T}$ immediately precedes $\mathscr{T}(A))$.

THEOREM 2.2. Let (X, \mathscr{T}) be a space and $A \subset X, A \notin \mathscr{T}$. Then
(1) $\mathscr{T}(A)$ is a topology for X
(2) $\mathscr{F} \subset \mathscr{T}(A)$ and
(3) $\mathscr{F}(A)=\sup \{\mathscr{F},\{\phi, A, X\}\}$.

This is Theorem I. 1.2 in [1].
THEOREM 2.3. Let (X, \mathscr{T}) be a space and $A \subset X, A \notin \mathscr{T}$. If \mathscr{G} is a topology for X and $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A)$, then $\mathscr{U}=\mathscr{T}(A)$ iff $A \in \mathscr{U}$.

This is Lemma I. 1.7 in [1].

EXAMPLE 2.4. Let $X=\{a, b, c\}$ and $\mathscr{T}=\{\phi,\{a\}, X\}$. Let $B=\{b\}$. Then $\mathscr{T}(B)$ is a simple extension of \mathscr{T}, but $\mathscr{T} \operatorname{imp} \mathscr{T}(B)$ is false.

NOTATION. In a space $(X, \mathscr{T}), B^{\circ}$ denotes the interior of $B, c(B)$ the closure of B and $e B$ the complement of B.

3. The Fundamental Theorem

THEOREM 3.1. Let (X, \mathscr{T}) be a space and $A \subset X, A \notin \mathscr{T}$. Then \mathscr{T} imp \mathscr{T} (A) (see Definition 2.1) iff
(1) $A-A^{\circ}$ is indiscrete and
(2) $O \in \mathscr{T}, O \cup\left(A-A^{\circ}\right) \in \mathscr{F}(A)-\mathscr{T}$ implies that $O-A^{\circ}$ and $A-A^{\circ}$ are separated.

Proof. Necessity. Let $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$; (1) we show that $A-A^{\circ}$ is indiscrete. It suffices to show that $O \in \mathscr{T}, O \cap\left(A-A^{\circ}\right) \neq \phi$ implies that $O \supset\left(A-A^{\circ}\right)$. Let then $b \in O \cap\left(A-A^{\circ}\right), \quad O \in \mathscr{G}$ and $a \in A-A^{\circ}$. Now $O \cap A \notin \mathscr{T}$ lest $b \in O \cap A \subset A^{\circ}$. Hence $\mathscr{T} \subset \mathscr{T}(O \cap A) \subset \mathscr{T}(A)$ and since $\mathscr{G} \neq \mathscr{T}(O \cap A)$, it follows that $\mathscr{F}(O$ $\cap A)=\mathscr{T}(A)$. But $A \in \mathscr{T}(A)$ and therefore $A \in \mathscr{T}(O \cap A)$. Thus there exist O_{1}, O_{2} in \mathscr{T} such that $A=O_{1} \cup\left(O_{2} \cap(O \cap A)\right)$. If $a \notin O$, then $a \in O_{1} \subset A^{\circ}$, a contradiction. Thus $A-A^{\circ} \subset O$. (2) Suppose $O \in \mathscr{T}$ and $O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$. If $O \cap\left(A-A^{\circ}\right) \neq \phi$, then $O \supset\left(A-A^{\circ}\right)$ and $O \cup\left(A-A^{\circ}\right)=O \in \mathscr{T}$, a contradiction. Hence $O \cap\left(A-A^{\circ}\right)=\phi$ and $O \cap c\left(A-A^{\circ}\right)=\phi$. It follows then that $\left(O-A^{\circ}\right) \cap c(A$ $\left.-A^{\circ}\right)=\phi$. We show now that $\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)=\phi$. Now $\mathscr{F} \subset \mathscr{F}(O \cup(A-$ $\left.A^{\circ}\right) \subset \mathscr{T}(A)$ and since $O \cup\left(A-A^{\circ}\right) \notin \mathscr{T}$, then $\mathscr{T} \neq \mathscr{T}\left(O \cup\left(A-A^{\circ}\right)\right)$. It follows then that $\mathscr{F}(A)=\mathscr{T}\left(O \cup\left(A-A^{\circ}\right)\right)$ and $A \in \mathscr{T}\left(O \cup\left(A-A^{\circ}\right)\right)$. There exist then O_{1} and O_{2} in \mathscr{T} for which $A=O_{1} \cup\left(O_{2} \cap\left(O \cup\left(A-A^{\circ}\right)\right)\right)=O_{1} \cup\left(O_{2} \cap O\right) \cup\left(O_{2} \cap(A-\right.$ $\left.A^{\circ}\right)$). Since $A \notin \mathscr{T}$, it follows that $O_{2} \cap\left(A-A^{\circ}\right) \neq \phi$ and by (1) above, $O_{2} \supset(A$ $\left.-A^{\circ}\right)$. It suffices to show that $O_{2} \cap\left(O-A^{\circ}\right)=\phi$. But $O_{2} \cap\left(O-A^{\circ}\right) \subset O_{\cap} \cap O \subset A^{\circ}$ and $O_{2} \cap\left(O-A^{\circ}\right) \subset e^{\circ}$. Thus $O_{2} \cap\left(O-A^{\circ}\right)=\phi$.

Sufficiency. Suppose (1) and (2) hold. We will show that $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. Suppose $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A)$ and $\mathscr{T} \neq \mathscr{U}$. By Theorem 2.3, it suffices to show that $A \in \mathscr{U}$. Let $U^{*}=O_{1}{ }^{*} \cup\left(O_{2}{ }^{*} \cap A\right) \in \mathscr{U}-\mathscr{T}, \quad O_{1}{ }^{*} \in \mathscr{F}, \quad O_{2}{ }^{*} \in \mathscr{F}$. Then $U^{*}=O_{1}{ }^{*} \cup$ $\left(O_{2}{ }^{*} \cap A^{\circ}\right) \cup\left(O_{2}{ }^{*} \cap\left(A-A^{\circ}\right)\right)$ and hence $O_{2}^{*} \cap\left(A-A^{\circ}\right) \neq \phi$ lest $U^{*} \in \mathscr{G}$. By (1) $O_{2}{ }^{*} \supset A-A^{\circ}$ and $U^{*}=O_{1}{ }^{*} \cup\left(O_{2}{ }^{*} \cap A^{\circ}\right) \cup\left(A-A^{\circ}\right) \in \mathscr{F}(A)-\mathscr{F}$. Let $O=O_{1}{ }^{*} \cup\left(O_{2}{ }^{*} \cap\right.$ A°) ; then $O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$ and by (2), $\left(O-A^{\circ}\right)$ and $\left(A-A^{\circ}\right)$ are separated. Thus $\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)=\phi$. Now $A^{\circ} \cup\left(U^{*} \cap \Theta_{c}\left(O-A^{\circ}\right)\right) \in \mathscr{U}$ and $A^{\circ} \cup\left(U^{*} \cap \Theta_{c}\left(O-A^{\circ}\right)\right)=A^{\circ} \cup\left(\left(O \cup\left(A-A^{\circ}\right)\right) \cap \Theta_{c}\left(O-A^{\circ}\right)\right)=A^{\circ} \cup\left(O \cap \Theta_{c}\left(O-A^{\circ}\right)\right)$
$\cup\left(A-A^{\circ}\right)=A^{\circ} \cup\left(\left(O-A^{\circ}\right) \cap \operatorname{Cc}\left(O-A^{\circ}\right)\right) \cup\left(\left(O \cap A^{\circ}\right) \cap \operatorname{Cc}\left(O-A^{\circ}\right)\right) \cup\left(A-A^{\circ}\right)=A^{\circ}$ $U\left(A-A^{\circ}\right)=A$. Hence $A \in \mathscr{U}$.

COROLLARY 3.2. Let (X, \mathscr{F}) be a space and $A \subset X, A \notin \mathscr{T}$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ iff (a) $A-A^{\circ}$ is indiscrete and (b) $O \in \mathscr{T}, O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$ implies that $\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)=\phi$.

PROOF. If $\mathscr{F} \operatorname{imp} \mathscr{T}(A)$, then (a) holds by (1) of Theorem 3.1 and (b) holds by (2) of Theorem 3.1. Now let (a) and (b) hold. By Theorem 3.1, it suffices to show that $\left(O-A^{\circ}\right) \cap c\left(A-A^{\circ}\right)=\phi$ when $O \in \mathscr{T}$ and $O \cup(A-$ $\left.A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$. But by (a), $O \cap\left(A-A^{\circ}\right)=\phi$ and thus $O \cap c\left(A-A^{\circ}\right)=\phi$. Hence-$\left(O-A^{\circ}\right) \cap c\left(A-A^{\circ}\right)=\phi$.

COROLLARY 3.3. Let (X, \mathscr{T}) be a space and $A \subset X, A \notin \mathscr{T}$. If $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$, and (X, \mathscr{F}) is separable, then $(X, \mathscr{T}(A))$ is separable.

PROOF. Let $\left\{x_{i} ; i \geqq 1\right\}$ be dense in (X, \mathscr{F}) and take $y \in A-A^{\circ}$. Then $\{y\} \cup$ $\left\{x_{i}: i \geqq 1\right\}$ is dense in $(X, \mathscr{T}(A))$. For let $\phi \neq O_{1} \cup\left(O_{2} \cap A\right) \in \mathscr{T}(A)$. Then $O_{1} \cup$ $\left(O_{2} \cap A\right)=O_{1} \cup\left(O_{2} \cap A^{\circ}\right) \cup\left(O_{2} \cap\left(A-A^{\circ}\right)\right)$.
Case 1: $O_{2} \cap\left(A-A^{\circ}\right)=\phi$, Then $\left(O_{1} \cup\left(O_{2} \cap A^{\circ}\right)\right) \cap\left\{x_{i}: i \geqq 1\right\} \neq \phi$.
Case 2: $O_{2} \cap\left(A-A^{\circ}\right) \neq \phi$. Then by (1) of Theorem 3.1, $O_{2} \supset A-A^{\circ}$ and $y \in$ $O_{1} \cup\left(O_{2} \cap A\right)$.

See Theorem 8 in [2] in this connection.
EXAMPLE 3.4. Let X be an infinite set and x^{*} a fixed element of X. If $\mathscr{T}=\left\{O: O \subset X\right.$ and $x^{*} \notin O$ or $x^{*} \in O$ and $\mathcal{C O}$ is finite $\}$, then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ for no $A \subset X$.

PROOF. Let $x^{*} \in A$ and let $\mathbb{C} A$ be infinite. Then $\mathbb{C} A=B_{1} \cup B_{2}$ where $B_{1} \cap B_{2}$ $=\phi, B_{1}$ and B_{2} both being infinite. Let $O=A^{\circ} \cup B_{1}$. Then $O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)$ $-\mathscr{T}$, but $O-A^{\circ}$ and $A-A^{\circ}$ are not separated for $x^{*} \in\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)$. (See (b) of Corollary 3.2.)

COROLLARY 3.5. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. If $\mathscr{T} \operatorname{imp} \mathscr{T}(A), C \subset A$, $C \cup \bigodot A$ not closed, then $C \subset A^{\circ}$.

PROOF. $A \cap \supseteq C \notin \mathscr{T}$ and hence $\left(A^{\circ} \cap \Theta C\right) \cup\left(\left(A-A^{\circ}\right) \cap \Theta C\right) \notin \mathscr{T}$. It follows then from (a) of Corollary 3.2 that $A-A^{\circ} \subset \varrho C$ and thus $\left(A-A^{\circ}\right) \cap C=\phi$. Hence $C \subset A^{\circ}$.

COROLLARY 3.6. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. For each $O \in \mathscr{T}$, suppose
$A \subset O$ or $O \subset A$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$.
Proof. We empluy Corollary 3.2 .
(a) Suppose $O \cap\left(A-A^{\circ}\right) \neq \phi$. Then $O \not \subset A$ lest $O \subset A^{\circ}$. Thus $A \subset O$ and $A-A^{\circ}$ CO. Hence $A-A^{\circ}$ is indiscrete.
(b) Suppose $O \in \mathscr{T}$ and $O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$.

Case 1. $A \subset O$. Then $O \cup\left(A-A^{\circ}\right)=O \in \mathscr{T}$, a contradiction.
Case 2. $O \subset A$. Then $O \subset A^{\circ}$ and $O-A^{\circ}=\phi$. Thus $O-A^{\circ}$ and $A-A^{\circ}$ are separated.

Corollary 3.6 yields the following.
EXAMPLE 3.7. Let X be the reals and let $\mathscr{T}=\{O: O=\phi, O=X$ or $O=(-\infty$, a) for some $a \in X\}$. Let $A=(-\infty, 1]$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$.

COROLLARY 3.8. Let (X, \mathscr{T}) be a space with the following property: $O \in \mathscr{T}$ implies that $\subset O \in \mathscr{T}$. If $A \notin \mathscr{T}$, then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ iff $A-A^{\circ}$ is indiscrete.

PROOF. We employ Corollary 3.2. Let $O \in \mathscr{T}$ and $O \cup\left(A-A^{\circ}\right) \nsubseteq \mathscr{T}$. But $\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)=\left(A-A^{\circ}\right) \cap\left(O-A^{\circ}\right)$ (since $O-A^{\circ}$ is closed). If $\left(A-A^{\circ}\right) \cap(O$ $\left.-A^{\circ}\right) \neq \phi$, then $O \cup\left(A-A^{\circ}\right)=O \in \mathscr{T}$ since $A-A^{\circ}$ is indiscrete.

COROLLARY' 3.9. Let (X, \mathscr{I}) be a space with the following property: $\phi \neq O \subset B$ $\subset X, O \in \mathscr{T}$ implies that $B \in \mathscr{T}$. (For example, \mathscr{T} is the cofinite, or cocountable topology.) If $\left\{x^{*}\right\} \notin \mathscr{T}$, their $\mathscr{T} \operatorname{imp} \mathscr{F}\left(\left\{x^{*}\right\}\right)$.

PROOF. (a) $\left\{x^{*}\right\}-\left\{x^{*}\right\}^{\circ}=\left\{x^{*}\right\}$ and is indiscrete. (b) If $O \in \mathscr{G}$ and $O \cup\left\{x^{*}\right\}$ $\notin \mathscr{T}$, then $O=\phi$ and $O-\left\{x^{*}\right\}^{\circ}$ and $\left\{x^{*}\right\}-\left\{x^{*}\right\}^{\circ}$ are separated.

COROLLARY 3.10. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. Then $\mathscr{T}(A)=\mathscr{T} \cup\{A\}$ iff (1) $O \in \mathscr{G}, O \cap\left(A-A^{\circ}\right) \neq \phi$ implies that $O \supset A$ and (2) $O \cap \subset A \neq \phi$ implies that $O \cup A \in \mathscr{T}$.
PROOF. Suppose that $\mathscr{F}(A)=\mathscr{T} \cup\{A\}$.
(1) Supoose that $O \in \mathscr{T}$ and $O \cap\left(A-A^{\circ}\right) \neq \phi$. Then by (a) of Corollary 3.2, $O \supset A-A^{\circ}$. But $O \cap A=\left(A-A^{\circ}\right) \cup\left(O \cap A^{\circ}\right) \in \mathscr{T} \cup\{A\}$. If $O \supset A^{\circ}$, then $O \supset A$. If $O \searrow A^{\circ}$, then $O \cap A \neq A$ and hence $O \cap A \in \mathscr{I}$. Thus $\left(A-A^{\circ}\right) \cup\left(O \cap A^{\circ}\right) \in \mathscr{F}$ and $\left(A-A^{\circ}\right) \cup\left(O \cap A^{\circ}\right) \cup A^{\circ}=A \in \mathscr{T}$; a contradiction.
(2) Suppose $O \cap \subset A \neq \phi$. Then $O \cup A \in \mathscr{T}(A)-\{A\}=\mathscr{T}$. Conversely, suppose that (1) and (2) hold. Let $O_{1} \cup\left(O_{2} \cap A\right) \in \mathscr{T}(A)-\mathscr{T}$. If $O_{2} \cap\left(A-A^{\circ}\right)=\phi$, then $O_{1} \cup\left(O_{2} \cap A\right) \in \mathscr{T}$, a contradition. Hence $O_{2} \supset A$ and thus $O_{1} \cup A \in \mathscr{T}(A)-\mathscr{I}$,
and $O_{1} \cup A \notin \mathscr{T}$. By (2), $O_{1} \cap \odot A=\phi$ and $O_{1} \subset A$. Hence $O_{1} \cup\left(O_{2} \cap A\right)=A$.
COROLLARY 3.11. Let (X, \mathscr{T}) be a space of the first category and suppose that $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. Then $\mathscr{T}(A)$ is of the first category iff $\left(A-A^{\circ}\right) \cap c\left(A^{\circ}\right) \neq \phi$.

PROOF, Sufficiency. Let $X=\bigcup\left\{F_{i}: i \geqq 1\right\}$ where $\mathbb{C} F_{i} \in \mathscr{T}$ for all i. Then F_{i} is closed in $(X, \mathscr{T}(A))$ for each i. Suppose further that the \mathscr{T}-int $F_{i}=\phi$ for each i. We will show that the $\mathscr{F}(A)-\operatorname{int} F_{i}=\phi$ for each i. Suppose on the contrary that $\phi \neq O_{1} \cup\left(O_{2} \cap A\right) \subset F_{i}$ for some i. Then $O_{2} \cap\left(A-A^{\circ}\right) \neq \phi$ and by (a) of Corollary 3.2, $O_{2} \supset A-A^{\circ}$. Then $O_{2} \cap A^{\circ} \neq \phi$ and F_{i} has a nonempty \mathscr{T}-int, a contradiction.

Necessity. Suppose that $\left(A-A^{\circ}\right) \cap c\left(A^{\circ}\right)=\phi$. Now $A \in \mathscr{T}(A)$ and $A-c\left(A^{\circ}\right) \in$ $\mathscr{T}(A)$. It follows then that $A-A^{\circ} \in \mathscr{T}(A)$. It is clear that $A-A^{\circ}$ is indiscrete in $\mathscr{T}(A)$ as well as in \mathscr{T}. Suppose that $X=\bigcup\left\{F_{i}^{*}: i \geqq 1\right\}$, where $e F_{i}{ }^{*} \in \mathscr{T}(A)$ for all i. It follows that $A-A^{\circ} \subset F_{i}{ }^{*}$ for some i and hence the $\mathscr{T}(A)-\operatorname{int} F_{i}{ }^{*} \neq \phi$. Thus ($X, \mathscr{T}(A)$) is not of the first category.

Lemma 3.12. Let (X, \mathscr{T}) be a space and $x^{*} \in X$. Suppose $\left\{x^{*}\right\}$ is not closed, but $x^{*} \in O \in \mathscr{T}$ implies that $c\left(\left\{x^{*}\right\}\right) \subset O$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}\left(\left\{x^{*}\right\} \cup \Theta_{c}\left(\left\{x^{*}\right\}\right)\right)$ and $\mathscr{T} \operatorname{imp} \mathscr{T}\left(\mathbb{C}\left\{x^{*}\right\}\right)$.

PROOF. See Corollary 5.4 and Corollary 6.4.
LEMMA 3.13. Let (X, \mathscr{T}) be a first axiom Hausdorff space. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ for no $A \subset X$.

PROOF. Suppose on the contrary that $\mathscr{T} \operatorname{imp} \mathscr{\mathscr { T }}(A)$ for some $A \notin \mathscr{T}$. Then e_{A} is not closed; take $a \in A \cap c(e A)$. Then there exists a sequence of distinct points $x_{i} \in \odot A$ such that $a=\lim x_{i}$. Let $E=\left\{a, x_{2}, x_{4}, x_{6}, \cdots\right\}$. Clearly E is compact and hence closed in (X, \mathscr{T}). Let $O=\subset E$. Then $O \cup\left(A-A^{\circ}\right)=O \cup A$ since $A^{\circ} \subset$ O. But $O \cup A \in \mathscr{T}(A)-\mathscr{F}$ (if $O \cup A \in \mathscr{T}$, then x_{i} is eventually in $O \cup A$). Thus $O \cup\left(A-A^{\circ}\right) \in \mathscr{T}(A)-\mathscr{T}$, but $a \in\left(A-A^{\circ}\right) \cap c\left(O-A^{\circ}\right)\left(a=\lim x_{2 i+1}\right)$. This contradicts (b) of Corollary 3.2.

See Theorem I. 4.3 in [1].
THEOREM 3.14. Let (X, \mathscr{T}) be a first axiom space and regular. Then (X, \mathscr{T})
is Hausdorff iff $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ for no $A \subset X$.
PRoof. The necessity follows from Lemma 3.13.

Sufficiency. That (X, \mathscr{T}) is a T_{1} space follows from Lemma 3.12. T_{1} plus: regular implies Hausdorff.

COROLLARY 3.15. Let (X, \mathscr{T}) be metrizable. Then. $\mathscr{F} \operatorname{imp} \mathscr{\mathscr { F }}(A)$ for no. $A \subset X$.
4. $\mathrm{A}^{\circ}=\phi$

THEOREM 4.1. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. If $A^{\circ}=\phi$, then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ iff (1) A is indiscrete and (2) $O \cup A \nsubseteq \mathscr{T}$ implies that O and A are separated whenever $O \in \mathscr{T}$.

PROOF. This follows from Theorem 3.1 and the fact that $O \cup A$ always is in $\mathscr{T}(A)$.

COROLLARY 4.2. Let (X, \mathscr{T}) be a space and $\{x\} \notin \mathscr{T}$. Then $\mathscr{F} \operatorname{imp} \mathscr{T}(\{x\})$ iff $O \in \mathscr{T}$ and $O \cup\{x\} \notin \mathscr{T}$ implies that $x \notin c(O)$.

COROLLARY 4.3. Let (X, \mathscr{T}) be a space, $\phi \neq A \subset O^{*}, A \neq O^{*} \in \mathscr{T}$ and O^{*} minimal open. Then $\mathscr{G} \operatorname{imp} \mathscr{G}(A)$.

Proof. Firstly, $A \notin \mathscr{T}$ and $A^{\circ}=\phi$. We show that A is indiscrete. Suppose $O \in \mathscr{F}$ and $O \cap A \neq \phi$. Then $O \cap O^{*} \neq \phi$ and since O^{*} is minimal open, it follows that $O \supset O \cap O^{*}=O^{*} \supset A$.
Secondly, suppose $O \in \mathscr{T}$ and $O \cup A \notin \mathscr{G}$. Now $O \cap A=\phi$ lest $O \supset A$ and $O \cup A$. $\in \mathscr{F}$. Hence $O \cap O^{*}=\phi$ and $A \cap c(O)=\phi$. It follows then that O and A are separated.

THEOREM 4.4. Let (X, \mathscr{T}) be a space and $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. Suppose $B \subset X$ and $B^{\circ} \supset A^{\circ}$. Then $B \in \mathscr{T}(A)-\mathscr{T}$ iff $B-B^{\circ}=A-A^{\circ}$.

PROOF. Necessity. ($B^{\circ} \supset A^{\circ}$ is not used in this part of the proof.) Let $B \in$ $\mathscr{T}(\mathrm{A})-\mathscr{T}$. Then $\mathscr{T} \subset \mathscr{T}(B) \subset \mathscr{T}(A)$ and $\mathscr{T} \neq \mathscr{T}(B)$. Hence $\mathscr{T}(B)=\mathscr{T}(A)$ and $B \in \mathscr{T}(A), A \in \mathscr{T}(B)$.
Thus $B=O_{1} \cup\left(O_{2} \cap A\right)$ for some $O_{i} \in \mathscr{T}$ and $B=O_{1} \cup\left(O_{2} \cap A^{\circ}\right) \cup\left(A-A^{\circ}\right)$. But $B=B^{\circ} \cup\left(B-B^{\circ}\right)$. It follows then that $B-B^{\circ} \subset A-A^{\circ}$.
Also, $A=O_{1}{ }^{*} \cup\left(O_{2}^{*} \cap B\right)=O_{1}{ }^{*} \cup\left(O_{2}^{*} \cap B^{\circ}\right) \cup\left(B-B^{\circ}\right)=A^{\circ} \cup\left(A-A^{\circ}\right)$. It follows that $A-A^{\circ} \subset B-B^{\circ}$ and hence $A-A^{\circ}=B-B^{\circ}$.
Sufficiency. Let $A-A^{\circ}=B-B^{\circ}$. Then $B-B^{\circ} \neq \phi$ and $B \notin \mathscr{T}$. We show that $B \in \mathscr{T}(A)$. Now $B=B^{\circ} \cup\left(B-B^{\circ}\right)=B^{\circ} \cup A^{\circ} \cup\left(A-A^{\circ}\right)=B^{\circ} \cup A \in \mathscr{T}(A)$.

COROLLARY 4.5. Let (X, \mathscr{T}) be a space, $\mathscr{T} \operatorname{imp} \mathscr{F}(A)$ and $A^{\circ}=\phi$. Let $B \subset X$.

Then $B \in \mathscr{T}(A)-\mathscr{T}$ iff $B-B^{\circ}=A$.
PROOF. This follows from Theorem 4.5 and the fact that $B^{\circ} \supset A^{\circ}$.
COROLLARY 4.6. Let (X, \mathscr{T}) be a space and $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. If $A^{\circ}=\phi$, then A is the smallest member of $\mathscr{T}(A)-\mathscr{T}$.

Proof. Let $B \in \mathscr{T}(A)-\mathscr{T}$. Then $B \supset B-B^{\circ}=A$ by Corollary 4.5.

5. A Indiscrete

THEOREM 5.1. Let (X, \mathscr{G}) be a space, $A \subset X, A \cup \Theta_{c}(A) \notin \mathscr{T}$ and A indiscrete. Then $\mathscr{T} \operatorname{imp} \mathscr{G}(A \cup \operatorname{ec}(A))$.

PROOF. Let \mathscr{U} be a topology for X for which $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}\left(A \cup e_{c}(A)\right), \mathscr{T} \neq \mathscr{U}$. Let $U=O_{1} \cup\left(O_{2} \cap\left(A \cup e_{c}(A)\right) \in \mathscr{U}-\mathscr{T}\right.$. Then $\mathscr{F} \subset \mathscr{T}(U) \subset \mathscr{U} \subset \mathscr{T}\left(A \cup \Theta_{c}(A)\right)$. By Theorem 2.3, it suffices to show that $A \cup e_{c}(A) \in \mathscr{T}(U)$. Now $O_{2} \cap A \neq \phi$ lest $U \in \mathscr{F}$. Hence $O_{2} \supset A . O_{1} \cap A=\phi$ lest $U \in \mathscr{F}$. It follows then that $O_{1} \cap c(A)$ $=\phi$ and $O_{1} \subset \Theta_{c}(A)$. Thus $A \cup \Theta_{c}(A)=\Theta_{c}(A) \cup\left(O_{2} \cap\left(O_{1} \cup\left(O_{2} \cap\left(A \cup \Theta_{c}(A)\right)\right)\right)=\right.$. $e_{c} A \cup\left(O_{2} \cap U\right) \in \mathscr{T}(U)$.

COROLLARY 5.2. Let (X, \mathscr{T}) be a space, A indiscrete and $c(A)-A$ not. closed. Then $\mathscr{T} \operatorname{imp} \mathscr{T}\left(A \cup e_{c}(A)\right)$.

PROOF. We need only show that $A \cup \Theta_{c}(A) \notin \mathscr{F}$. But $\Theta\left(A \cup \Theta_{c}(A)\right)=c(A) \cap$ $e^{e}=c(A)-A$ which is not closed.

COROLIARY 5.3. Let (X, \mathscr{T}) be a space and $x^{*} \in X$. If $c\left(\left\{x^{*}\right\}\right)-\left\{x^{*}\right\}$ is not closed, then $\mathscr{T} \operatorname{imp} \mathscr{T}\left(\left\{x^{*}\right\} \cup e_{c}\left(\left\{x^{*}\right\}\right)\right)$.

PROOF. This follows from Corollary 5.2 and the fact that $\left\{x^{*}\right\}$ is indiscrete.
COROLLARY 5.4. Let (X, \mathscr{T}) be a space and $\left\{x^{*}\right\}$ not closed. If $x^{*} \in O \in \mathscr{T}$, then $c\left(\left\{x^{*}\right\}\right) \subset O$. Then $\mathscr{T} \operatorname{imp}\left(\left\{x^{*}\right\} \cup \Theta_{c}\left(\left\{x^{*}\right\}\right)\right)$.

PROOF. We use Theorem 5.1. If $\left\{x^{*}\right\} \cup \Theta_{c}\left(\left\{x^{*}\right\}\right) \in \mathscr{T}$, then $c\left(\left\{x^{*}\right\}\right)=\left\{x^{*}\right\}$ and $\left\{x^{*}\right\}$ is closed.

COROLLARY 5.5. Let (X, \mathscr{T}) be a space and A indiscrete. If $A \notin \mathscr{T}$ and is: dense, then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$.
PROOF. $A=A \cup e_{c}(A) \notin \mathscr{T}$. By Theorem 5.1, $\mathscr{T} \operatorname{imp} \mathscr{T}\left(A \cup e_{c}(A)\right)=\mathscr{T}(A)$.

6. eA Indiscrete

LEMMA 6.1. Let (X, \mathscr{T}) be a space, $A \notin \mathscr{T}$, eA indiscrete. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ iff $e A \subset O \in \mathscr{T}, O \cap A \notin \mathscr{T}$ implies that $X=A^{\circ} \cup O$.

PROOF. Necessity. Let $\Theta A \subset O \in \mathscr{T}$ and $O \cap A \notin \mathscr{T}$. It suffices to show that $A-A^{\circ} \subset O$. By (a) of Corollary 3.2, it suffices to show that ($A-A^{\circ}$) $\cap O \neq \phi$. Now $O \cap A=\left(O \cap A^{\circ}\right) \cup\left(O \cap\left(A-A^{\circ}\right)\right) \notin \mathscr{T}$. It follows then that $O \cap\left(A-A^{\circ}\right) \neq \phi$.

Sufficiency. Suppose \mathscr{U} is a topology for X and $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A), \mathscr{T} \neq \mathscr{U}$. We will show that $\mathscr{U}=\mathscr{T}(A)$. By Theorem 2.3, it suffices to show that $A \in \mathscr{U}$. Let $U^{*} \in \mathscr{U}-\mathscr{T}$. Then $U^{*}=O_{1}{ }^{*} \cup\left(O_{2}^{*} \cap A\right)$ where $O_{i}{ }^{*} \in \mathscr{T}$. It follows that $O_{2}{ }^{*}$ $\cap A \notin \mathscr{T}$ and hence $O_{2}{ }^{*} \not \subset A$. Thus $O_{2}{ }^{*} \cap \subset A \neq \phi$ and since ΘA is indiscrete, it follows that $O_{2}{ }^{*} \supset \bigodot A$. Thus $e A \subset O_{2}{ }^{*}$ and $O_{2}{ }^{*} \cap A \notin \mathscr{T}$. Hence $X=A^{\circ} \cup O_{2}{ }^{*}$. Now $O_{i}{ }^{*} \cap \subset A=\phi$. If not, then $O_{1}{ }^{*} \supset \bigodot A$ and $U^{*}=O_{1}{ }^{*} \cup\left(O_{2}{ }^{*} \cap A\right)=O_{1}{ }^{*} \cup\left(O_{2}{ }^{*}-\right.$ e $A)=O_{1}{ }^{*} \cup O_{2}{ }^{*} \in \mathscr{F}$, a contradiction. Hence $O_{1}{ }^{*} \subset A$. Since $X=A^{\circ} \cup O_{2}{ }^{*}$, it follows that $A=\left(A^{\circ} \cap A\right) \cup\left(O_{2}{ }^{*} \cap A\right)=A^{\circ} \cup\left(O_{2}^{*} \cap A\right)=A^{\circ} \cup O_{1}{ }^{*} \cup\left(O_{2}{ }^{*} \cap A\right)=A^{\circ} \cup$ $\cdot U^{*} \in \mathscr{Z}$.

ThEOREM. 6.2. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. Assume C_{A} is indiscrete. Then $\mathscr{F} \operatorname{imp} \mathscr{T}(A)$ iff $\subset A \subset O \in \mathscr{T}, O \cap A \notin \mathscr{T}$ implies that $c(e A) \subset O$.

PROOF. Necessity. Suppose $\bigodot A \subset O \in \mathscr{F}$ and $O \cap A \notin \mathscr{F}$. Then by Lemma 6.1, $X=A^{\circ} \cup O$. But $c(e A) \subset c\left(e A^{\circ}\right)=e A^{\circ} \subset O$.

Sufficiency. Suppose $\subseteq A \subset O \in \mathscr{T}$ and $O \cap A \notin \mathscr{T}$. By Lemma 1, it suffices to show that $X=A^{\circ} \cup O$. Now $c(e A) \subset O$ and $A^{\circ} \cap c(e A)=\phi$. Therefore $X=$ $e A^{\circ} \cup e_{c}(e A) \subset O \cup A^{\circ} \subset X$.

COROLLARY 6.3. Let (X, \mathscr{T}) be a space and $A \notin \mathscr{T}$. If $\subset A$ is indiscrete and $\Theta A \subset O \in \mathscr{T}$ implies $c(e A) \subset O$, then $\mathscr{T} \operatorname{imp} \mathscr{F}(A)$.

COROLLARY 6.4. Let (X, \mathscr{T}) be a space and $x^{*} \in X$. If $\left\{x^{*}\right\}$ is not closed and $x^{*} \in O \in \mathscr{T}$ implies that $c\left(\left\{x^{*}\right\}\right) \subset O$, then $\mathscr{T} \operatorname{imp} \mathscr{T}\left(e\left\{x^{*}\right\}\right)$.

See Theorem 1.2.3 in [1].
COROLLARY 6.5. Let ($X, \mathscr{I}_{\text {) }}$) be regular and $\left\{x^{*}\right\}$ not closed. Then $\mathscr{T} \operatorname{imp} \mathscr{T}\left(e\left\{x^{*}\right\}\right)$.

7. Connectedness

THEOREM 7.1. Let (X, \mathscr{T}) be a space, $A \subset X$ and $\mathscr{T} \operatorname{imp} \mathscr{G}(A)$. Suppose
C_{1} and C_{2} are separated subsets of $\mathcal{C} A$. Then $c\left(C_{1}\right) \cap c\left(C_{2}\right) \cap A=\phi$.
PROOF. Suppose on the contrary that $x \in c\left(C_{1}\right) \cap c\left(C_{2}\right) \cap A$. Let $O=\operatorname{e} c\left(C_{2}\right)$. We will show that (1) $\mathscr{T} \subset \mathscr{T}(A \cup O)$ and $\mathscr{T} \neq \mathscr{F}(A \cup O)$ and (2) $\mathscr{T}(A \cup O)$ $\subset \mathscr{T}(A)$ and $\mathscr{T}(A \cup O) \neq \mathscr{T}(A)$. (1) and (2) imply that $\mathscr{F} \operatorname{imp} \mathscr{T}(A)$ is false.
(1) It suffices to show that $A \cup O \notin \mathscr{T}$. Suppose $A \cup O \in \mathscr{T}$. Then $x \in O^{*} \subset$ $A \cup O, O^{*} \in \mathscr{T}$. But $O^{*} \cap C_{2} \neq \phi$; take $y \in O^{*} \cap C_{2}$. Then $y \in c\left(C_{2}\right)$. Now $y \notin A$ and hence $y \in O=e_{c}\left(C_{2}\right)$. Thus $y \in c\left(C_{2}\right) \cap e_{c}\left(C_{2}\right)$, a contradiction.
(2) Since $A \cup O \in \mathscr{T}(A)$, it follows from Theorem 2.2 that $\mathscr{G}(A \cup O) \subset \mathscr{T}(A)$. It suffices then to show that $A \notin \mathscr{T}(A \cup O)$. Suppose that $A \in \mathscr{T}(A \cup O)$. Then there exist O_{1} and O_{2} in \mathscr{T} such that $A=O_{1} \cup\left(O_{2} \cap(A \cup O)\right)$. Now $x \notin O_{1}$ and $x \notin O_{2} \cap O$ lest $x \notin c\left(C_{1}\right)$. Therefore $x \in O_{2} \cap A$ and hence $O_{2} \cap C_{1} \neq \phi$. Take $z \in O_{2}$ $\cap C_{1}$; then $z \in \bigodot_{c}\left(C_{2}\right)=O$. Thus $z \in O_{2} \cap O \subset A$. Hence $z \in C_{1} \cap A$. But $C_{1} \cap A=\phi$, a contradiction.

COROLLARY 7.2. Let (X, \mathscr{F}) be a space and $\mathscr{F} \operatorname{imp} \mathscr{F}(A)$. If $\subset A=C_{1} \cup C_{2}$ where C_{1} and C_{2} are nonempty separated sets, then (1) C_{1} or C_{2} is closed (but not both) and (2) $e A^{\circ}$ is disconnected.

PROOF. C_{1} and C_{2} cannot both be closed lest $A \in \mathscr{G}$. Now $e A \neq c(e A)$ $=c\left(C_{1}\right) \cup c\left(C_{2}\right)$. Take $x \in A \cap c(巴 A)$. Assume $x \in c\left(C_{1}\right)$. Then $x \notin C_{1}$ and hence C_{1} is not closed. Now $A^{\circ} \cap c\left(C_{1}\right)=\phi$ and hence $x \in\left(A-A^{\circ}\right) \cap c\left(C_{1}\right)$. Since $A-A^{\circ}$ is indiscrete by (a) of Theorem 3.2, it follows that $A-A^{\circ} \subset c\left(C_{1}\right)$. Then $\left(A-A^{\circ}\right) \cap c\left(C_{2}\right)=\phi$ lest $A \cap c\left(C_{1}\right) \cap c\left(C_{2}\right) \supset A-A^{\circ} \neq \phi$ contradicting Theorem 7.1. Hence $c\left(C_{2}\right) \subset \subset A=C_{1} \cup C_{2}$. Thus $c\left(C_{2}\right) \subset C_{2}$ and C_{2} is closed. From the proof of (1), it follows that $e A^{\circ}=c\left(C_{1}\right) \cup C_{2}$ and hence $e A^{\circ}$ is disconnected.

COROLLARY 7.3. Let (X, \mathscr{T}) be a space and $\mathscr{T} \operatorname{imp} \mathscr{\mathscr { T }}(A)$. Suppose e° is disconnected. Then eA is disconnected.

PROOF. Let $e A^{\circ}=C_{1} \cup C_{2}$ where C_{1} and C_{2} are disjoint nonempty closed sets. Now $A-A^{\circ}$ is indiscrete and contained in e°. We may assume $A-A^{\circ}$ $\subset C_{1}$. But $A-A^{\circ} \neq C_{1}$ lest $e_{A}=C_{2}$ and $A \in \mathscr{T}$. Then $e_{A}=\left(C_{1}-\left(A-A^{\circ}\right)\right) \cup C_{2}$ and e_{A} is disconnected.

COROLLARY 7.4 Let (X, \mathscr{G}) be a space and $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. Then e_{A} is
connected iff $\subset A^{\circ}$ is connected.
COROLLARY 7.5. Let (X, \mathscr{T}) be a space and $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$. If $A^{\circ}=\phi$, then e_{A} is connected iff X is connected.

COROLLARY 7.6. Let (X, \mathscr{F}) be a space, $\mathscr{F} \operatorname{imp} \mathscr{T}(A)$ and A closed. Then X is connected iff A and $\subset A$ are connected.

PROOF. Sufficiency. Suppose $X=O_{1} \cup O_{2}$ where O_{1} and O_{2} are nonempty disjoint open sets. We may assume $A \subset O_{1}$ and $e A \subset O_{i}$. It follows then that $A=O_{1} \in \mathscr{T}$, a contradiction.

Necessity. We show firstly that e_{A} is connected. Suppose on the contrary that e_{A} is not connected. Since $e A$ is open, then $e_{A}=O_{1} \cup O_{2}$ where O_{1} and O_{2} are nonempty disjoint open sets. By Corollary 7.2, we may assume that O_{1} is closed. Then O_{1} is a clopen proper subset of X and X is not connected.

Next we show that A is connected. Suppose on the contrary that $A=E_{1} \cup E_{2}$ where E_{1} and E_{2} are nonempty disjoint closed sets. Since $A-A^{\circ}$ is indiscrete, we may assume that $A-A^{\circ} \subset E_{1}$. Then $E_{2}=A^{\circ} \cap \subset E_{1}$ as the reader can verify. Hence E_{2} is a proper clopen subset of X.

8. A Closed

THEOREM 8.1. Let (X, \mathscr{T}) be a space and A closed in X. If (X, \mathscr{T}) is regular, then $(X, \mathscr{T}(A))$ is regular.

This is Theorem 2 in [2]. Note that $\mathscr{T} \operatorname{imp} \mathscr{F}(A)$ is not required here.
EXAMPLE 8.2. Let $X=\{a, b\}$ and $\mathscr{G}=\{\phi, X\}, A=\{a\}$. Then (X, \mathscr{G}) is regular, $\mathscr{T} \operatorname{imp} \mathscr{G}(A)$, but $(X, \mathscr{T}(A))$ is not regular. Note that A is not closed in (X, \mathscr{T}).

THEOREM 8.3. Let (X, \mathscr{T}) be a space and A a closed subset of X. If \mathscr{T} has a clopen base, then $\mathscr{T}(A)$ has a clopen base. $(\mathscr{T} \operatorname{imp} \mathscr{G}(A)$ is not needed here.)

PROOF. Let $x \in O_{1} \cup\left(O_{2} \cap A\right) \in \mathscr{T}(A)$.
Case 1. $x \in O_{1}$. Then there exists a clopen set O^{*} in \mathscr{T} such that $x \in O^{*} \subset O_{1}$ $\subset O_{1} \cup\left(O_{2} \cap A\right)$. Then O^{*} is clopen in $\mathscr{T}(A)$.
Case 2. $x \notin O_{1}$. Then $x \in O_{2} \cap A$ and hence there exists a clopen set $O^{\#}$ in \mathscr{T} such that $x \in O^{\#} \subset O_{2}$. Thus $x \in O^{\#} \cap A \subset O_{2} \cap A \subset O_{1} \cup\left(O_{2} \cap A\right)$ and $O^{\#} \cap A$ is
clopen in $\mathscr{T}(A)$.
Example 8.2 shows that A closed must be assumed.
THEOREM 8.4. Let (X, \mathscr{T}) be a connected door space. Then \mathscr{T} is maximal relative to connectness.

PROOF. Let $\mathscr{T} \subset \mathscr{U}, \mathscr{T} \neq \mathscr{U}, \mathscr{U}$ a topology for X. We will show that $(X$, \mathscr{U}) is not connected. Let $A \in \mathscr{U}-\mathscr{T}$. Then $\mathscr{T} \subset \mathscr{T}(A) \subset \mathscr{K}$. Since $A \notin \mathscr{T}$, then A is closed in (X, \mathscr{T}). Thus A is clopen in $\mathscr{F}(A)$ and $(X, \mathscr{T}(A))$ is not connected. It follows then that (X, \mathscr{C}) is not connected.

THEOREM 8.5. Let (X, \mathscr{F}) be extremally disconnected, A a closed subset of X and $\mathscr{T} \operatorname{imp} \mathscr{G}(A)$. Then $\mathscr{T}(A)$ is extremally disconnected.

PROOF. Let B_{1} and $B_{2} \in \mathscr{T}(A), B_{1} \cap B_{2}=\phi$. Let c^{*} be the closure operator in $\mathscr{F}(A)$. We will show that $c^{*}\left(B_{1}\right) \cap c^{*}\left(B_{2}\right)=\phi$.

Case 1. B_{1} and B_{2} are in \mathscr{T}. Then $c^{*}\left(B_{1}\right) \cap c^{*}\left(B_{2}\right) \subset c\left(B_{1}\right) \cap c\left(B_{2}\right)=\phi$.
Case 2. $B_{1} \notin \mathscr{T}, B_{2} \notin \mathscr{T}$. By Theorem 4.4, $B_{1}=B_{1}{ }^{\circ} \cup\left(A-A^{\circ}\right)$ and $B_{2}=B_{2}{ }^{\circ} U$ ($A-A^{\circ}$). Thus $B_{1} \cap B_{2} \supset A-A^{\circ} \neq \phi$, a contradiction.
Case 3. $B_{1} \in \mathscr{T}, B_{2} \notin \mathscr{T}$. Then $B_{2}=B_{2}{ }^{\circ} \cup\left(A-A^{\circ}\right)$ again by Theorem 4.4. Now $c^{*}\left(B_{1}\right) \cap B_{2}=\phi$ and hence $c^{*}\left(B_{1}\right) \cap\left(A-A^{\circ}\right)=\phi$. Thus $c^{*}\left(B_{1}\right) \cap c^{*}\left(A-A^{\circ}\right) \subset$ $c^{*}\left(B_{1}\right) \cap c\left(A-A^{\circ}\right)=c^{*}\left(B_{1}\right) \cap\left(A-A^{\circ}\right)=\phi$. Therefore $c^{*}\left(B_{1}\right) \cap c^{*}\left(B_{2}\right)=\left(c^{*}\left(B_{1}\right) \cap\right.$ $\left.c^{*}\left(B_{2}{ }^{\circ}\right)\right) \cup\left(c^{*}\left(B_{1}\right) \cap c^{*}\left(A-A^{\circ}\right)\right) \subset c\left(B_{1}\right) \cap c\left(B_{2}{ }^{\circ}\right)=\phi$.

EXAMPLE 8.6. Let $X=\{a, b, c\}$ and $\mathscr{T}=\{\phi,\{b\}, X\}$. Let $A=\{a\}$. Then $(X$, \mathscr{T}) is extremally disconnected, but $\mathscr{T}(A)=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ is not. Note that A is not closed nor does $\mathscr{T} \operatorname{imp} \mathscr{\mathscr { F }}(A)$.

9. $A-A^{\circ}$ Not Closed

THEOREM 9.1. Let (X, \mathscr{G}) be a space, $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ and $A-A^{\circ}$ not closed. If (X, \mathscr{G}) is compact (or Lindelof or countably compact), then $(X, \mathscr{T}(A))$ is compact (or Lindelof or countably compact).

PROOF. We will only prove the compact case. Suppose then that $X=\bigcup\left\{B_{\alpha}\right.$ $: \alpha \in \Delta\}$ where $B_{\alpha} \in \mathscr{T}(A)$ for all $\alpha \in \Delta$.
Case 1. $B_{\alpha} \in \mathscr{T}$ for all $\alpha \in \Delta$. Then clearly $X=B_{\alpha_{1}} \cup \cdots \cup B_{\alpha_{k}}$ for some $\alpha_{i} \in \Delta$.
Case 2. $B_{\alpha^{*}} \notin \mathscr{T}$ for some $\alpha^{*} \in \Delta$. It follows from Theorem 4.4 that $X=(A-$
$\left.A^{\circ}\right) \cup\left[\cup\left\{B_{\alpha}^{\circ}: \alpha \in \Delta\right\}\right]$. Since $A-A^{\circ}$ is not closed, then $\left(A-A^{\circ}\right) \cap B_{\alpha^{\#}}^{\circ}$ for some $\alpha^{\#}$ in Δ and hence $A-A^{\circ} \subset B_{\alpha \neq}^{\circ}$ since $A-A^{\circ}$ is discrete. It follows then that $X=$ $\bigcup\left\{B_{\alpha}^{\circ}: \alpha \in \Delta\right\}$ and each $B_{\alpha}^{\circ} \in \mathscr{T}$. Compactness of $(X . \mathscr{G}(A))$ is now immediate.

THEOREM 9.2. Let (X, \mathscr{T}) be a space, $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ and $A-A^{\circ}$ not closed. If (X, \mathscr{T}) is sequentially compact, then $(X, \mathscr{T}(A))$ is sequentially compact.

PROOF. It suffices to show that if $\left\{x_{n}\right\}$ is convergent in the space (X, \mathscr{T}), then $\left\{x_{n}\right\}$ is convergent in $(X, \mathscr{T}(A))$. To this end, suppose $\lim x_{n}=x$ in (X, \mathscr{F}), but $\lim x_{n}=y$ in $(X, \mathscr{T}(A))$ for no $y \in X$. Then for each $y \in X$, there exists a $B_{y} \in \mathscr{T}(A)$ such that $y \in B_{y}$ and x_{n} is not eventually in $B_{y^{\circ}}$. But $x \in B_{x} \in \mathscr{T}(A)-\mathscr{T}$ and hence by Theorem $4.4 x \in B_{x}^{0} \cup\left(A-A^{\circ}\right)$. Therefore $x \in$ $A-A^{\circ}$. It follows then that $X=\left(A-A^{\circ}\right) \cup \cup\left\{B_{y}^{\circ}: y \in X\right\}$, and $X=\bigcup\left\{B_{y}^{\circ}:\right.$ $y \in X\}$ (see the reasoning in Case 2 of Theorem 9.1). But $x \in B_{y^{*}}^{\circ}$ for some y^{*} and hence x_{n} is eventually in $B_{y^{*}}$ a contradiction.

THEOREM 9.3. Let (X, \mathscr{F}) be connected, $\mathscr{T} \operatorname{imp} \mathscr{F}(A)$ and $A-A^{\circ}$ not closed. Then $(X, \mathscr{T}))$ is connected.

PROOF. Suppose on the contrary that $X=B_{1} \cup B_{2}$ where B_{1} and B_{2} are in $\mathscr{T}(A)$, disjoint and nonempty.
Case 1. B_{1} and B_{2} are in \mathscr{F}. Then X is not connected, a contradiction.
Case 2. $B_{1} \notin \mathscr{T}, B_{2} \notin \mathscr{T}$. Then by Theorem 4.4, $B_{1}=B_{1}^{\circ} \cup\left(A-A^{\circ}\right)$ and $B_{2}=$ $B_{2}^{\circ} \cup\left(A-A^{\circ}\right)$ and $B_{1} \cap B_{2} \supset A-A^{\circ} \neq \phi$, a contradiction.

Case 3. $B_{1} \notin \mathscr{T}, B_{2} \in \mathscr{T}$. Then $B_{1}=B_{1}^{\circ} \cup\left(A-A^{\circ}\right)$ and $X=B_{2} \cup B_{1}^{\circ} \cup\left(A-A^{\circ}\right)$. Then $A-A^{\circ}$ is closed, a contradiction.

See Theorem 9 in [2].
THEOREM 9.4. Let (X, \mathscr{T}) be normal, $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ and $A-A^{\circ}$ not closed. Then $(X, \mathscr{T}(A))$ is normal.

PROOF. Let $X=B_{1} \cup B_{2}$ where B_{1} and B_{2} are in $\mathscr{T}(A)$.
Case 1. B_{1} and B_{2} are in \mathscr{F}. Then there exist F_{1} and $F_{2} \mathscr{F}$-closed and hence $\mathscr{T}(A)$-closed such that $X=F_{1} \cup F_{2}, F_{i} \subset B_{i}$.

Case 2. B_{1} and B_{2} are not in \mathscr{T}. By Theorem 4.4, $B_{i}-B_{i}^{\circ}=A-A^{\circ}$ and hence $X=B_{1}^{\circ} \cup B_{2}^{\circ} \cup\left(A-A^{\circ}\right)$. It follows then that $\left(A-A^{\circ}\right)$ is closed, a contradiction.
Case 3. $B_{1} \in \mathscr{T}, B_{2} \in \mathscr{T}(A)-\mathscr{T}$. Then $B_{2}=B_{2}^{\circ} \cup\left(A-A^{\circ}\right)$ and $X=B_{1}^{\circ} \cup B_{2}^{\circ} \cup$
$\left(A-A^{\circ}\right)$. If $B_{1}^{\circ} \cap\left(A-A^{\circ}\right)=\phi$, then $A-A^{\circ}$ is closed, a contradiction. If $B_{1}^{\circ} \cap$: $\left(A-A^{\circ}\right) \neq \phi$, then $B_{1}^{\circ} \supset A-A^{\circ}$ and $X=B_{1}^{\circ} \cup B_{2}^{\circ}$. Procede as in Case 1.
See Theorem 5 in [2].
The Ohio State University

REFERENCES

[1] Pushpa Agashe and Norman Levine, Adjacent Topologies, Journal of Mathematics, Tokushima University, Vol.7, 1973.
[2] Norman Levine, Simple Exteirsions of Topologies, American Mathematical Monthly. Vol. 71, No.1, January, 1964.
[3] Albert Wilansky, Topology for Analysis, Ginn and Company, 1970.
[1] Stephen Willard, General Topology, Addison-Wesley Publishing Company, 1970.

