Kyungpook Math. J. Volume 19, Number 1 June, 1979

MINIMAL SIMPLE EXTENSIONS OF TOPOLOGIES

By Norman Levine

1. Introduction

In [2], the author introduced the concept of a simple extension $\mathcal{T}(A)$ of a topology \mathscr{T} on a set X (see Definition 2.1).

A simple extension need not be a minimal extension, that is, there may exist a topology \mathcal{U} on X for which $\mathcal{T} \subset \mathcal{U} \subset \mathcal{T}(A)$, $\mathcal{T} \neq \mathcal{U} \neq \mathcal{T}(A)$ (see Example 2.4). It is the purpose of this paper to study simple extensions of topology which are minimal.

In [2], the basic problem was to investigate the properties that are preserved under simple extensions, that is, if (X, \mathcal{T}) has a certain property, when will $(X, \mathcal{T}(A))$ have the same property?

In the present paper, we characterize minimal simple extensions (Theorem 3.1) and explore basically the same problem for such extensions.

2. Background

DEFINITION 2.1. Let (X, \mathscr{T}) be a space and $A \subset X$, $A \notin \mathscr{T}$. Then $\mathscr{T}(A)$ is the collection of sets of the form $O_1 \cup (O_2 \cap A)$, O_1 and O_2 in \mathcal{T} , and is called the simple extension of \mathcal{T} by A (see [2]). We shall call $\mathcal{T}(A)$ a minimal simple extension if for each topology \mathscr{U} for which $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A)$, then $\mathscr{T} = \mathscr{U}$ or $\mathcal{U} = \mathcal{T}(A)$. In this case, we write $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ (\mathcal{T} immediately precedes $\mathcal{T}(A)$).

THEOREM 2.2. Let (X, \mathcal{T}) be a space and $A \subset X$, $A \notin \mathcal{T}$. Then (1) $\mathcal{T}(A)$ is a topology for X (2) $\mathcal{T} \subset \mathcal{T}(A)$ and (3) $\mathcal{T}(A) = \sup\{\mathcal{T}, \{\phi, A, X\}\}$.

This is Theorem I.1.2 in [1].

THEOREM 2.3. Let (X, \mathscr{T}) be a space and $A \subset X$, $A \notin \mathscr{T}$. If \mathscr{U} is a topology for X and $\mathcal{T} \subset \mathcal{U} \subset \mathcal{T}(A)$, then $\mathcal{U} = \mathcal{T}(A)$ iff $A \in \mathcal{U}$.

This is Lemma I. 1.7 in [1].

EXAMPLE 2.4. Let $X = \{a, b, c\}$ and $\mathscr{T} = \{\phi, \{a\}, X\}$. Let $B = \{b\}$. Then $\mathscr{T}(B)$ is a simple extension of \mathcal{T} , but \mathcal{T} imp $\mathcal{T}(B)$ is false.

NOTATION. In a space (X, \mathcal{T}) , B° denotes the interior of B, c(B) the closure of B and $\mathcal{C}B$ the complement of B.

3. The Fundamental Theorem

THEOREM 3.1. Let (X, \mathscr{T}) be a space and $A \subset X$, $A \notin \mathscr{T}$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}$ (A) (see Definition 2.1) iff

(1) $A - A^{\circ}$ is indiscrete and

(2) $0 \in \mathcal{T}$, $O \cup (A - A^\circ) \in \mathcal{T}(A) - \mathcal{T}$ implies that $O - A^\circ$ and $A - A^\circ$ are separated.

PROOF. Necessity. Let \mathscr{T} imp $\mathscr{T}(A)$; (1) we show that $A - A^{\circ}$ is indiscrete. It suffices to show that $O \in \mathcal{T}$, $O \cap (A - A^\circ) \neq \phi$ implies that $O \supset (A - A^\circ)$. Let then $b \in O \cap (A - A^\circ)$, $O \in \mathscr{T}$ and $a \in A - A^\circ$. Now $O \cap A \notin \mathscr{T}$ lest $b \in O \cap A \subset A^\circ$. Hence $\mathscr{T} \subset \mathscr{T}(O \cap A) \subset \mathscr{T}(A)$ and since $\mathscr{T} \neq \mathscr{T}(O \cap A)$, it follows that $\mathscr{T}(O)$ $(\cap A) = \mathscr{T}(A)$. But $A \in \mathscr{T}(A)$ and therefore $A \in \mathscr{T}(O \cap A)$. Thus there exist O_1, O_2 in \mathscr{T} such that $A = O_1 \cup (O_2 \cap (O \cap A))$. If $a \notin O_1$, then $a \in O_1 \subset A^\circ$, a contradiction. Thus $A - A^{\circ} \subset O$. (2) Suppose $O \in \mathscr{T}$ and $O \cup (A - A^{\circ}) \in \mathscr{T}(A) - \mathscr{T}$. If $O \cap (A - A^\circ) \neq \phi$, then $O \supset (A - A^\circ)$ and $O \cup (A - A^\circ) = O \in \mathscr{T}$, a contradiction. Hence $O \cap (A - A^\circ) = \phi$ and $O \cap c(A - A^\circ) = \phi$. It follows then that $(O - A^\circ) \cap c(A)$ $(-A^\circ) = \phi$. We show now that $(A - A^\circ) \cap c(O - A^\circ) = \phi$. Now $\mathscr{T} \subset \mathscr{T}(O \cup (A - A^\circ)) = \phi$. $(A^\circ)) \subset \mathcal{T}(A)$ and since $O \cup (A - A^\circ) \notin \mathcal{T}$, then $\mathcal{T} \neq \mathcal{T}(O \cup (A - A^\circ))$. It follows then that $\mathcal{T}(A) = \mathcal{T}(O \cup (A - A^\circ))$ and $A \in \mathcal{T}(O \cup (A - A^\circ))$. There exist then O_1 and O_2 in \mathcal{T} for which $A = O_1 \cup (O_2 \cap (O \cup (A - A^\circ))) = O_1 \cup (O_2 \cap O) \cup (O_2 \cap (A - A^\circ))$ A°)). Since $A \notin \mathcal{T}$, it follows that $O_2 \cap (A - A^\circ) \neq \phi$ and by (1) above, $O_2 \supset (A - A^\circ) \neq \phi$ $-A^{\circ}$). It suffices to show that $O_{2} \cap (O - A^{\circ}) = \phi$. But $O_{2} \cap (O - A^{\circ}) \subset O \cap O \subset A^{\circ}$ and $O_2 \cap (O - A^\circ) \subset \mathcal{C}A^\circ$. Thus $O_2 \cap (O - A^\circ) = \phi$. Sufficiency. Suppose (1) and (2) hold. We will show that $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. Suppose $\mathscr{T} \subset \mathscr{U} \subset \mathscr{T}(A)$ and $\mathscr{T} \neq \mathscr{U}$. By Theorem 2.3, it suffices to show that $A \in \mathcal{U}$. Let $U^* = O_1^* \cup (O_2^* \cap A) \in \mathcal{U} - \mathcal{T}$, $O_1^* \in \mathcal{T}$, $O_2^* \in \mathcal{T}$. Then $U^* = O_1^* \cup \mathcal{U}$ $(O_2^* \cap A^\circ) \cup (O_2^* \cap (A - A^\circ))$ and hence $O_2^* \cap (A - A^\circ) \neq \phi$ lest $U^* \in \mathscr{T}$. By (1) $O_2^* \supset A - A^\circ$ and $U^* = O_1^* \cup (O_2^* \cap A^\circ) \cup (A - A^\circ) \in \mathscr{T}(A) - \mathscr{T}$. Let $O = O_1^* \cup (O_2^* \cap A^\circ)$ A°); then $O \cup (A - A^\circ) \in \mathscr{T}(A) - \mathscr{T}$ and by (2), $(O - A^\circ)$ and $(A - A^\circ)$ are separated. Thus $(A-A^\circ) \cap c(O-A^\circ) = \phi$. Now $A^\circ \cup (U^* \cap \mathcal{C}c(O-A^\circ)) \in \mathcal{U}$ and $A^{\circ} \cup (U^{*} \cap \mathscr{C}c(O - A^{\circ})) = A^{\circ} \cup ((O \cup (A - A^{\circ})) \cap \mathscr{C}c(O - A^{\circ})) = A^{\circ} \cup (O \cap \mathscr{C}c(O - A^{\circ}))$

 $\bigcup (A - A^{\circ}) = A^{\circ} \bigcup ((O - A^{\circ}) \cap \mathscr{C}(O - A^{\circ})) \bigcup ((O \cap A^{\circ}) \cap \mathscr{C}(O - A^{\circ})) \bigcup (A - A^{\circ}) = A^{\circ}$ $\bigcup (A - A^{\circ}) = A. \text{ Hence } A \in \mathscr{U}.$

COROLLARY 3.2. Let (X, \mathcal{T}) be a space and $A \subset X$, $A \notin \mathcal{T}$. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ iff (a) $A - A^\circ$ is indiscrete and (b) $O \in \mathcal{T}$, $O \cup (A - A^\circ) \in \mathcal{T}(A) - \mathcal{T}$ implies that $(A - A^\circ) \cap c(O - A^\circ) = \phi$.

PROOF. If $\mathscr{T}\operatorname{imp}\mathscr{T}(A)$, then (a) holds by (1) of Theorem 3.1 and (b) holds by (2) of Theorem 3.1. Now let (a) and (b) hold. By Theorem 3.1, it suffices to show that $(O-A^\circ)\cap c(A-A^\circ)=\phi$ when $O\in\mathscr{T}$ and $O\cup(A-A^\circ)\in\mathscr{T}(A)-\mathscr{T}$. But by (a), $O\cap(A-A^\circ)=\phi$ and thus $O\cap c(A-A^\circ)=\phi$. Hence $(O-A^\circ)\cap c(A-A^\circ)=\phi$.

COROLLARY 3.3. Let (X, \mathcal{T}) be a space and $A \subset X$, $A \notin \mathcal{T}$. If $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$, and (X, \mathcal{T}) is separable, then $(X, \mathcal{T}(A))$ is separable.

PROOF. Let $\{x_i : i \ge 1\}$ be dense in (X, \mathscr{T}) and take $y \in A - A^\circ$. Then $\{y\} \cup \{x_i : i \ge 1\}$ is dense in $(X, \mathscr{T}(A))$. For let $\phi \ne O_1 \cup (O_2 \cap A) \in \mathscr{T}(A)$. Then $O_1 \cup (O_2 \cap A) = O_1 \cup (O_2 \cap A^\circ) \cup (O_2 \cap (A - A^\circ))$.

Case 1: $O_2 \cap (A - A^\circ) = \phi$, Then $(O_1 \cup (O_2 \cap A^\circ)) \cap \{x_i : i \ge 1\} \neq \phi$. Case 2: $O_2 \cap (A - A^\circ) \neq \phi$. Then by (1) of Theorem 3.1, $O_2 \supset A - A^\circ$ and $y \in A$

 $O_1 \cup (O_2 \cap A).$

See Theorem 8 in [2] in this connection.

EXAMPLE 3.4. Let X be an infinite set and x^* a fixed element of X. If $\mathscr{T} = \{O : O \subset X \text{ and } x^* \notin O \text{ or } x^* \notin O \text{ and } \mathscr{C}O \text{ is finite}\}$, then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$ for no $A \subset X$.

PROOF. Let $x^* \in A$ and let $\mathcal{C}A$ be infinite. Then $\mathcal{C}A = B_1 \cup B_2$ where $B_1 \cap B_2 = \phi$, B_1 and B_2 both being infinite. Let $O = A^\circ \cup B_1$. Then $O \cup (A - A^\circ) \in \mathcal{T}(A) = \mathcal{T}$, but $O - A^\circ$ and $A - A^\circ$ are not separated for $x^* \in (A - A^\circ) \cap c(O - A^\circ)$. (See (b) of Corollary 3.2.)

COROLLARY 3.5. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. If $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$, $C \subset A$, $C \cup \mathcal{C}A$ not closed, then $C \subset A^\circ$.

PROOF. $A \cap \mathcal{C} \subset \mathcal{F}$ and hence $(A^{\circ} \cap \mathcal{C} \subset \mathcal{C}) \cup ((A - A^{\circ}) \cap \mathcal{C} \subset \mathcal{F})$. It follows then from (a) of Corollary 3.2 that $A - A^{\circ} \subset \mathcal{C} C$ and thus $(A - A^{\circ}) \cap C = \phi$. Hence $C \subset A^{\circ}$.

COROLLARY 3.6. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. For each $O \in \mathcal{T}$, suppose

 $A \subset O$ or $O \subset A$. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$.

PROOF. We employ Corollary 3.2. (a) Suppose $O \cap (A - A^\circ) \neq \phi$. Then $O \not\subset A$ lest $O \subset A^\circ$. Thus $A \subset O$ and $A - A^\circ$ $\subset O$. Hence $A - A^{\circ}$ is indiscrete. (b) Suppose $O \in \mathscr{T}$ and $O \cup (A - A^\circ) \in \mathscr{T}(A) - \mathscr{T}$.

Case 1. $A \subset O$. Then $O \cup (A - A^\circ) = O \in \mathcal{T}$, a contradiction.

46

Case 2. $O \subset A$. Then $O \subset A^\circ$ and $O - A^\circ = \phi$. Thus $O - A^\circ$ and $A - A^\circ$ are separated.

Corollary 3.6 yields the following.

EXAMPLE 3.7. Let X be the reals and let $\mathscr{T} = \{O: O = \phi, O = X \text{ or } O = (-\infty)\}$ a) for some $a \in X$. Let $A = (-\infty, 1]$. Then $\mathscr{T} \operatorname{imp} \mathscr{T}(A)$.

COROLLARY 3.8. Let (X, \mathcal{T}) be a space with the following property: $O \in \mathcal{T}$ implies that $CO \in \mathcal{T}$. If $A \notin \mathcal{T}$, then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ iff $A - A^{\circ}$ is indiscrete.

PROOF. We employ Corollary 3.2. Let $O \in \mathscr{T}$ and $O \cup (A - A^\circ) \notin \mathscr{T}$. But $(A-A^\circ)\cap c(O-A^\circ)=(A-A^\circ)\cap (O-A^\circ)$ (since $O-A^\circ$ is closed). If $(A-A^\circ)\cap (O-A^\circ)$ $(-A^{\circ}) \neq \phi$, then $O \cup (A - A^{\circ}) = O \in \mathscr{T}$ since $A - A^{\circ}$ is indiscrete.

COROLLARY 3.9. Let (X, \mathcal{T}) be a space with the following property: $\phi \neq O \subset B$ $\subset X$, $O \in \mathcal{T}$ implies that $B \in \mathcal{T}$. (For example, \mathcal{T} is the cofinite, or cocountable topology.) If $\{x^*\} \notin \mathcal{T}$, then $\mathcal{T} \operatorname{imp} \mathcal{T}(\{x^*\})$.

PROOF. (a) $\{x^*\} - \{x^*\}^\circ = \{x^*\}$ and is indiscrete. (b) If $O \in \mathscr{T}$ and $O \cup \{x^*\}$ $\notin \mathscr{T}$, then $O = \phi$ and $O - \{x^*\}^\circ$ and $\{x^*\} - \{x^*\}^\circ$ are separated.

COROLLARY 3.10. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. Then $\mathcal{T}(A) = \mathcal{T} \cup \{A\}$ iff (1) $0 \in \mathcal{T}$, $O \cap (A - A^\circ) \neq \phi$ implies that $O \supset A$ and (2) $O \cap \mathcal{C}A \neq \phi$ implies that $0 \cup A \in \mathscr{T}$.

PROOF. Suppose that $\mathcal{T}(A) = \mathcal{T} \cup \{A\}$.

(1) Suppose that $O \in \mathscr{T}$ and $O \cap (A - A^\circ) \neq \phi$. Then by (a) of Corollary 3.2, $O \supset A - A^\circ$. But $O \cap A = (A - A^\circ) \cup (O \cap A^\circ) \in \mathscr{T} \cup \{A\}$. If $O \supset A^\circ$, then $O \supset A$. If $O \mathfrak{P} A^\circ$, then $O \cap A \neq A$ and hence $O \cap A \in \mathscr{T}$. Thus $(A - A^\circ) \cup (O \cap A^\circ) \in \mathscr{T}$ and $(A - A^{\circ}) \cup (O \cap A^{\circ}) \cup A^{\circ} = A \in \mathscr{T}$, a contradiction.

(2) Suppose $O \cap \mathcal{C}A \neq \phi$. Then $O \cup A \in \mathcal{T}(A) - \{A\} = \mathcal{T}$. Conversely, suppose that (1) and (2) hold. Let $O_1 \cup (O_2 \cap A) \in \mathscr{T}(A) - \mathscr{T}$. If $O_2 \cap (A - A^\circ) = \phi$, then $O_1 \cup (O_2 \cap A) \in \mathcal{T}$, a contradition. Hence $O_2 \supset A$ and thus $O_1 \cup A \in \mathcal{T}(A) - \mathcal{T}$,

and $O_1 \cup A \notin \mathscr{T}$. By (2), $O_1 \cap \mathscr{C}A = \phi$ and $O_1 \subset A$. Hence $O_1 \cup (O_2 \cap A) = A$.

COROLLARY 3.11. Let (X, \mathcal{T}) be a space of the first category and suppose that $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. Then $\mathcal{T}(A)$ is of the first category iff $(A - A^{\circ}) \cap c(A^{\circ}) \neq \phi$.

PROOF, Sufficiency. Let $X = \bigcup \{F_i : i \ge 1\}$ where $CF_i \in \mathcal{F}$ for all *i*. Then F_i is closed in $(X, \mathcal{F}(A))$ for each *i*. Suppose further that the \mathcal{F} -int $F_i = \phi$ for each *i*. We will show that the $\mathcal{F}(A)$ -int $F_i = \phi$ for each *i*. Suppose on the contrary that $\phi \neq O_1 \cup (O_2 \cap A) \subset F_i$ for some *i*. Then $O_2 \cap (A - A^\circ) \neq \phi$ and by (a) of Corollary 3.2, $O_2 \supset A - A^\circ$. Then $O_2 \cap A^\circ \neq \phi$ and F_i has a nonempty \mathcal{F} -int, a contradiction.

Necessity. Suppose that $(A-A^{\circ})\cap c(A^{\circ})=\phi$. Now $A\in \mathcal{T}(A)$ and $A-c(A^{\circ})\in \mathcal{T}(A)$. It follows then that $A-A^{\circ}\in \mathcal{T}(A)$. It is clear that $A-A^{\circ}$ is indiscrete in $\mathcal{T}(A)$ as well as in \mathcal{T} . Suppose that $X=\bigcup\{F_i^*:i\ge 1\}$, where $\mathcal{C}F_i^*\in \mathcal{T}(A)$ for all *i*. It follows that $A-A^{\circ}\subset F_i^*$ for some *i* and hence the $\mathcal{T}(A)-\operatorname{int} F_i^*\neq \phi$. Thus $(X,\mathcal{T}(A))$ is not of the first category.

LEMMA 3.12. Let (X, \mathcal{T}) be a space and $x^* \in X$. Suppose $\{x^*\}$ is not closed, but $x^* \in O \in \mathcal{T}$ implies that $c(\{x^*\}) \subset O$. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(\{x^*\} \cup \mathcal{C}c(\{x^*\}))$ and $\mathcal{T} \operatorname{imp} \mathcal{T}(\mathcal{C}\{x^*\})$.

PROOF. See Corollary 5.4 and Corollary 6.4.

LEMMA 3.13. Let (X, \mathcal{T}) be a first axiom Hausdorff space. Then $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$

for no $A \subset X$.

PROOF. Suppose on the contrary that $\mathscr{T}\operatorname{imp}\mathscr{T}(A)$ for some $A \notin \mathscr{T}$. Then $\mathscr{C}A$ is not closed; take $a \in A \cap c(\mathscr{C}A)$. Then there exists a sequence of distinct points $x_i \in \mathscr{C}A$ such that $a = \lim x_i$. Let $E = \{a, x_2, x_4, x_6, \cdots\}$. Clearly E is compact and hence closed in (X, \mathscr{T}) . Let $O = \mathscr{C}E$. Then $O \cup (A - A^\circ) = O \cup A$ since $A^\circ \subset O$. But $O \cup A \in \mathscr{T}(A) - \mathscr{T}$ (if $O \cup A \in \mathscr{T}$, then x_i is eventually in $O \cup A$). Thus $O \cup (A - A^\circ) \in \mathscr{T}(A) - \mathscr{T}$, but $a \in (A - A^\circ) \cap c(O - A^\circ)$ ($a = \lim x_{2i+1}$). This contradicts (b) of Corollary 3.2.

See Theorem I.4.3 in [1].

THEOREM 3.14. Let (X, \mathcal{T}) be a first axiom space and regular. Then (X, \mathcal{T})

is Hausdorff iff $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$ for no $A \subset X$.

PROOF. The necessity follows from Lemma 3.13.

Sufficiency. That (X, \mathcal{T}) is a T_1 space follows from Lemma 3.12. T_1 plus regular implies Hausdorff.

COROLLARY 3.15. Let (X, \mathcal{T}) be metrizable. Then \mathcal{T} imp $\mathcal{T}(A)$ for no- $A \subset X$.

4. $\mathbf{A}^\circ = \phi$

48

THEOREM 4.1. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. If $A^\circ = \phi$, then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ iff (1) A is indiscrete and (2) $O \cup A \notin \mathcal{T}$ implies that O and A are separated whenever $O \in \mathcal{T}$.

PROOF. This follows from Theorem 3.1 and the fact that $O \cup A$ always is in $\mathcal{T}(A)$.

COROLLARY 4.2. Let (X, \mathcal{T}) be a space and $\{x\} \notin \mathcal{T}$. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(\{x\})$ iff $0 \in \mathcal{T}$ and $0 \cup \{x\} \notin \mathcal{T}$ implies that $x \notin c(0)$.

COROLLARY 4.3. Let (X, \mathcal{T}) be a space, $\phi \neq A \subset O^*$, $A \neq O^* \in \mathcal{T}$ and O^* minimal open. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$.

PROOF. Firstly, $A \notin \mathscr{T}$ and $A^\circ = \phi$. We show that A is indiscrete. Suppose $O \in \mathscr{T}$ and $O \cap A \neq \phi$. Then $O \cap O^* \neq \phi$ and since O^* is minimal open, it follows that $O \supset O \cap O^* = O^* \supset A$.

Secondly, suppose $O \in \mathscr{T}$ and $O \cup A \notin \mathscr{T}$. Now $O \cap A = \phi$ lest $O \supset A$ and $O \cup A$. $\in \mathscr{T}$. Hence $O \cap O^* = \phi$ and $A \cap c(O) = \phi$. It follows then that O and A are

separated.

THEOREM 4.4. Let (X, \mathcal{T}) be a space and $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$. Suppose $B \subset X$ and $\mathcal{B}^{\circ} \supset A^{\circ}$. Then $B \in \mathcal{T}(A) - \mathcal{T}$ iff $B - B^{\circ} = A - A^{\circ}$.

PROOF. Necessity. $(B^{\circ} \supset A^{\circ} \text{ is not used in this part of the proof.})$ Let $B \in \mathcal{T}(A) - \mathcal{T}$. Then $\mathcal{T} \subset \mathcal{T}(B) \subset \mathcal{T}(A)$ and $\mathcal{T} \neq \mathcal{T}(B)$. Hence $\mathcal{T}(B) = \mathcal{T}(A)$ and $B \in \mathcal{T}(A)$, $A \in \mathcal{T}(B)$.

Thus $B=O_1 \cup (O_2 \cap A)$ for some $O_i \in \mathscr{T}$ and $B=O_1 \cup (O_2 \cap A^\circ) \cup (A-A^\circ)$. But $B=B^\circ \cup (B-B^\circ)$. It follows then that $B-B^\circ \subset A-A^\circ$.

Also, $A = O_1^* \cup (O_2^* \cap B) = O_1^* \cup (O_2^* \cap B^\circ) \cup (B - B^\circ) = A^\circ \cup (A - A^\circ)$. It follows that $A - A^\circ \subset B - B^\circ$ and hence $A - A^\circ = B - B^\circ$.

Sufficiency. Let $A - A^{\circ} = B - B^{\circ}$. Then $B - B^{\circ} \neq \phi$ and $B \notin \mathscr{T}$. We show that $B \in \mathscr{T}(A)$. Now $B = B^{\circ} \cup (B - B^{\circ}) = B^{\circ} \cup A^{\circ} \cup (A - A^{\circ}) = B^{\circ} \cup A \in \mathscr{T}(A)$.

COROLLARY 4.5. Let (X, \mathcal{T}) be a space, $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ and $A^\circ = \phi$. Let $B \subset X$.

49,

Then $B \in \mathcal{T}(A) - \mathcal{T}$ iff $B - B^\circ = A$.

This follows from Theorem 4.5 and the fact that $B^{\circ} \supset A^{\circ}$. PROOF.

COROLLARY 4.6. Let (X, \mathcal{T}) be a space and $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$. If $A^\circ = \phi$, then A is the smallest member of $\mathcal{T}(A) - \mathcal{T}$.

PROOF. Let $B \in \mathscr{T}(A) - \mathscr{T}$. Then $B \supset B - B^{\circ} = A$ by Corollary 4.5.

5. A Indiscrete

THEOREM 5.1. Let (X, \mathcal{T}) be a space, $A \subset X$, $A \cup \mathcal{C}c(A) \notin \mathcal{T}$ and A indiscrete. Then $\mathcal{T}\operatorname{imp}\mathcal{T}(A \cup \mathcal{C}c(A))$.

PROOF. Let \mathcal{U} be a topology for X for which $\mathcal{T} \subset \mathcal{U} \subset \mathcal{T}(A \cup \mathcal{C}(A)), \mathcal{T} \neq \mathcal{U}$. Let $U = O_1 \cup (O_2 \cap (A \cup \mathcal{C}(A)) \in \mathcal{U} - \mathcal{T}$. Then $\mathcal{T} \subset \mathcal{T}(U) \subset \mathcal{U} \subset \mathcal{T}(A \cup \mathcal{C}(A))$. By Theorem 2.3, it suffices to show that $A \cup \mathcal{C}(A) \in \mathcal{T}(U)$. Now $O_2 \cap A \neq \phi$. lest $U \in \mathcal{T}$. Hence $O_2 \supset A$. $O_1 \cap A = \phi$ lest $U \in \mathcal{T}$. It follows then that $O_1 \cap c(A)$. $=\phi$ and $O_1 \subset \mathcal{C}(A)$. Thus $A \cup \mathcal{C}(A) = \mathcal{C}(A) \cup (O_2 \cap (O_1 \cup (O_2 \cap (A \cup \mathcal{C}(A)))) = O_1 \cup \mathcal{C}(A)$ $\mathscr{C}cA \cup (O_{2} \cap U) \in \mathscr{T}(U).$

COROLLARY 5.2. Let (X, \mathcal{T}) be a space, A indiscrete and c(A) - A not closed. Then $\mathcal{T}\operatorname{imp}\mathcal{T}(A \cup \mathcal{C}c(A))$.

PROOF. We need only show that $A \cup \mathcal{C}(A) \notin \mathcal{T}$. But $\mathcal{C}(A \cup \mathcal{C}(A)) = c(A) \cap \mathcal{C}(A)$ $\mathcal{C}A = c(A) - A$ which is not closed.

COROLLARY 5.3. Let (X, \mathcal{T}) be a space and $x^* \in X$. If $c(\{x^*\}) - \{x^*\}$ is not closed, then $\mathcal{T}\operatorname{imp}\mathcal{T}(\{x^*\} \cup \mathcal{C}c(\{x^*\}))$.

This follows from Corollary 5.2 and the fact that $\{x^*\}$ is indiscrete. PROOF.

COROLLARY 5.4. Let (X, \mathcal{T}) be a space and $\{x^*\}$ not closed. If $x^* \in O \in \mathcal{T}$. then $c({x^*}) \subset O$. Then $\mathcal{T} \operatorname{imp}({x^*} \cup \mathcal{C}({x^*}))$.

PROOF. We use Theorem 5.1. If $\{x^*\} \cup \mathcal{O}_{c}(\{x^*\}) \in \mathcal{T}$, then $c(\{x^*\}) = \{x^*\}$ and $\{x^*\}$ is closed.

COROLLARY 5.5. Let (X, \mathcal{T}) be a space and A indiscrete. If $A \notin \mathcal{T}$ and is: dense, then $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$.

PROOF. $A = A \cup \mathcal{C}(A) \notin \mathcal{T}$. By Theorem 5.1, $\mathcal{T} \operatorname{imp} \mathcal{T}(A \cup \mathcal{C}(A)) = \mathcal{T}(A)$.

6. CA Indiscrete

:50

LEMMA 6.1. Let (X, \mathcal{T}) be a space, $A \notin \mathcal{T}$, CA indiscrete. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ iff $CA \subset O \in \mathcal{T}$, $O \cap A \notin \mathcal{T}$ implies that $X = A^{\circ} \cup O$.

PROOF. Necessity. Let $C \in C \subset C \in \mathcal{T}$ and $O \cap A \notin \mathcal{T}$. It suffices to show that $A - A^{\circ} \subset O$. By (a) of Corollary 3.2, it suffices to show that $(A - A^{\circ}) \cap O \neq \phi$.

Now $O \cap A = (O \cap A^\circ) \cup (O \cap (A - A^\circ)) \notin \mathcal{F}$. It follows then that $O \cap (A - A^\circ) \neq \phi$. Sufficiency. Suppose \mathscr{U} is a topology for X and $\mathscr{T} \subset \mathscr{U} \subset \mathscr{F}(A)$, $\mathscr{T} \neq \mathscr{U}$. We will show that $\mathscr{U} = \mathscr{F}(A)$. By Theorem 2.3, it suffices to show that $A \in \mathscr{U}$. Let $U^* \in \mathscr{U} - \mathscr{F}$. Then $U^* = O_1^* \cup (O_2^* \cap A)$ where $O_i^* \in \mathscr{F}$. It follows that $O_2^* \cap A \notin \mathscr{F}$ and hence $O_2^* \notin A$. Thus $O_2^* \cap \mathscr{C}A \neq \phi$ and since $\mathscr{C}A$ is indiscrete, it follows that $O_2^* \supset \mathscr{C}A$. Thus $\mathscr{C}A \subset O_2^*$ and $O_2^* \cap A \notin \mathscr{F}$. Hence $X = A^\circ \cup O_2^*$. Now $O_i^* \cap \mathscr{C}A = \phi$. If not, then $O_1^* \supset \mathscr{C}A$ and $U^* = O_1^* \cup (O_2^* \cap A) = O_1^* \cup (O_2^* - \mathscr{C}A) = O_1^* \cup O_2^* \in \mathscr{F}$, a contradiction. Hence $O_1^* \subset A$. Since $X = A^\circ \cup O_2^*$, it follows that $A = (A^\circ \cap A) \cup (O_2^* \cap A) = A^\circ \cup (O_2^* \cap A) = A^\circ \cup O_1^* \cup (O_2^* \cap A) = A^\circ \cup U^* \in \mathscr{U}$.

THEOREM. 6.2. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. Assume CA is indiscrete. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$ iff $CA \subset O \in \mathcal{T}$, $O \cap A \notin \mathcal{T}$ implies that $c(CA) \subset O$.

PROOF. Necessity. Suppose $\mathcal{C}A \subset \mathcal{O} \in \mathcal{T}$ and $\mathcal{O} \cap A \notin \mathcal{T}$. Then by Lemma :6.1, $X = A^{\circ} \cup \mathcal{O}$. But $c(\mathcal{C}A) \subset c(\mathcal{C}A^{\circ}) = \mathcal{C}A^{\circ} \subset \mathcal{O}$.

Sufficiency. Suppose $\mathcal{C}A \subset \mathcal{O} \in \mathcal{T}$ and $\mathcal{O} \cap A \notin \mathcal{T}$. By Lemma 1, it suffices to show that $X = A^{\circ} \cup \mathcal{O}$. Now $c(\mathcal{C}A) \subset \mathcal{O}$ and $A^{\circ} \cap c(\mathcal{C}A) = \phi$. Therefore $X = \mathcal{C}A^{\circ} \cup \mathcal{C}c(\mathcal{C}A) \subset \mathcal{O} \cup A^{\circ} \subset X$.

COROLLARY 6.3. Let (X, \mathcal{T}) be a space and $A \notin \mathcal{T}$. If CA is indiscrete and $CA \subset O \in \mathcal{T}$ implies $c(CA) \subset O$, then $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$.

COROLLARY 6.4. Let (X, \mathcal{T}) be a space and $x^* \in X$. If $\{x^*\}$ is not closed and $x^* \in O \in \mathcal{T}$ implies that $c(\{x^*\}) \subset O$, then $\mathcal{T} \operatorname{imp} \mathcal{T}(\mathcal{C}\{x^*\})$.

See Theorem 1.2.3 in [1].

COROLLARY 6.5. Let (X, \mathcal{T}) be regular and $\{x^*\}$ not closed. Then $\mathcal{T} \operatorname{imp} \mathcal{T}(\mathcal{C}\{x^*\})$.

7. Connectedness

THEOREM 7.1. Let (X, \mathcal{T}) be a space, $A \subset X$ and $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$. Suppose

 C_1 and C_2 are separated subsets of CA. Then $c(C_1) \cap c(C_2) \cap A = \phi$.

۲

PROOF. Suppose on the contrary that $x \in c(C_1) \cap c(C_2) \cap A$. Let $O = \mathcal{C}c(C_2)$. We will show that (1) $\mathcal{T} \subset \mathcal{T}(A \cup O)$ and $\mathcal{T} \neq \mathcal{T}(A \cup O)$ and (2) $\mathcal{T}(A \cup O) \subset \mathcal{T}(A)$ and $\mathcal{T}(A \cup O) \neq \mathcal{T}(A)$. (1) and (2) imply that $\mathcal{T}imp\mathcal{T}(A)$ is false.

(1) It suffices to show that A∪O∉𝒯. Suppose A∪O∈𝒯. Then x∈O*⊂ A∪O, O*∈𝒯. But O*∩C₂≠φ: take y∈O*∩C₂. Then y∈c(C₂). Now y∉A and hence y∈O=Cc(C₂). Thus y∈c(C₂)∩Cc(C₂), a contradiction.
(2) Since A∪O∈𝒯(A), it follows from Theorem 2.2 that 𝒯(A∪O)⊂𝒯(A). It suffices then to show that A∉𝒯(A∪O). Suppose that A∈𝒯(A∪O). Then there exist O₁ and O₂ in 𝒯 such that A=O₁∪(O₂∩(A∪O)). Now x∉O₁ and x∉O₂∩O lest x∉c(C₁). Therefore x∈O₂∩A and hence O₂∩C₁≠φ. Take z∈O₂∩C₁; then z∈Cc(C₂)=O. Thus z∈O₂∩O⊂A. Hence z∈C₁∩A. But C₁∩A=φ, a contradiction.

COROLLARY 7.2. Let (X, \mathcal{T}) be a space and $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. If $\mathcal{C}A = C_1 \cup C_2$ where C_1 and C_2 are nonempty separated sets, then (1) C_1 or C_2 is closed (but not both) and (2) $\mathcal{C}A^\circ$ is disconnected.

PROOF. C_1 and C_2 cannot both be closed lest $A \in \mathscr{T}$. Now $\mathscr{C}A \neq c(\mathscr{C}A) = c(C_1) \cup c(C_2)$. Take $x \in A \cap c(\mathscr{C}A)$. Assume $x \in c(C_1)$. Then $x \notin C_1$ and hence C_1 is not closed. Now $A^\circ \cap c(C_1) = \phi$ and hence $x \in (A - A^\circ) \cap c(C_1)$. Since $A - A^\circ$ is indiscrete by (a) of Theorem 3.2, it follows that $A - A^\circ \subset c(C_1)$. Then $(A - A^\circ) \cap c(C_2) = \phi$ lest $A \cap c(C_1) \cap c(C_2) \supset A - A^\circ \neq \phi$ contradicting Theorem 7.1. Hence $c(C_2) \subset \mathscr{C}A = C_1 \cup C_2$. Thus $c(C_2) \subset C_2$ and C_2 is closed. From the proof of (1), it follows that $\mathscr{C}A^\circ = c(C_1) \cup C_2$ and hence $\mathscr{C}A^\circ$ is disconnected.

COROLLARY 7.3. Let (X, \mathcal{T}) be a space and $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. Suppose $\mathcal{C}A^\circ$ is disconnected. Then $\mathcal{C}A$ is disconnected.

PROOF. Let $CA^\circ = C_1 \cup C_2$ where C_1 and C_2 are disjoint nonempty closed sets. Now $A - A^\circ$ is indiscrete and contained in CA° . We may assume $A - A^\circ \subset C_1$. But $A - A^\circ \neq C_1$ lest $CA = C_2$ and $A \in \mathcal{T}$. Then $CA = (C_1 - (A - A^\circ)) \cup C_2$ and CA is disconnected.

COROLLARY 7.4 Let (X, \mathcal{T}) be a space and $\mathcal{T}imp\mathcal{T}(A)$. Then $\mathcal{C}A$ is

connected iff CA° is connected.

52

COROLLARY 7.5. Let (X, \mathcal{T}) be a space and $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. If $A^\circ = \phi$, then $\mathbb{C}A$ is connected iff X is connected.

COROLLARY 7.6. Let (X, \mathcal{T}) be a space, \mathcal{T} imp $\mathcal{T}(A)$ and A closed. Then X is connected iff A and $\mathcal{C}A$ are connected.

PROOF. Sufficiency. Suppose $X=O_1\cup O_2$ where O_1 and O_2 are nonempty disjoint open sets. We may assume $A\subset O_1$ and $C \subset O_2$. It follows then that $A=O_1 \in \mathcal{T}$, a contradiction.

Necessity. We show firstly that CA is connected. Suppose on the contrary that CA is not connected. Since CA is open, then $CA=O_1\cup O_2$ where O_1 and O_2 are nonempty disjoint open sets. By Corollary 7.2, we may assume that O_1 is closed. Then O_1 is a clopen proper subset of X and X is not connected. Next we show that A is connected. Suppose on the contrary that $A=E_1\cup E_2$ where E_1 and E_2 are nonempty disjoint closed sets. Since $A-A^\circ$ is indiscrete, we may assume that $A-A^\circ \subset E_1$. Then $E_2=A^\circ \cap CE_1$ as the reader can verify. Hence E_2 is a proper clopen subset of X.

8. A Closed

THEOREM 8.1. Let (X, \mathcal{T}) be a space and A closed in X. If (X, \mathcal{T}) is regular, then $(X, \mathcal{T}(A))$ is regular.

This is Theorem 2 in [2]. Note that $\mathscr{T}\operatorname{imp}\mathscr{T}(A)$ is not required here.

EXAMPLE 8.2. Let $X = \{a, b\}$ and $\mathcal{T} = \{\phi, X\}$, $A = \{a\}$. Then (X, \mathcal{T}) is regular, $\mathcal{T} \operatorname{imp} \mathcal{T}(A)$, but $(X, \mathcal{T}(A))$ is not regular. Note that A is not closed in (X, \mathcal{T}) .

THEOREM 8.3. Let (X, \mathcal{T}) be a space and A a closed subset of X. If \mathcal{T} has a clopen base, then $\mathcal{T}(A)$ has a clopen base. $(\mathcal{T}\operatorname{imp}\mathcal{T}(A)$ is not needed here.)

PROOF. Let $x \in O_1 \cup (O_2 \cap A) \in \mathscr{T}(A)$.

Case 1. $x \in O_1$. Then there exists a clopen set O^* in \mathscr{T} such that $x \in O^* \subset O_1$ $\subset O_1 \cup (O_2 \cap A)$. Then O^* is clopen in $\mathscr{T}(A)$.

Case 2. $x \notin O_1$. Then $x \in O_2 \cap A$ and hence there exists a clopen set O^* in \mathscr{T} such that $x \in O^* \subset O_2$. Thus $x \in O^* \cap A \subset O_2 \cap A \subset O_1 \cup (O_2 \cap A)$ and $O^* \cap A$ is

· · · · · ·

53

clopen in $\mathcal{T}(A)$.

Example 8.2 shows that A closed must be assumed.

THEOREM 8.4. Let (X, \mathcal{T}) be a connected door space. Then \mathcal{T} is maximal relative to connectness.

.

PROOF. Let $\mathcal{T} \subset \mathcal{U}$, $\mathcal{T} \neq \mathcal{U}$, \mathcal{U} a topology for X. We will show that (X,

 \mathscr{U}) is not connected. Let $A \in \mathscr{U} - \mathscr{T}$. Then $\mathscr{T} \subset \mathscr{T}(A) \subset \mathscr{U}$. Since $A \notin \mathscr{T}$, then A is closed in (X, \mathcal{T}) . Thus A is clopen in $\mathcal{T}(A)$ and $(X, \mathcal{T}(A))$ is not connected. It follows then that (X, \mathcal{U}) is not connected.

THEOREM 8.5. Let (X, \mathcal{T}) be extremally disconnected, A a closed subset of X and $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$. Then $\mathcal{T}(A)$ is extremally disconnected.

PROOF. Let B_1 and $B_2 \in \mathcal{T}(A)$, $B_1 \cap B_2 = \phi$. Let c^* be the closure operator in $\mathcal{T}(A)$. We will show that $c^*(B_1) \cap c^*(B_2) = \phi$. Case 1. B_1 and B_2 are in \mathcal{T} . Then $c^*(B_1) \cap c^*(B_2) \subset c(B_1) \cap c(B_2) = \phi$. Case 2. $B_1 \notin \mathscr{T}$, $B_2 \notin \mathscr{T}$. By Theorem 4.4, $B_1 = B_1^{\circ} \cup (A - A^{\circ})$ and $B_2 = B_2^{\circ} \cup B_2^{\circ}$ $(A-A^\circ)$. Thus $B_1 \cap B_2 \supset A - A^\circ \neq \phi$, a contradiction.

Case 3. $B_1 \in \mathcal{T}$, $B_2 \notin \mathcal{T}$. Then $B_2 = B_2^\circ \cup (A - A^\circ)$ again by Theorem 4.4. Now $c^*(B_1) \cap B_2 = \phi$ and hence $c^*(B_1) \cap (A - A^\circ) = \phi$. Thus $c^*(B_1) \cap c^*(A - A^\circ) \subset A^\circ$ $c^*(B_1) \cap c(A - A^\circ) = c^*(B_1) \cap (A - A^\circ) = \phi$. Therefore $c^*(B_1) \cap c^*(B_2) = (c^*(B_1) \cap A^\circ)$ $c^*(B_2^\circ)) \cup (c^*(B_1) \cap c^*(A - A^\circ)) \subset c(B_1) \cap c(B_2^\circ) = \phi.$

EXAMPLE 8.6. Let $X = \{a, b, c\}$ and $\mathcal{T} = \{\phi, \{b\}, X\}$. Let $A = \{a\}$. Then (X, \mathscr{T}) is extremally disconnected, but $\mathscr{T}(A) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ is not. Note that A is not closed nor does $\mathscr{T}\operatorname{imp}\mathscr{T}(A)$.

9. $A - A^{\circ}$ Not Closed

THEOREM 9.1. Let (X, \mathcal{T}) be a space, \mathcal{T} imp $\mathcal{T}(A)$ and $A - A^{\circ}$ not closed. If (X. \mathcal{T}) is compact (or Lindelof or countably compact), then (X, $\mathcal{T}(A)$) is compact (or Lindelof or countably compact).

PROOF. We will only prove the compact case. Suppose then that $X = \bigcup \{B_{\alpha}\}$ $: \alpha \in A$ where $B_{\alpha} \in \mathscr{T}(A)$ for all $\alpha \in A$.

Case 1. $B_{\alpha} \in \mathscr{T}$ for all $\alpha \in \mathscr{A}$. Then clearly $X = B_{\alpha} \cup \cdots \cup B_{\alpha}$ for some $\alpha_i \in \mathscr{A}$. Case 2. $B_{\alpha^*} \notin \mathcal{T}$ for some $\alpha^* \in \mathcal{A}$. It follows from Theorem 4.4 that X = (A - A)

54

 A°) $\cup [\cup \{B_{\alpha}^{\circ} : \alpha \in A\}]$. Since $A - A^{\circ}$ is not closed, then $(A - A^{\circ}) \cap B_{\alpha^{*}}^{\circ}$ for some α^{*} in Δ and hence $A - A^{\circ} \subset B^{\circ}_{\alpha^{*}}$ since $A - A^{\circ}$ is discrete. It follows then that $X = A^{\circ}$ $\bigcup \{B_{\alpha}^{\circ}: \alpha \in A\}$ and each $B_{\alpha} \in \mathscr{T}$. Compactness of $(X, \mathscr{T}(A))$ is now immediate.

THEOREM 9.2. Let (X, \mathcal{T}) be a space, $\mathcal{T}\operatorname{imp}\mathcal{T}(A)$ and $A-A^{\circ}$ not closed. If (X, \mathcal{T}) is sequentially compact, then $(X, \mathcal{T}(A))$ is sequentially compact.

PROOF. It suffices to show that if $\{x_n\}$ is convergent in the space (X, \mathscr{T}), then $\{x_n\}$ is convergent in $(X, \mathscr{T}(A))$. To this end, suppose $\lim x_n = x$ in (X, \mathcal{T}) , but lim $x_n = y$ in $(X, \mathcal{T}(A))$ for no $y \in X$. Then for each $y \in X$, there exists a $B_{v} \in \mathscr{T}(A)$ such that $y \in B_{v}$ and x_{n} is not eventually in B_{v} . But $x \in B_x \in \mathscr{T}(A) - \mathscr{T}$ and hence by Theorem 4.4 $x \in B_x \cup (A - A^\circ)$. Therefore $x \in A$ $A-A^\circ$. It follows then that $X=(A-A^\circ) \cup \bigcup \{B_y : y \in X\}$, and $X=\bigcup \{B_y^\circ : y \in X\}$. $y \in X$ (see the reasoning in Case 2 of Theorem 9.1). But $x \in B_{y^*}$ for some y^* and hence x_n is eventually in B_{v^*} , a contradiction.

THEOREM 9.3. Let (X, \mathcal{T}) be connected, \mathcal{T} imp $\mathcal{T}(A)$ and $A - A^{\circ}$ not closed. Then (X, \mathcal{T}) is connected.

PROOF. Suppose on the contrary that $X = B_1 \cup B_2$ where B_1 and B_2 are in $\mathcal{T}(A)$, disjoint and nonempty.

Case 1. B_1 and B_2 are in \mathcal{T} . Then X is not connected, a contradiction. Case 2. $B_1 \notin \mathcal{T}$, $B_2 \notin \mathcal{T}$. Then by Theorem 4.4, $B_1 = B_1 \cup (A - A^\circ)$ and $B_2 =$ $B_2 \cup (A - A^\circ)$ and $B_1 \cap B_2 \supset A - A^\circ \neq \phi$, a contradiction. Case 3. $B_1 \notin \mathscr{T}$, $B_2 \in \mathscr{T}$. Then $B_1 = B_1^{\circ} \cup (A - A^{\circ})$ and $X = B_2 \cup B_1^{\circ} \cup (A - A^{\circ})$. Then $A-A^{\circ}$ is closed, a contradiction.

See Theorem 9 in [2].

THEOREM 9.4. Let (X, \mathcal{T}) be normal, \mathcal{T} imp $\mathcal{T}(A)$ and $A-A^{\circ}$ not closed. Then $(X, \mathcal{T}(A))$ is normal.

PROOF. Let $X = B_1 \cup B_2$ where B_1 and B_2 are in $\mathcal{T}(A)$. Case 1. B_1 and B_2 are in \mathcal{T} . Then there exist F_1 and F_2 \mathcal{T} -closed and hence $\mathscr{T}(A)$ -closed such that $X = F_1 \cup F_2$, $F_i \subset B_i$. Case 2. B_1 and B_2 are not in \mathscr{T} . By Theorem 4.4, $B_i - B_i = A - A^\circ$ and hence $X = B_1^{\circ} \cup B_2^{\circ} \cup (A - A^{\circ})$. It follows then that $(A - A^{\circ})$ is closed, a contradiction.

Case 3.
$$B_1 \in \mathscr{T}$$
, $B_2 \in \mathscr{T}(A) - \mathscr{T}$. Then $B_2 = B_2 \cup (A - A^\circ)$ and $X = B_1 \cup B_2 \cup B_2$

Minimal Simple Extensions of Topologies 55 $(A-A^\circ)$. If $B_1^\circ \cap (A-A^\circ) = \phi$, then $A-A^\circ$ is closed, a contradiction. If $B_1^\circ \cap (A-A^\circ) \neq \phi$, then $B_1^\circ \supset A-A^\circ$ and $X=B_1^\circ \cup B_2^\circ$. Proceede as in Case 1. See Theorem 5 in [2].

The Ohio State University

•

•

REFERENCES

- [1] Pushpa Agashe and Norman Levine, Adjacent Topologies, Journal of Mathematics, Tokushima University, Vol.7, 1973.
- [2] Norman Levine, Simple Extensions of Topologies, American Mathematical Monthly, Vol.71, No.1, January, 1964.
- [3] Albert Wilansky, Topology for Analysis, Ginn and Company, 1970.
- [4] Stephen Willard, General Topology, Addison-Wesley Publishing Company, 1970.