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ANTI-HOLOMORPHIC SUBMANIFOLDS OF A SASAKIAN MANIFOLD
- WITH VANISHING C-BOCHNER CURVATURE TENSOR.
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In [9], Yaxio proved

THEOREM A. Let M”, n=5, be an anti-invariant submanifold of a Sasakian -
manifold M =1 with vanishing C-Bochner curvature tensor. If the second fund-

amental tensors of M" commute, then M is locally a product of a conformally -
flat Riemannian space and a 1-dimensional space.

THEOREM B. Let M”, n=4, be a totally umbilical anti-invariant submanifold
normal to the structure vector field & of a Sasaekian manifold M r+1 with vanis-
hing C-Bochner curvature temnsor. Then M" is conformally flat.

THEOREM C. Let M", n=4, be an anti-invariant submanifold normal to the -
structure vector field & of a Sasakian manifold M r+ L with vanishing C-Bochner -
curvature tensor. If the second fundamental tensors commute, then M" is confo-

rmally flat.

The purpose of the present paper is to prove the following Theorem 1,2 and
3 corresponding to Theorems A,B and C by replacing the condition that the-
submanifold is anti-invariant with that is anti-holomorphic respectively.

THEOREM 1. Let M", n=5, be an anti-holomorphic submanifold tangent to the

structure vector field & of a Sasakian manifold M =l

with vanishing C-Bochner
curvature tensor. If the second fundamental tensors of M”" commute, then M” is

locally a product of a conformally flat Riemannien Space and a 1-dimensional
Space.,

THEOREM 2. Let M", n=4, be a totally umbilical anti-holomordphic Submani-
fold of a Sasakiar manifold M 22+ ith vanishing C-Bochner curvature tensor.
Then M” is conformally flat.

THEOREM 3. Let M", n=4, be an anti-holomorphic submanifold of a Sasakian
manifold M 1 ith vamshing C-Bochner curvature tensor. If the second fund-
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amental tensors of M" commute, then M" is conformally flat.

1. C-Bochner curvature tensor

We first of all recall definition and fundamental properties of Sasakian ma-

nifolds for later use. Let M 2m+1
fold of class C™° covered by a system of coordinate neighborhoods {U ; y'} (the
indices «, B, *-, k, A, u, - run over the range {1, 2, ---, 2m-+1}) in which th-

ere are given a tensor field qé; of type (1,1), a vector field £, a 1-form 7, and

be a (2m+1)-dimensional differentiable mani-

a Riemannian metric tensor g, satisfying
A A A A
(LD @) ¢,=—0,+n,E", 63 € =0, n,d,=0, 72§ =1,
Y B __ _ K
If
K K .y K K
(1. 2) VZE =¢Z, V,U. qslz_g-uzé +5ﬂ él’
where Vl denotes the operator of covariant differentiation with respect to g

then such a set (gb;, g 725 gM) is called a normal contact structure. Such a

manifold M“"*! is called a Sasakian manifold. In view of the last equation of

(1.1) we shall write §; instead of #; in the sequel. In a Sasakian manifold,
the tensor field qﬁ#;l:gbj g€, 1s skew-symmetric.

It is well known that in a Sasakian manifold equation (1.2) and the Ricci
identity give

Kol

(1. 3) Kuul 3 =5; Eu_azE#:
A

(1- 4) K’#Zé =2m 6#,

(1.5) K 0 831K 0 8,0,

where K#M "and K 42 are the curvature tensor and the Ricci tensor of the ma-

nifold respectively.
As an analogue of the Bochner curvature tensor in a Kaehlerian manifold,

the C-Bochner curvature tensor in a Sasakian manifold is defined (cf. [91) by
(1.6) B, ”=KM ”+ca‘j—-gue")zﬂ ,— (0 :-—E!LEK)LDZ

+L,(g,2-€, éi)—‘[’i(‘%vl—guél)
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K K K
+¢5Mg2_¢ff.MuZ+M; ¢vl—M;z ¢u2._ 2C¢U#M1+M1J# gbl)
+(3, B2~ b, b,2—28,, 0

where
_ 1 K oK
(1- 7) L#l—" 2(?%‘1‘2) [_K#Z_(L+3)g#2+(-['*l)6# E,‘{]: L#—L#a,g ’
- A
(1.8) L=g" L,
(1.9 M;=~L,6, M,=M,g".
From (1.7) and (1.8), we have
(1. 10) [=—KT20@m+t2)

dim+1)
where K is the scalar curvature of the manifold.
Using (1.4), we have from (1.7)

2—--...-
(1- 11) I‘Mf —-—'E‘u-
From the first equation of (1.9) and (1.11), we have
44
(1.12) M#a' QSZ -—-L#Z"["Eﬂ‘?;{-

It is easily verify that the C-Bochner curvature tensor satisfies the following
identities:

B =-B." B "+B. "+B, *=0, B
v 7 o

VA VAK yAK 7 =0, B =-B

2 vule vuxA’

K K &

B B § =0, BM:Ir ¢,

Buﬁlx — Axpy’ VA

o o K Ko

—'Bupzl ¢ﬂ” By;.cl ¢ =0,
4

where Buulx‘Bup.l g,

2. Anti-helomorphic submanifolds of a Sasakian manifeld

. . - . . v "
We consider an z-dimensional Riemannian manifold M~, 7#>1, covered by a

system of coordinate neighborhoods {V yh} (the indices %, 7, 7, -*» run over the

range {1, 2, -, #}) and isometrically immersed in a Sasakian manifold M“"**

and denote the immersion by

(2.1) £ =2"(y".
We put
(2.2) BS=3,x" (8,=d/3y"

and denote by C; 2m-+1—n mutually orthogonal unit vectors normal to M~ (the
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indices x, ¥,z run over the range {(n+1), -, Cm+1)}). Then the metric ten-

Sor g, of M" and that of the normal bundle are respectively given by

1h
2y’

_ (A _
gjz'_-ggl Bj?:’ gzy_glpc
UA ol A Ty SN Y |
where B, =B, B;and C, =C, C.,
If the transform by qu; of any normal vector to M~ is orthogonal to itself,
the submanifold M" is called anti-holomorphic in M°"*', Since the rank of ¢,

is 2m, we have 2m+1—n—1=n, that 1S, m=n.

For an anti-holomorphic submanifold M" in M “mtl we have equations of the-
form

@3 03B, =f{ B;—f;C}
K A ik
(2.4) ¢,C = y-B?: ,
(2.5) g"=¢'Bf+£°C".
Using q5#2=—¢51#, we have, from (2.3) and (2.4),
__ (2.6) f::x =f %17 J ij _f?'i’

‘ n

Applying ¢ to (2.3), (2.4) and (2.5) and using (1.1) and these equations we:
find

D ff]=0l-EE S

i) fiff=0i—-&F,  GiD flff=-¢e£"
V) f,f=€ 8" V) fiE==r%"
v fEt=o, (viD) £ +¢,£7=1,

2.7 ¢

where & i=gﬂ§h and §,=g yxify , (vii) be a direct consequence of & 1&'1=1.

Differentiating (2.3), (2.4) and (2.5) covariantly along M" and using (1.2),.
(2.7), equations of Gauss and those of Weingarten

K 5 XK K __ R

] x2°

where VJ. denotes the operator of covariant diffentiation along M" and kﬁ.” and

. ; |
kj EI-—:kﬁzg Zgw are the second fundamental tensors of M~ with respect to normals.
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C’, we find

r (1) ij£k=5?§'i—gﬁ§'h-]—kﬁxf;z— ixkj kx: (11) ij?;x:gﬁ Ex_[—kjkxf;r

i oia o h - Fel_g U g%
(2.8) ( (iii) V].fy =0 il R Gv) hy =0k 15

J

W) V=" £+ i) V;§'=~f]~h;" €.

\

1. The case in which & 7is tangent to M.

Now suppose that & is tangent to M", that is, £*=0. From (2.7), (i) and
(ii) we find

—f T =2(m+1-n).
Thus, if n=m+1, we have fﬁzo, and (2,7 and (2.8) respectively reduces to

W fifl=0l-¢, ¢ G £, f{=03,
(2.9) A« . z.
(3D £ €=0, (iv) €, ¢ =1
and
@ 07 &;~g,; 8" +h fFl-Fin." =0, (D) V. f{=0,
(2. 10) . s . z_ ) "y
(iiD) & fo=h [ (iv) V}.é =0, V) f;+k;, £ =0,

Equation (2.10), (i) shows that an anti-holomorphic sukmanifold tangent to

£* cannot be totally umbilical or totally contact umbilical. Because if & ﬁ.x is of

the from (g, +BE,§) K", then from (2.10), (i) we have
(n—1E;=(n—Dan f;+6k,f;,

and consequently, transvecting with Ei and using (2.9), (iii) gives (#—1)§; é’é
=0, which is a contradiction for 7> 1.
From (2.10), (ii) and the Ricci identity we find
h 2 X .9
(2.11) Kka‘ f —Kkjy fis

L.
where K bii * is the curvature tensor of M" and K kj.yx that of the normal bu-

ndle of M". .
Taking account of (2.9), (i), (ii) and (2.11) yields

o X 0 % X h ot %
(2.12) Ko =K Ff Ky =K, 1, F,
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k&'i:O. Equations (2.12) shows that K kﬁk=0 and K,.* =0

with the help of K ., kiy

are equivalent to each other.

I. The case in whickh EK is normal to M”,
From (2.7), (1), (i1) and using (2.7), (vii) we have

2 Si—l—fijfif: —2(m—mn).

Suppose #=m we have fz.j=0 and g—“i:O, that is, & is normal to M". Then
(2.7) and (2.8) respectively become

o f:fj=5i GiD) fif:“_‘ax"f &
(2. 13) ) o J y b4 J
(i) f, €'=0, (iv) € £'=1
and
‘ X LN h .x .o x X
( (1) kjﬁ fx =k] :l:ff’ (11) ijz =gﬁé »
(21D [ Gid V, £, =0/, Gv) by" f,=h;", f,
W kL ET=0, (vi) V,&'=~f1].

Suppose that M " is totally umbilical and put hﬁx=gﬁ k'. Then from (2.14),
(1) we have

X N R x
gl f,=0; h 1
from which ff n"=0, for n>1. From (2.14), (iv) we have
- x
e f J’f—hyf J?’
from which transvecting with %’ and using f,; W=0 give kB’ fjx=0 and con-
sequently 7% y =0, that is, & y=0. Thus M" must be totally geodesic.
From (2.14), (ii) and (vi), we find
X x
from which, using the Ricci identity,
X jJ_
K kiv &7 =0,
On the other hand, from (2.14), (i) and (vi), we have
B X X .y 1 x
_Kzeﬁ I +Kkjy fi=—71; gjz'+fj & pir
from which, using (2.13), (1),



Anti-holomorphic submanifolds of a Sasakian maenifold with vaenishing 29
C-Bochner curvature tensor.

 (2.15) Ky =K, flf+0,8;=0; &,
and, using taking account of K, *&7=0 and (2.13), (i),
(2.16) Kkjyx=Kkﬁk f; f; f f} '_'f fk

Equation (2.15) and (2.16) mean that M” is of constant curvature 1 if and
only if the connection induced in the normal bundle is of zero curvature.

3. Proofs of the main theorems

We first of all remember that the equations of Gauss, Codazzi and Ricci are
respectively
VuAK

(K kiin =& uﬂlx‘B kjih Ty, k;z kka hkz'x’
GB.1D) 0=K, . Bi Co =V, h; V. k,m)
N Kkjyszyple:?C _'(hfe y m,- k; y By 1)
where K ., K,., and K.  are covariant components of the curvature tens-

ors of Mzm+1, M" and the normal bundle respectively,
B/ =B, B! B; B} and B"'=B, B' B},

2m+1

We assume that the C-Bochner curvature tensor of M vanishes identi-

cally. Then from (1.6), we have
(3.2) K et (8= 60 L3— (8, =€ £ DL,
+L,,(&,—§ 80— L,(g,;—€.6)
+0, M 3= M+ M, D —M, D,—2, M, +M, o)
+ (@ Pun —PuxPur—29,,92,) =0,
from which, using g, B;-Z= 0 t;b BM—-—fﬁ, gzﬁM BiLl =-—-fﬂ anMC” 4 O,I & #B‘:
=§, and E#C” =§,, we find

HK VILAK ;f;ﬁ_[_( & ki gkék )L —(g; 7h —§ ék)l’fn +ka( Ejei)
—ij(gki_gkéi) +fkh L) -‘GkMki—‘—Mkkf -M hsz

(3.3) { 20y My +M 3+ oS3 =F i i = 25 3 i) =05
KH;LZEBUﬂ Cy:c Ekéx ;y+Ej£:chy— fjéyka_l_EkEijx _kaM
\+ff"]uky_kaf}y+ fxfky_szﬂfMyx+ (kafj'y _f}'x fky) =0,
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_ (A 7 pA
where L"—L;LZBJ?:’ L,=L,;B, C M,=M,B:; —-—ka +I .xf;,

M, =M ,B. C,=—L,f, and M =M, C"=~L I

Thus equations (3.3) can respectively be written as

(K piin + @S iS5 Lyi— (8= 66 ) Lyt Ly, (8,—E£D

~ L, (8= T M ji— S, My, + M, 0l i ™M S b
_2(fijz' “Mkjfik) (fkhfﬁ ~Jind ki 2 ki Sin)
_(kkk:c P —kjhx ki =0,

K kiyx €L 7 _éj‘[’ky)g x (Sjl’kx_ékljx)éy ~JeM +f}'zM ky
My S iyt M Sy 2 S i M S Sy = 05y

! A
x—l—(kk yhjt::: k; ¥y kfx

3.4 ¢

) =0.

1. The case in which the vector field € is tangent to M”.

We now consider the case in which the vector field &° is tangent to the anti-
holomorphic submanifold M", that is, £ =0. When #=m+1, we can easily
find f;=0. Thus the second equation of (3.4) becomes

Kkjyx_kaij 'I'fijky"' kaij ’['M;'x fky
+ Fau oy =Finf )y =1 Ty ) =0,
from which, transvecting with ff f; and using f;f S =gji—§‘j$z- derived from
(2.9), (i), we find
(3.5) K. i F = @u=Es €M, F7 +(g;—E,EDM,, f7
—kaf;f(gﬁ—&‘jéi)JrMﬁffcgki—éké-)+(gkh—$k$h)(g--—5j§})

(gD Ty b=k Ry OF] £ =0,

We now assume that the second fundamental tensors are commutative. Then
from (2.12) and (3.5), we have

(3.6) Kka'k T (gkk_gké'h)Nﬁ— (gjk_éjék)Nﬁ'i_l_Nkk(gﬁ_éjéi)
Njk(giez' —gkgi) T (gkk_gkéh) (gﬁ _Sjég) — (gj;, _E]‘Eh) (gki _E.Izgi) =0,
where NV .= —ijf;’.

Now since the vector field Ek is parallel, the Riemannian manifold M"is loc-
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:ally a product M : generated by Sh and M" ! totally geodesic in M". We re-
‘present M"tin M by parametric equations yk=yk(za) (a, b, ¢, -~=1, 2, -,
‘(r—1)) and put B’; =3yh/3zb. Then we have Ez-B; =0 and the curvature tensor

K . of M" ' is given by

dcha

(3.7) K ith where Bkﬂk =B, B}B B

cba—KkﬂkB chba’ dcba
kiih

dcha’
(3' 8) chba +gdaccb -g Cdb +Cda ch Ccagdb=0’

n—1

Thus transvecting (3.6) with B we obtaln

‘where gcbzgﬁBi B; is the metric tensor of M~ “and

_ j
Co=N B, B TTg 2 A

. ~1
Equation (3.8) shows that the Weyl conformal curvature tensor of M *~% yan-

ishes and M* " is conformally flat if #—1=4. Thus we have completely proved
“Theorem 1.

. The case in which the vector field & is normal to M"

We now assume that #z=m. Then the vector field &" is normal to M”" and
..fﬂ:O. Then from the first equation of (3.4) we have

3.9 K kiin & el &gt Ly i ;kbkz_(kkkx i jkx kkz) =0
If M” is umbilical, that is, if kj ; =gﬁh , then we can write (3.9) in the form
. ey g
where D=L, ——5h,h g i

Equation (3.10) show that the Weyl conformal curvature tensor of M” vanis-
hes. Thus we have completecly proved Theorem 2.

We next obtain from the second equation of (3.4)

!

+(fap £y =7 fky)+(k Bt D=0,

i kt:l:

If the second fundamental tensors of M" commute, then we have from (3.11)
(3.12) K pjye =S 1M +ffoIey My iyt M Tyt FaaFiy = 2 Say) =0,
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from which, by transvecting with f;’ fhx and using (2.13), (1)
Y % y y y
(3.13) Ky i Jo =8 fi+8uMy fi—M,, fy 8

y _
+M;, F1,8 5+ (818 i~ 8 n& ps) =0
Substituting (8.13) into (2.15), we find
, ¥, y y y
(3. 1) K iy~ 8, I T8y My Ji =M, Sy 8 +M . fy 85, =05

which shows that the Weyl conformal curvature tensor of M” vanishes. Thus-
we have completely proved Theorem 3.
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