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ON THE CHARACTERIZATIONS OF CERTAIN RADICAL CLASSES 

By G. A. P. Heyman and H. J. le Roux 

All rings in this paper are assumed to be associative and the major know­

ledge of radical theory required for our purposes is contained in [4]. In [5] 

le- Roux and Heyman introduced the concept of an lzM-η:-lzg as follows: 

DEFINITION 1. Let M be an arbitrary class of rings. 

(a) A non-simple ring R is called an lzM-ri1Zg if: 

(i) R/IεM for every nonzero ideal 1 of R. 

(ii) Every minimal ideal of R belongs to M. 

(b) A simple ring R is an lzM-ri1Zg if and only if RεM. 

The class of all h M-rings is denoted by M용. We assume that the ring 0 

belongs to every non-γoid class of rings. 

This definition enables us to characterize certain radical classes and the 
purpose of this note is to present characterizations of three well-known ones. 

1. The Behrens radical class 

The Behrens radical J B [3] is the upper radical determined by the class of 

subdirectly irreducible rings such that heart of each ring contains nonzero 

idempotent elements. In [6] Propes offered a new characterization for J B as a 

lower radical class, namely J B=P where P= {R I R has no homomorphic image 

with nonzero idempotent elements}. If we denote by M the class of all rings 

without nonzero idempotent elements and define M* as above, the results of 
Propes become easy consequences of. our considerations. 

First we need 

LEMMA 1. For a1Zy heredz"taγ'Y class C 01 rillgs, C* is homonzoγþhically closed. 

PROOF Let RεC*. The case where R is simple is trivial. Let then 1 be any 

nonzero ideal of R, so definition 1 implies that R/Iεc. R/I simple, implies 

R/IεC* according to definition 1. If R/I is not simple, let K/I be any non 

trivial ideal of R/I. Then (R/I) /(K/I) 르R/ K. Since K is a nonzero ideal of 

RεC* it follows that R/ KεC and therefore (R/I)/(K/I)εC. If R/I contains a 
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minimal ideal 511. then 511εC since C is hereditary. This proves the lemma. 

Since our class M is obviously hereditary, lemma 1 implies that M* is 

homomorphically closed. 

THEOREM 1. h=M* (See also [6]). 

PROOF. Suppose RεM육 can be mapped homomorphically onto a nonzero 

subdirect1y irreducible ring RIJ with heart HIJ which contains nonzero idem­

potent elements. Since M* is homomorphically closed it follows that RIJεM*. 

The heart H I J is a minimal ideal of RI J and hence H I JεM. This is in con­

tradiction with the construction of M. Hence M*CJ B. Conversely let RεIB. 
Since R does not contain nonzero idempotent elements ([3]. theorem 7) and J B 

is homomorphically closed, no homomorphic image of R can contain nonzero 

elements. Thus RεM* which implies hζM*. The proof of the theorem is 

completed. 

2. The antisirnple radical 

AndrunakieviC’s antisimple radical class ßø (see [1]) is the upper radical 
class determined by the class of all subdirectly irreducible rings with idempotent 
hearts. Amongst other results in his paper [2] , AndrunakieviC proved the 

following 

LEMMA 2. ([2]. theorem 3). The r z"ng Rεßø zf and only zf for every homo­

nzorþlzic inzage R of R we have (12i~(α) for every nonzero ψrixcψal ideal (12) 

of R. 

In order to give a characterKanoi of % as a 1ower radica1 c1ass we give 

DEFINITION 2. A nonzero element a of a ring R is called an α-element of R 

if (a)~(a)2 where (a) is the principal ideal generated by a in R. R is called 

an α-ri1Zg if every nonzero element of R is an α-element. 

If we denote the class of all α-rings by A, we obtain 

THEOREM 2. A*=βø. 

PROOF. Let REA융. If R is simple. we have RεA. 

9 
Then, in view of the fact that (a)~(aY for any O~aεR. it follows that R 

is a zero-ring and hence Rεßø• If R is a non-simple ring. let RI J be any 
nonzero homomorphic image of R. Since RεA* it follows that RI JεA. For 

every 07"αεRI J it follows that (α)~(α)2 and by lemma 2 we therefore have 

• 
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A*ζβø' 

Conversely, if Rεβø the construction of A￥ and !emma 2 imply that RεA*. 

Hence ßøCA* so that the theorem is proved. 

3. The radicaI cIass determined by the cIass of almost niIpotent rings 

In their paper [7] Van Leeuwen and Heyman introduced and studied almost 

nilpotent rings where a ring R is defined to be almost nilpotent if every non­

zero ideal of R strictIy contains a power of R. FoIIowing Van Leellwen and 
Heyman we w iII denote by L1 the cIass of aII almost niIpotent rings. Denoting 

by H the cIass of aII nilpotent rings, it can readily be verified that HζH육. 

The incIusion is strict in view of the foIIowing example. 

EXAMPLE 1. Let W= ( 2x - ‘ I (2x, 2y十 1)=1， x , YεZ f, ([41. p.103). The 

only nonzero ideaIs of W are of the type (2)n , n=1, 2, 3, "', and W=(2). For 
any nonzero ideal 1 of W it foIIows that W / 1εH. Note that W has no minimal 

ideals and therefore WεH* although W tEH. 

We offer another example to iIIustrate that H* fails to be a radical cIass. 

EXAMPLE 2. Consider the Z asseχhaus-η!"ng A consisting of aII finite sums 
J:aαXa where α is a rational with 0<α<1， the aa-s being elements of the two 

element field Z 2 and the Xa-S are indeterminates such that 

X,,-I- R if α+β<1 
aXß= j ‘ . .-o if α+β늘1 

Ccf. [4] , p.19). 

A as a ring, is a nil ring and A=A2
• Furthermore A/I풍H for every non­

trivial ideal 1 of A , which implies that A종H*. The principal ideal (Xa ) 

generated by any basis element Xa is n i1potent since (xa)n=O for any n> 공. 
Eγery nonzero homomorphic image of A contains a nonzero nilpotent ideal and 
consequentIy an H*-ideal. It foIIows therefore that AεLH휴 w here LH* is the 

lower radical cIass determined by H*. Hence LH* ::;é: H* so that H* is no 
radical cIass. 

In order to characterize L 1 we present 

THEOREM 3. A ring R is almost nz"lpotent zf and only zf RεH용. 

PROOF. Suppose R is any almost n i1potent ring. Then RnCI for any non­

zero ideal 1 of R and some 1ZεN. If R is a simple ring, it is easily verified 
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that RεHCH*. If R is not a simple ring it follows that R/IεH for every 

nonzero ideal 1 of R since Rηζ1. Next, if M is a minimal ideal of R , then 

since Rmc:M fol- a certain mεN， we have that R 11Z =O. This means that R , 
and hence every ideal of R is nilpotent. In particular MεH. We conclude 

that R satisfies all the requirements of definition 1 and therefore RεHξ that 
is LlζH*. Conversely, let RεH*. If R is simple, then RεH and therefore 

RεLl' If R is not simple, let 1 be any nonzero ideal of R. By the definition 

of Hξ this implies that R/IεH. Hence R 1nCI for some mεN. Suppose there 

does not exist a kεN such that RkCI, hence Rk=I for all k:즈ηt. If 1 is not 

minimal in R , there exists a nonzero ideal ] of R with ]ζ1. Since RεH* it 

follows that R/]εH. Hence RSC] for some sεN and s"?::mo. Then however 

RSζ1， s>max Cm, mo), which contradicts the fact that Rk=I for all k늘m. 
We may therefore assume that I is a minima1 idea1 of R. According to defini­

tion 1, it follows that 1εH which again contradicts the fact that Rk=I fo r­

all k늘m. Consequently there exists an mεN such that R lIlCI. R is therefore 

almost nilpotent and the reverse inclusion is established. 

Therefore we obtain 

COROLLARY 1. LL1 =LH융. 
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