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ON THE CHARACTERIZATIONS OF CERTAIN RADICAL CLASSES

By G. A.P. Hevman and H.]J. le Roux

All rings in this paper are assumed to be associative and the major know-
ledge of radical theory required for our purposes is contained in [4]. In [5]
le-Roux and Heyman introduced the concept of an /y-7ing as follows:

DEFINITION 1. Let M be an arbitrary class of rings.
(a) A non-simple ring R is called an hy7ing 1if:

(i) R/IEM for every nonzero ideal I of R.

(ii) Every minimal ideal of R belongs to M.

(b) A simple ring R is an ky7ing if and only if REM.

The class of all %y,-rings is denoted by M*. We assume that the ring O

belongs to every non-void class of rings.
This definition enables us to characterize certain radical classes and the
purpose of this note is to present characterizations of three well-known ones.

1. The Beh_rens radical class

The Behrens radical Jz [3] is the upper radical determined by the class of
subdirectly irreducible rings such that heart of each ring contains nonzero
idempotent elements. In [6] Propes offered a new characterization for Jp as a

lower radical class, namely Jz=P where P={R|R has no homomorphic image
with nonzero idempotent elements}. If we denote by M the class of all rings

without nonzero idempotent elements and define M™ as above, the results of
Propes become easy consequences of our considerations.

First we need
LEMMA. 1. For any hereditary class C of rings, C* is homomorphically closed.

PROOF Let R&C*. The case where R is simple is trivial. Let then I be any
nonzero ideal of R, so definition 1 implies that R/I&C. R/I simple, implies
R/I&C* according to definition 1. If R/l is not simple, let X/I be any non
trivial ideal of R/I. Then (R/I)/(K/I)=R/K. Since K is a nonzero ideal of
R&C* it follows that R/KEC and therefore (R/I)/(K/IDEC. If R/I contains a
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minimal ideal S/7, then S/I&C since C is hereditary. This proves the lemma.

Since our class M is obviously hereditary, lemma 1 implies that M¥* is
homomorphically closed.

THEOREM 1. Jz=M* (See also [6]).

PROOF. Suppose R&EM* can be mapped homomorphically onto a nonzero
subdirectly irreducible ring R/J with heart H/J which contains nonzero idem-
potent elements. Since M¥* is homomorphically closed it follows that R/JEMY.
The heart H/J is a minimal ideal of R/J and hence H/J&M. This is in con-
tradiction with the construction of M. Hence M*CJgz. Conversely let RE] 5.
Since R does not contain nonzero idempotent elements ([3], theorem 7) and Jg
is homomorphically closed, no homomorphic image of R can contain nonzero
elements. Thus REM* which implies Jp;CM*. The proof of the theorem is
completed.

2. The antisimple radical

Andrunakievic’s antisimple radical class By (see [1]) is the upper radical
class determined by the class of all subdirectly irreducible rings with idempotent
hearts. Amongst other results in his paper [2], Andrunakievic proved the
following

LEMMA 2. ([2], theorem 3). The ring RE‘% if and only if for every homo-
morphic image R of R we have (3)2#(22) for every mnomnzero principal ideal (@)
of R.

In order to give a characterization of By as a lower radical class we give

DEFINITION 2. A nonzero element ¢ of a ring R is called an a-element of R
if (@)#(@)* where (@) is the principal ideal generated by ¢ in R. R is called
an a-ring if every nonzero element of R is an «-element.

If we denote the class of all a-rings by A4, we obtain

THEOREM 2. A*=4,

PROOF. Let R&A*, If R is simple. we have R&EA.

Then, in view of the fact that (a:)#(cz)?‘ for any O0*#q¢&R, it follows that R
is a zero-ring and hence RES;, If R is a non-simple ring, let R/J be any
nonzero homomorphic image of R. Since REA¥* it follows that R/JE&A. For

every 0=a&R/J it follows that (@)#(2)° and by lemma 2 we therefore have
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A*CBy.
Conversely, if R&ES; the construction of A* and lemma 2 imply that REA™.
Hence 8;CA* so that the theorem is proved.

3. The radical class determined by the class of almoest nilpotent rings

In their paper [7] Van Leeuwen and Heyman introduced and studied almost
nilpotent rings where a ring R is defined to be almost nilpotent if every non-
zero ideal of R strictly contains a power of R. Following Van Leeuwen and
Heyman we will denote by L; the class of all almost nilpotent rings. Denoting

by H the class of all nilpotent rings, it can readily be verified that HCH™.
The inclusion is strict in view of the following example.

~J

EXAMPLE 1. Let Wz{ 23)2111 (2x, 2y+1)=1, x, yEZ}, ({4], p.103). The

only nonzero ideals of W are of the type (2)", #=1,2,8,:--, and W=(2). For
any nonzero ideal 7 of W it follows that W/I<H. Note that W has no minimal
ideals and therefore W&H* although W&H.

We offer another example to illustrate that H* fails to be a radical class.

EXAMPLE 2. Consider the Zasserhaus-ring A consisting of all finite sums
2'a,x, where a is a rational with 0<a <1, the a@,-s being elements of the two

element field Z, and the x,-s are indeterminates such that

. ={xa+5 if a+5<1
“F 0 if a+p>1

(cf. [4], p.19).

A as a ring, is a nil ring and A=A° Furthermore A/I&H for every non-
trivial ideal I of A, which implies that A&H*. The principal ideal (z,)
generated by any basis element x, is nilpotent since (x,)"=0 for any z> —;—.

Every nonzero homomorphic image of A contains a nonzero nilpotent ideal and
consequently an H*-ideal. It follows therefore that AELH* where LH* is the

lower radical class determined by H*, Hence LH*#H* so that H* is no
radical class.

In order to characterize L; we present

THEOREM 3. A 7ing R is almost nilpotent if and only if REHY,

PROOF. Suppose R is any almost nilpotent ring. Then R”CI for any non-
zero 1deal 7 of R and some #EN. If R is a simple ring, it is easily verified
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that REACH*, If R is not a simple ring it follows that R/I&€H for every
nonzero ideal I of R since R*CJI. Next, if M is a minimal ideal of R, then
sitice R"CM for a certain m&N, we have that R”=0. This means that R,
and hence every ideal of R is nilpotent. In particular M&EH. We conclude
that R satisfies all the requirements of definition 1 and therefore REH*, that
is LiCH*. Conversely, let R&H*. If R is simple, then R&H and therefore
R&L,. If Risnot simple, let 7 be any nonzero ideal of R. By the definition
of H*, this implies that R/I&€H. Hence R"CI for some m&N. Suppose there
does not exist a 2N such that R*CI, hence R*=TI for all #>m. If I is not
minimal in R, there exists a nonzero ideal J of R with JCI. Since R&EH* it
follows that R/JEH. Hence R°CJ for some s&N and s>m, Then however
R’CI, s>max (m, my), which contradicts the fact that R*=I for all k>m.
We may therefore assume that [ is a minimal ideal of R. According to defini-
tion 1, it follows that /&€H which again contradicts the fact that R*=I for

all 2>m. Consequently there exists an m&EN such that R”C/I. R is therefore
almost nilpotent and the reverse inclusion is established.

Therefore we obtain

COROLLARY 1. LL,=LH¥.
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