ON THE DEFINITION OF A HYPERATOM OF A RING

By Alexander Abian

In the direct product decomposition of a (not necessarily associative or commutative) ring R essential use is made of the notion of a hyperatom [1], [3], [4] where a hyperatom of R is defined by the conjunction of statements (1). and (2) below. We show here that in all the cases pertaining to [1], [3], [4], statement (1) implies statement (2). Accordingly, we define a hyperatom subject to statement (1) alone.

REMARK. We call a (not necessarily associative or commutative) ring zero-product-associative if and only if a product of elements of the ring which is. equal to zero remains equal to zero no matter how its factors are associated. In [2] it is shown that if A is a zero-product-associative ring without nilpotent elements then a product of elements of A which is equal to zero remains equal to zero no matter how its factors are associated or permuted. We observe also[4, Lemma 2] that an alternative ring without nilpotent elements is zero-product-associative.

DEFINITION. A nonzero element a of a (not necessarily associative or commutative) ring A is called a hyperatom of A if and only if for every element. x of A,

$$
\begin{equation*}
a x \neq 0 \text { implies } a(x s)=a \text { for some } s \in A \tag{1}
\end{equation*}
$$

THEOREM. Let A be a zero-product-associative ring without nilpotent elements. and let a be a hyperatom of A. Then for every nonzero element x of A,

$$
\begin{equation*}
a x=x^{2} \text { implies } a=x \tag{2}
\end{equation*}
$$

PROOF. Since $x \neq 0$ and A has no nilpotent elements, $a x=x^{2}$ implies $a x \neq 0$ and since a is a hyperatom $a(x s)=a$ for some $s \in A$ by (1). From $a x=x^{2}$ it follows $(a-x) x=0$ which, by the Remark, implies $(a-x)$ xas $=(a-x)(a(x s))=0$ and therefore $(a-x) a=0$. But then the latter together with $(a-x) x=0$ imply
$(a-x)^{2}=0$. Hence $a=x$, as desired.
Iowa State University
Ames, Iowa 50011
U.S.A.

REFERENCES

[1] A. Abian, Dircet product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc. 24(1970), 502-507.
[2] A. Abian, Order in a special class of rings and a structure theorem, Proc. Amer. Math. Soc. 52(1975), 45-49.
[3] I. Mogami, On two theorems of A. Abian, Math. J. of Okayama Univ. 17(1975), 165-170.
[4] H.C. Myung and L.R. Jimenez, Direct product decomposition of alternative rings, Proc. Amer. Math. Soc. 47(1975), 53-60.

