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ON THE DEFINITION OF A HYPERATOM OF A RING 

By Alexander Abian 

In the direct product decomposition of a (not necessarily associative or com­
mutative) ring R essential use is made of the notion of a hyperatom [1] , [3] , 

[4] where a hyperatom of R is defined by the conjunction of statements (1). 

and (2) below. We show here that in all the cases pertaining to [1] , [3], [4], 

statement (1) implies statement (2). Accordingly, we define a hyperatom sub­

ject to statement (1) alone. 

REMARK. We ca1l a (not necessari1y associative or commutative) ring zefp­

prodμct-assocz'atz've if and only if a product of elements of the ring which is 

equal to zero remains equal to zero no matter how its factors are associated. 

In [2] it is shown that if A is a zero-product-associative ring wz'tho짜 쩌lPotent 

elements then a product of elements of A which is equal to zero remains equal 

to zero no matter how its factors are associated or permuted. We observe also 

[4. Lemma 2] that an alternative ring without nilpotent elements is zeroc 

product-associative. 

DEFINITION. A nonzero element a of a (not necessarily associative or com­

mutative) ring A is called a hyperatom 01 A if and only if for every element 
X of A, 

(1) ax낯o implies a(xs)=a for some sεA 

THEOREM. Let A be a zero-product-assocz'atz've r z'ng wzïhout nz'lpotent elements' 

and let a be a hyperatom 01 A. Then lor eνeγy nonzero element x 01 A , 

(2) ax =x2 t??ZPlz·es a =x 

PROOF. Since x~O and A has no nilpotent elements, ax=i implies ax~O 
and since a is a hyperatom a(xs) =a for some sεA by (1). From ax=i it fol­

lows (a-x)x=O which, by the Remark, implies (a-x) xas=(a-x) (a(xs)) =0 

and therefore (a-x)a=O. But then the latter together with (a-x)x=O imply 
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(a-x)2=0. Hence a=x, as desired. 
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