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ON SCHUR MULTIPLIERS OF SOME FINITE GROUPS

By WAN SOON KIM

1. Introduction

The purpose of this paper is to determine the Schur multipliers of some
finite groups. The Schur multiplier of a finite group G over an algebraic­
ally closed field k will be denoted by M(G). Our main theorems are as
follows.

THEORE11 1. Let G be a finite group, and let M(G) be the Schur multiplier
of G over an algebraically closed field k. Suppose that G=CH, where C is a
cyclic normal subgroup and H is a cyclic subgroup. Then

IM (G) I ::::; IZ (G) : C nHI.

In paricular, if Z(G) = C nH then G has a trivial Schur multiplier.

THEOREM 2. Let C=<a> be a cyclic group of order pm for an odd prime
p and some integer m>O and let H=<a>, where a is an automorphism of
C of order pn for some integer n ~ O.

Let G be the semidirect product of C by H. Then
(1) Z(G) =<aP">, and
(2) M(G) is a cyclic p-group whose order is -s,pm-n.

Our study on the order of the Schur multiplier is motivated by the fact
that some properties of a finite group G can be derived from the order of
M(G). Actually M(G) is the second cohomology group H2(G, k*), where
k* is a trivial G-module. The Schur multiplier of a group G is related to
central extensions of G.

In section 2 we will state two propositions which play the central role
for the proof of Theorem 1-

In section 3 we will prove Theorem 1 and Theorem 2. In order to prove
Theorem 2 we need the fundamental theorem on primitive root modulo m.
At the end of this section we deal with some examples as applications of
Theorem 1 and Theorem 2.

All groups in this paper are assumed to be finite. Let G be a finite
group. Denote the order of G by IG I and the center of G by Z(G).
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Let xY=y-1xy and [x,y]=X-1y-1xy. Let Hand K be subgroups of G~

We denote by [H, K] the commutator subgroup which is generated by the
elements Ch, k] for all hEH and kEK. We denote the commutator subgroup
[G,G] of G by G/.

2. Preliminary results

Let G he a finite group and let k he an algebraically closed field. Any
function a: GXG--k* satisfying

a(x, yz) a(y, z) =a(x, y) a(xy, z) for all x, y, zEG,

is called a factor set of G, where k*=k- {O}. Two factor sets a and f3 of
G are said to be equivalent if there is a function c: G .- k* such that

a(x, y) =f3(x, y)c(x)c(y)c(xy)-l for all x,yEG.

For any factor set a of G, let {a} be the equivalence class containing a.
The set M(G) of all equivalence classes of factor sets forms an abelian
group via a multiplication defind by

{a} {f3} = {af3} •

This group is called the &hur multiplier of G over k.

PROPOSITION 1 [SchurJ. Let G be a finite group and M(G) be the Schur
multiplier of G uver k. Then there is a central extension r of G with kernel
M(G).

Proof. The proof can he found in [2, Theorem 25. 5J.

We define a &hur representation group for G to be a central extension
whose kernel is isomophic to M (G) .

PROPOSITION 2 [Schur]. Let F be a finite central extension of G with
kernel A~

(1) If A is contained in the commutator subgroup F', then A is isomorphic
to a subgrOup of M(G).

(2) Assume that IA I= IM(G) I. Then A r;;F' if and only if F is a Schur
representation group for G.

Proof. The proof can be found in [5, Corollary 11.20J.

By the above two propositions we see that r is a Schur representation
group for G if and only if G ==r /A for some A r;; Z (F) nF' such that
IAI = !M(G) I.
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In this section our main theorems will be proved. We will make use of
the following two Lemmas in proving the Theorem 1-

LEMMA 1. Let C be a group. Then for any element x, y and z of G, the
following equalities hold.

(i) [xy, z]=[x, z]Y[y, z]=[x, z][[x, z], y][y, z].
(ii) [x, yz]=[x, z][x, y]z=[x, z][x, y][[x, y], z].

Proof. These can be proved by easy computations.

LEMMA 2. Let C be a group and let G=AH, where A is an abelian normal
subgroup and H=<y> is a cyclic subgroup. Then

(i) G'=[G, G]=[A, H]~A.
(ii) A mapping f:A~G defined by f(a)=[a,y] is a homomorphism of A

onto G'. In particular, A/An Z(G) =G'.

Proof. (i) Since A is normal in G and G / A is abelian, we have
[A, HJ~[C,CJ~A.

Each element of G is of the form ah, where aEA and hEH. By assump­
tion A is an abelian normal subgroup and H is an abelian subgroup.
Using this fact and Lemma 1, we can show that the equality

[ah, bk] = [ah, k][h, bk]

holds for any a,bEA and h,kEH. This yields that G'=[G,G]=[A,H].
Now the assertion (i) hold~.

(ii) First f(ab) = [ab, y]=[a, y]b[b, y] for any elements a and b of A.
Since [A, H]~A by (i) and A is abelian, we have [a, y]b=[a, y]. Hence
f(ab)=[a,y][b,y]=f(a)f(b). Thus f is a homomorphism of A into C'.

To show that f is onto it suffices to prove f(A) =[A, H]. Obviously,
we have f(A) ~ [A, HJ. Let a be an element of A. Then for any positive
integer n, the equality [a,yn+lj=[a,y][aY,yn] holds. Hence, by induction
on n, we can show that [a, yn]Ef(A). Moreover, [a, h-1]=[hah-1, h]-l
for any a E A and hE H. Therefore, it follows that [A, H] ~f(A). Hence
f(A) =[A, H] and f is onto.

Since A is abelian and H is generated by y, the kernel of f is

ker f= (aEA/[a,y]=l}
= (a E A I[a, g] = 1 for all g in C} = A nZ (G) .

Hence from the first isomorphism theorem it follows that A/ A nZ (G) =G'.
This completes the proof of Lemma 2.
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THEOREM 1. Let G be a finite group and let M(G) be the the Schur nwl­
tiplier of G. Suppose that G=CH, where C is a cyclic normal subgroup and
H is a cyclic subgroup. Then

IM(G) Is; IZ(G) :cnHI.

'In particuler if Z(G) =C nH, then G has a trivial Schur multiplier.

Proof. By assumption CnHkCnZ(G) ~Z(G). By Lemma 2 we have
C/(C nZ(G» ::G'. Hence IG'I = IC: CnZ(G) I::; IC: CnHI.

Let r be a Schur representation group for G with kernel A such that
A kZ(r) nr' and IAI = IM(G) I. Since G ~ rlA and A~F', we obtain
G'~ F' I A. "Thus IG' I . IA I= Ir' I. Moreover, r has a normal subgroup
L2A and a subgroup M::2A such that LIA ~ C, MIA ~ Hand LM=r.
Since L I A is cyclic and A is contained in Z(F) • it is easy to show that
L is abelian. Similarly, M is abelian. Since F=LM. this implies that
A~LnM~Z(r).

The group r I L is isomorpic to a group M/L nM, by the correspondence
theorem. Moreover, M/L nM is isomorphic to.a factor group of a cyclic
group M/A. Hence F IL is a cyclic group. If we set F IL = (Ly> , then r =

L<y}. Thus we can apply Lemma 2 to conclude that r' ~ LILnZ(F).
Now, the above results yield

IG' 11 M (G) I = IG' 11 A I = IF' I = IL : L nZ (r) I

S; IL: LnMI= IC: CnHI.

IG' I= IC: C nZ (G) I.

Therefore, we obtain

IM(G) I::; ICnZ(G) : cnHI S; IZ(G) :cnHI·

In particular. if Z(G) =C nH then G has a trivial Schur multiplier.
This completes the proof of Theorem 1.

CoROLLARY 1. Let G be a finite cyclic group. Then G has a trivial Schur
multiplier.

Proof. By setting C=H=G in Theorem 1 we obtain the assertion.

THEOREM 2. Let C=<a} be a cyclic group of order pm for an odd prime p
and some integer m>O and let H=(a}. 'li.'here a is an automorphism of C
of order P" for some integer n~O.

Let G be the semidirect product of C by H. Then
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(1) Z(G) =(apn), and
(2) M(G) is a cyclic p-group whose order iss,pm-n.

Proof. 0) Note that the action of a is completely determined by its
effect on a and that aCX is a generator of C. Let aCX=a t for some integer t.

Then t is relatively prime to pm and the order of t modulo pm is pn. And
an easy computation shows that

Z(G) = la i EC I (ai)cx=ai} = {ai Eel i (t -1)==0 (mod pm)}.

Since p is an odd prime there exists an integer g which is a pnmItIve
root modulo pe for each positive integer es, m [6, Theorem 3.18~. Hence
t = gj for some integer j. Since the order of g modulo pm is rp (pm) and the

order of gj is pn, we have (j:~f;~) pn. Hence (j, 9(pm» =rp(pm-n).

This yields that gj==l(mod pm-n) and gj ~ 1 (mod pm-n+I). Thus \ye have
pn(t-l)=pn(gj-l) ° (mod pm), and pS(t-1)=ps(gj-l)~O (mod pm).

for all integers O:S;;s<n. From this fact it follows that Z(G) =(apn ).

(2) From Theorem 1, IM(G) ! :S !Z(G) I. By Cl), Z(G) = (a pn) is con­
tained in C=(a) ,'vhich is a cyclic group of order pm. Thus the order of
Z(G) is pm-no Hence IM(G) I:s IZ(G) I=pm-n.

On the other hand, by assumption G is a p-group which is generated by
two elements and three relations on these generators. Hence M(G) is a
cyclic p-group by [4, Satz 23.10, and Satz 25.2]'

This completes the proof of Theorem 2.

In case p=2, there exist a primitive root modulo pm only if pm is 2 or 4.
Thus Theorem 2 holds if m:S;;2 by the same argument as before, but it

may not hold if m>2. For example, let

D= (a, b \a2m-
1=bZ=1, ab=a- I),

be the dihedral group of order 2m, 711>2. Then ZeD) = (azm- z), and Theorem
2 does not hold.

COROLLARY 1. Let Q=(a,bia2m
-

1=b2 =c, c2=1,ab=a-l ) be the generalized

quaternioll group of order 2m.
Then the group Q has a tri'vial Schur multiplier.

Proof. Since Z(Q) =(b2)=(a) n(b), this follows from Theorem 1­

COROLLARY 2. Let Dn=(a, blan=b2 =1, ab=a- I) be the dihedral group of

order 211. Then
(1) if n is odd, D n has a trivial Schur multiplier, and

(2) if n is even, IM CD.) I= 2.
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Proof. (1) The center Z(D",) is trivial. Hence the assertion (1) follows
from Theorem 1. '

(2) Since Z(Dn) = (a';-). we have IM(Dn) I~ IZ(Dn) I=2 by Theorem l.
On the other hand. let

D2n=(a, bla2n=b2=1, ab =a-1)

be the dihedral group of order 4n. Then it can be easily shown that
Dn~D2n/Z(D2n)' This means that D2n is a central extension of Dn with
kernel Z(D2n). Moreover, since Z(D2n) f;.D2n', we can use Proposition 2 in
section 2 to obtain that 2= IZ(D2n) I~IM(Dn) I·

Therefore, we conclude that IM(Dn) I=2.
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