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ON OPERATOR SEMISTABLE PROBABILITY MEASURES
ON HILBERT SPACES

By Sanc GONE LEE

1. Iniroduction and notation

Throughout H and H* will denote a real separable Hilbert space and its
topological dual, respectively; and M (&) will denote the class of probability
(prob. ) measures on B(H), the smallest o-algebra containing the open sets
of H. For peM(H), the characteristic functional (ch.f.) of u denoted by
fi is a complex valued function on H* defined by

£(y) = I He“" P du(z)

where (, ) is the inner product on H and y&eH*. For any u, ve M{(H),
we denote by pu*v the comvolution of g and v which is a probability measure

on B(H) defined by
©%xv(B) ‘=ny (B—xz) dv(x)

for every BE8B(H). The symbol g** will denote ¢ convoluted » times
with itself. It is well known [2, p.152] that every geM(H) is -uniquely

determined by its ch.f. 4, and u/ﬂ;a( y=4(-)p(-). For pu, p,M(H),
n=1, 2,---, we shall say that (o, comverges wegkly to px (in symbols,
lim p,=p) if for every bounded continuous real valued function f on H,

ffdy,, —wej fdp as n—ee, It is well known that M(H) is the topological

semigroup with the topology of weak convergence of measures and the
convolution of measures as a multiplication.

Let A be a bounded, invertible, linear operator on H. For any p=M(H),
we denote by Ay the measure on B(H) defined by Ap(B)=u(A1(B)) for
every BE®8B(H). It is not difficult to verify that for any bounded linear
operator A on H, A(u#v)=AuxAv and fﬁz(y) ={i(A*y), where A* denotes
the adjoint of A; i.e. (Az,y)=(z, A*y). The measure 9, defined by 4.(B)
=0 if z€B, and 1 if z€B, is said to be the degenerated probability
measure at xS H. ’
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Characteristic functions which satisfy, for all #, an equation of the form
F(@) = {1} where >0 and 0<6< 1 were considered by Lévy [1937],
and the solutions have been ¢alled semistable laws. Pillai [3] has conside-
red semistable laws and proved that they can be identified as weak limits
of laws. Recently, Kumar [1] has extended this result to real separable
Hilbert spaces.

Motivated from the work of Kumar [1], Pillai [3] and Lévy, in this
paper we define operator r—semistable prob. measures on H and obtain a
characterization of these measures in terms of the weak limits of measures

in M(H).

2. Preliminaries
In this section we collect necessary definitions and some known results
that will be needed in this paper. We begin with the following definitions.

DEFINITION 2.1. A positive semidefinite Hermitian operator A is said
to be an S-operator if it has finite trace, i.e., for some orthonormal basis

{ej} s 2‘; (Se;, €;) < oo,

DEFINITION 2.2. A family {S.} of S—operators is said to be compact if
the following conditions are satisfied: ]

(i) sup trace(S,)<oo;
@) lim sup 3} (S.ene) =0 -
for some complete orthonormal sequence {e,} in H.

DEFINITION 2.3. A measure pcM(H) is said to be infinitely divisible
if for each positive integer », there exists a measure 1, in M(H) such that
p=1,"

Now we will state some known results which will be needed in the proof
of our theorems in this paper.

THEOREM 2.4.[2] A function ¢(y) is the characteristic fauctz‘bn of an
infinitely divisible measure 1 on H 'if and only if it is of the form

é(y) =exp (i (z,, 3) —;'—21~ (n?’y_;y) +jk (z,y) dM(z)},

where x, is a, fived element of H, S is an- S-operater and M is a o~finite me-
asure with finite mass outside every. neigkbbrkood of the origin and
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[ lallz aM@) <o
izl =1
Here, k(z,y) is the function {¢=?—1—(i(z,)/1+||z|?)}.
The above representation is unique.

If ¢ is any infinitely divisible measure on H, by p=[z, S, M], we mean
that the three quantities occurring in the representation of Theorem 2.4
are, respectively, z,S, and M.

REMARK 2.5. If ¢ is an infinitely divisible measure with the representa-
tion [zg, S, M, it follows from Theorem 2.4 that for any >0, [z, ¢S, tM] is
the ch. f. of some infinitely divisible prob. measure on H. In view of this, we
denote by y* the infinitely divisible prob. measure with the represenation
[tz,, tS, tM 1.

REMARK 2.6. If u#=[z,S,M] and T denotes the associated operator
defined by

(TN =60+ (@»?dM&), y<H,

Nzl <l
then it is easily shown that T is an S-operator.

THEOREM 2.7.[2] In order that a sequence of infinitely divisible measure
Un=[ 2y, Spy M, converges weakly to p={zo, Sy, My it is necessary and sufficient
that

(i) lim z,=x,

(3i) M,=> M, outside every closed neighborhood N of the origin

(iii) the sequence of S-operators {T,} in Remark 2.6 is compact

(iv) lim Iim | (2,9)2dM, + (8,9, %) = (S, %)

no0
Nz <e

3. A characterization of operator r-semistable probability measures
on H

In this section we define operator r—semistable prob. measures on H and
obtain a characterization of these measures.

DEFINITION 3.1. Let pesM(H) be non-degenerate infinitely divisible
and 0<r <1, then, we say that g is operator r—semistable if there exists a
bounded, invertible linear operator B on H such that

=B (3.1)
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It is clear from the definition that an operator ~—semistable measure is also
operator r*-semistable for every positive integer n.

THEOREM 3.2. Let p & M(H) be non-degenmerate infinitely divisible. Then
{uf:t€ (0, 0)} is a semigroup and weakly continuous.

Proof. It is clear from the definition of y#* in Remark 2.6 that {gf:0<¢e<C
oo} is a semigroup. Now we proceed to prove the weak continuity. Let
u=[zo, S,M], and let {¢,}] be a sequence in (0, ) converging to t. Then
we must show that pf==[¢,x¢,t,S, t,M | weakly converges to pf={tz,,tS, tM ].

To show this, it is enough to verify the conditions (i) — (iv) in Theorem
2.7. The conditions (i) and (ii) are easy to be verified. Now, verify the
condition (iii) : by noting the easy facts that T,=¢,T for n=1,2,---, and
sup {t,} =u < oo, we easily see that

(i) sup Trace (T,) =sup ¢t, Trace(T)=u Trace(T) < oo
(i) lim sup 3)(Tue, ¢) =lim sup ¢, 3, (Tese;)
N—ox n i=N N—oo a =N

=2 lim 3 (Te,,e) =0

N-woo =N
Hence {T,} is compact. Finally, verify the condition (iv):

lim Tm j (,3)? d(t.M) + (£,5, %)

=0 p—oo

tzi <e

—lim Gm ¢, (j (z,%)? dM + (S3,))

=0 Ao
lzll <e

=((Sy, ) +lim | (2,92 a) =£(S3,).

lzl <=
Now we state and prove our main theorem in this paper.

THEOREM 3.3. Let g€ M(H) be non-degenerate infinitely divisible and
0<r<1. Then the following is equivalent:
(i) p is operator r—semistable.

(ii) there exist a bounded, invertible, linear operator B and an increasing
sequence ik} of positive integers such that

lim—lfczll»=r (3.2)

and
lim Bry*ta=p 3.3)

n—RQ .
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Proof. (i) implies (ii): By the definition of operator r-semistable prob.
measure, there exists a bounded, invertible, linear operator B on H such
that gr=Byu. By iterating (3.1) z times (»=1,2,---), we obtain

;L”‘:B"/l. (3. 4)

Now choose an increasing sequence {k,} of positive integers such that
r*-k,—1 as n—oco (for example, k,=the integral part of —rl;). Then clearly,

{k,} satisfies (3.2). By taking %,-th power on both sides of the equation
(3.4),

and letting n—>c0, we obtain, by Theorem 2.7,

lim Bry*t=p.

n— 00

(i1) implies (i): Let lim B*y*t=p, for some bounded, invertible, linear
operator B on H and {k,} satisfying (3.2). Then each ye H*
AN
fi(y)=lm Bryu**a(y) =lim {2 (B*"y)}*

n—roo R

=1im {ﬁ (B*n (B*y))} kn'kywl/ ky
= {4 (B*»)}"
By replacing ¥ by (B*)~!y, we obtain
2(B*) 1y ={a(n}".
Since every g € M(H) is uniquely determined by its ch.f., it follows that
=By, Hence p is operator r—semistable.

REMARK 3.4. (i) It is worth pointing out that while proving (i) = (@)
above, we need only assume that r is positive and not necessarily belongs
to (0,1). However, if we assume that the norm of B, {|B]| isless than 1,
then r&(0,1). This follows from the following argument: Suppose r>1;
then by (3.4), we have

|2(B*y) | =2 "< £ |
for all ye H*. Since ||B*||=||Bl|<{1, ||B**{|—0 as »—co and hence |Z(y) |=1
for all ye H*. This implies that g is degenerate, contradicting the non-
degeneracy of z. Hence we must have re (0,1).
(ii) If we take a bounded, invertible, linear operator B on H as T,:
z — az, (a is a real number), we obtain a result of Kumar [1] from our
main Theorem. Hence Theorem 3.3 is ageneralization of Theorem 2.1

in [17.
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