ON OPERATOR SEMISTABLE PROBABILITY MEASURES ON HILBERT SPACES

By SANG GONE LEE

1. Introduction and notation

Throughout H and H^* will denote a real separable Hilbert space and its topological dual, respectively; and M(H) will denote the class of probability (prob.) measures on $\mathfrak{B}(H)$, the smallest σ -algebra containing the open sets of H. For $\mu \in M(H)$, the characteristic functional (ch. f.) of μ denoted by $\hat{\mu}$ is a complex valued function on H^* defined by

$$\hat{\mu}(y) = \int_{H} e^{i(x, y)} d\mu(x)$$

where (,) is the inner product on H and $\nu \in H^*$. For any μ , $\nu \in M(H)$, we denote by $\mu * \nu$ the *convolution* of μ and ν which is a probability measure on $\mathfrak{B}(H)$ defined by

$$\mu * \nu(B) = \int_{H} \mu(B-x) \ d\nu(x)$$

for every $B \in \mathfrak{B}(H)$. The symbol μ^{*n} will denote μ convoluted n times with itself. It is well known [2, p.152] that every $\mu \in M(H)$ is uniquely determined by its ch.f. μ , and $\widehat{\mu * \nu}(\cdot) = \widehat{\mu}(\cdot)\widehat{\nu}(\cdot)$. For μ , $\mu_n \in M(H)$, $n=1, 2, \cdots$, we shall say that μ_n converges weakly to μ (in symbols, $\lim_n \mu_n = \mu$) if for every bounded continuous real valued function f on H, $\int f d\mu_n \longrightarrow \int f d\mu$ as $n \to \infty$. It is well known that M(H) is the topological semigroup with the topology of weak convergence of measures and the convolution of measures as a multiplication.

Let A be a bounded, invertible, linear operator on H. For any $\mu \in M(H)$, we denote by $A\mu$ the measure on $\mathfrak{B}(H)$ defined by $A\mu(B) = \mu(A^{-1}(B))$ for every $B \in \mathfrak{B}(H)$. It is not difficult to verify that for any bounded linear operator A on H, $A(\mu*\nu) = A\mu*A\nu$ and $\widehat{A}\mu(y) = \widehat{\mu}(A^*y)$, where A^* denotes the adjoint of A; i.e. $(Ax, y) \equiv (x, A^*y)$. The measure δ_x defined by $\delta_x(B) = 0$ if $x \in B$, and 1 if $x \in B$, is said to be the degenerated probability measure at $x \in H$.

Received May 4, 1979

Characteristic functions which satisfy, for all t, an equation of the form $f(t) = \{f(bt)\}^a$ where a > 0 and 0 < b < 1 were considered by Lévy [1937], and the solutions have been called semistable laws. Pillai [3] has considered semistable laws and proved that they can be identified as weak limits of laws. Recently, Kumar [1] has extended this result to real separable Hilbert spaces.

Motivated from the work of Kumar [1], Pillai [3] and Lévy, in this paper we define operator r-semistable prob. measures on H and obtain a characterization of these measures in terms of the weak limits of measures in M(H).

2. Preliminaries

In this section we collect necessary definitions and some known results that will be needed in this paper. We begin with the following definitions.

DEFINITION 2.1. A positive semidefinite Hermitian operator A is said to be an S-operator if it has finite trace, i.e., for some orthonormal basis $\{e_j\}$, $\sum_{i=1}^{\infty} (Se_i, e_i) < \infty$.

DEFINITION 2.2. A family $\{S_{\alpha}\}$ of S-operators is said to be *compact* if the following conditions are satisfied:

- (i) sup trace $(S_a) < \infty$;
- (ii) $\lim_{N\to\infty} \sup_{\alpha} \sum_{i=N}^{\infty} (S_{\alpha}e_{i},e_{i}) = 0$

for some complete orthonormal sequence $\{e_n\}$ in H.

DEFINITION 2.3. A measure $\mu \in M(H)$ is said to be *infinitely divisible* if for each positive integer n, there exists a measure λ_n in M(H) such that $\mu = \lambda_n^{*n}$

Now we will state some known results which will be needed in the proof of our theorems in this paper.

THEOREM 2.4.[2] A function $\phi(y)$ is the characteristic function of an infinitely divisible measure μ on H if and only if it is of the form

$$\phi(y) = \exp\{i(x_o, y) - \frac{1}{2}(Sy, y) + \int k(x, y) \ dM(x)\},$$

where x_0 is a fixed element of H, S is an S-operator and M is a σ -finite measure with finite mass outside every neighborhood of the origin and

$$\int_{\|x\| \le 1} \|x\|^2 \ dM(x) < \infty$$

Here, k(x, y) is the function $\{e^{i(x, y)} - 1 - (i(x, y)/1 + ||x||^2)\}$. The above representation is unique.

If μ is any infinitely divisible measure on H, by $\mu = [x, S, M]$, we mean that the three quantities occurring in the representation of Theorem 2.4 are, respectively, x, S, and M.

REMARK 2.5. If μ is an infinitely divisible measure with the representation $[x_0, S, M]$, it follows from Theorem 2.4 that for any t>0, $[tx_0, tS, tM]$ is the ch. f. of some infinitely divisible prob. measure on H. In view of this, we denote by μ^t the infinitely divisible prob. measure with the representation $[tx_0, tS, tM]$.

REMARK 2.6. If $\mu = [x, S, M]$ and T denotes the associated operator defined by

$$(Ty, y) = (Sy, y) + \int_{\|x\| \le 1} (x, y)^2 dM(x), y \in H,$$

then it is easily shown that T is an S-operator.

THEOREM 2.7. [2] In order that a sequence of infinitely divisible measure $\mu_n = [x_n, S_n, M_n]$ converges weakly to $\mu = [x_0, S_0, M_0]$ it is necessary and sufficient that

- (i) $\lim x_n = x_0$,
- (ii) $M_n \Longrightarrow M_0$ outside every closed neighborhood N of the origin
- (iii) the sequence of S-operators $\{T_n\}$ in Remark 2.6 is compact

(iv)
$$\lim_{\epsilon \to 0} \overline{\lim}_{n \to \infty \atop n \to \infty} \int_{\|x\| \le \epsilon} (x, y)^2 dM_n + (S_n y, y) = (S_0 y, y)$$

3. A characterization of operator r-semistable probability measures on H

In this section we define operator r-semistable prob. measures on H and obtain a characterization of these measures.

DEFINITION 3.1. Let $\mu \in M(H)$ be non-degenerate infinitely divisible and 0 < r < 1, then, we say that μ is operator r-semistable if there exists a bounded, invertible linear operator B on H such that

$$\mu^r = B\mu \tag{3.1}$$

It is clear from the definition that an operator r-semistable measure is also operator r^n -semistable for every positive integer n.

THEOREM 3.2. Let $\mu \in M(H)$ be non-degenerate infinitely divisible. Then $\{\mu^t: t \in (0, \infty)\}$ is a semigroup and weakly continuous.

Proof. It is clear from the definition of μ^t in Remark 2.6 that $\{\mu^t:0 < t < \infty\}$ is a semigroup. Now we proceed to prove the weak continuity. Let $\mu=[x_0, S, M]$, and let $\{t_n\}$ be a sequence in $(0, \infty)$ converging to t. Then we must show that $\mu^t=[t_nx_0, t_nS, t_nM]$ weakly converges to $\mu^t=[t_nx_0, tS, tM]$.

To show this, it is enough to verify the conditions (i) – (iv) in Theorem 2.7. The conditions (i) and (ii) are easy to be verified. Now, verify the condition (iii): by noting the easy facts that $T_n = t_n T$ for $n = 1, 2, \dots$, and $\sup \{t_n\} = u < \infty$, we easily see that

(i) sup Trace
$$(T_n)$$
 = sup t_n Trace (T) = u Trace (T) < ∞

(ii)
$$\lim_{N\to\infty} \sup_{n} \sum_{i=N}^{\infty} (T_n e_i, e_i) = \lim_{N\to\infty} \sup_{n} t_n \sum_{i=N}^{\infty} (Te_i, e_i)$$

= $u \lim_{N\to\infty} \sum_{i=N}^{\infty} (Te_i, e_i) = 0$

Hence $\{T_n\}$ is compact. Finally, verify the condition (iv):

$$\lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} \int_{\|x\| < \epsilon} (x, y)^2 d(t_n M) + (t_n Sy, y)$$

$$= \lim_{\epsilon \to 0} \overline{\lim_{n \to \infty}} t_n \left(\int_{\|x\| < \epsilon} (x, y)^2 dM + (Sy, y) \right)$$

$$= t \left((Sy, y) + \lim_{\epsilon \to 0} \int_{\|x\| < \epsilon} (x, y)^2 dM \right) = t \left(Sy, y \right).$$

Now we state and prove our main theorem in this paper.

THEOREM 3.3. Let $\mu \in M(H)$ be non-degenerate infinitely divisible and 0 < r < 1. Then the following is equivalent:

- (i) μ is operator r-semistable.
- (ii) there exist a bounded, invertible, linear operator B and an increasing sequence $\{k_n\}$ of positive integers such that

$$\lim_{n\to\infty} \frac{k_{n+1}}{k_n} = r \tag{3.2}$$

and

$$\lim_{n\to\infty} B^n \mu^{*k_n} = \mu \tag{3.3}$$

Proof. (i) implies (ii): By the definition of operator r-semistable prob. measure, there exists a bounded, invertible, linear operator B on H such that $\mu r = B\mu$. By iterating (3.1) n times $(n=1, 2, \cdots)$, we obtain

$$\mu^{rn} = B^n \mu. \tag{3.4}$$

Now choose an increasing sequence $\{k_n\}$ of positive integers such that $r^n \cdot k_n \to 1$ as $n \to \infty$ (for example, k_n = the integral part of $\frac{1}{r^n}$). Then clearly, $\{k_n\}$ satisfies (3.2). By taking k_n -th power on both sides of the equation (3.4),

and letting $n \rightarrow \infty$, we obtain, by Theorem 2.7,

$$\lim_{n\to\infty} B^n \mu^{*k_n} = \mu.$$

(ii) implies (i): Let $\lim_{n} B^{n} \mu^{*k_{n}} = \mu$, for some bounded, invertible, linear operator B on H and $\{k_{n}\}$ satisfying (3.2). Then each $y \in H^{*}$

$$\hat{\mu}(y) = \lim_{n \to \infty} B^n \widehat{\mu^* k_n}(y) = \lim_{n \to \infty} \{\hat{\mu}(B^{*n}y)\}^{k_n}$$

$$= \lim_{n \to \infty} \{\hat{\mu}(B^{*n}(B^*y))\}^{k_n \cdot k_{n+1}/k_n}$$

$$= \{\hat{\mu}(B^*y)\}^r$$

By replacing y by $(B^*)^{-1}y$, we obtain

$$\hat{\mu}((B^*)^{-1}y) = {\{\hat{\mu}(y)\}^r}.$$

Since every $\mu \in M(H)$ is uniquely determined by its ch. f., it follows that $\mu^r = B^{-1}\mu$. Hence μ is operator r-semistable.

REMARK 3.4. (i) It is worth pointing out that while proving (ii) \Longrightarrow (i) above, we need only assume that r is positive and not necessarily belongs to (0,1). However, if we assume that the norm of B, ||B|| is less than 1, then $r \in (0,1)$. This follows from the following argument: Suppose $r \ge 1$; then by (3.4), we have

$$|\hat{\mu}(B^{*n}y)| = |\hat{\mu}(y)|^{r^n} \le |\hat{\mu}(y)|$$

for all $y \in H^*$. Since $||B^*|| = ||B|| < 1$, $||B^{*n}|| \to 0$ as $n \to \infty$ and hence $|\hat{\mu}(y)| = 1$ for all $y \in H^*$. This implies that μ is degenerate, contradicting the non-degeneracy of μ . Hence we must have $r \in (0, 1)$.

(ii) If we take a bounded, invertible, linear operator B on H as T_a : $x \longrightarrow ax$, (a is a real number), we obtain a result of Kumar [1] from our main Theorem. Hence Theorem 3.3 is a generalization of Theorem 2.1 in [1].

References

- 1. A. Kumar, Semi-stable probability measures on Hilbert Spaces, J. Multivariate Anal., 6(1976), 309-318
- K. R. Parthasarathy, Probability Measures in Metric Spaces, New York, Academic Press, 1967
- 3. R. N. Pillai, Semi-stable laws as limit distributions, Annals of Mathematical Statistics, 42(1971), 780-783

Jeon Bug National University