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ON GENERALIZED HEISENBERG GROUPS

By T. Kwon, K. Leg, L CHO, S. ParRg®

1. Introuction
Let G be a finite group. Let K be the complex number field and K*
its multiplicative group. A mapping a:GXG— K* is called a 2-cocycle
on G if
a(g, k) a(gh, k) =a(g, hk) a(h, k)

for all g,h, % in G. Given a 2-cocycle @ on G we let K°[G] denote the
twisted group algebra of G over K with respect to a. That is, K[ G] is a
K-algebra with K-basis {g|g=G} and with multiplication defined distribu-

tively and using
gh=a(g, h) gh

for all g,k in G. The definition of a 2-cocycle is that which makes the
algebra Ko[G] associative. In particular, if a(g,h)=1forall g, 2 in G
then K*[G] is in fact K[G], the ordinary group algebra of G over K.

It is easy to show that the twisted group algbra K*[G] is semisimple.
Hence

K+ G]=Mat, (K)D-®Mat,, (K)

for some positive integers ny, -+, »,, and the center Z(K*[G)) of K{G] is
r dimensional over K.

The center of the ordinary group algebra K[G] has a K-basis consmtmg
of the class sums. Hence the center of K[G] is one dimensional over K if
and only if G is"a trivial grotip. It is rhoré difficult to find the center of
the twisted group algebra K<[G]. We call group G a generalized Heisenberg
group if there is a 2-cocycle @ on G such that the center of K{G]}
is one dimensional over K. Note that G is a generalized Heisenberg group-
if and only if there is a 2-cocycle @ on G such that K« G]=Mat,(K) and
|{G|=m? for some positive integer m.

*) This research % supported by KOSEF Research Grant.
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~ The generalized Heisenberg groups are closely related to the groups of

central type. That is the reason why the character theory of fmite groups
is used to study the generalized Hejsenberg groups. It has been conjectured
in [117 that any group of céntral type must be solvable.

In this paper we will discuss the structure of the center of K[ Gl
also study the relation between the generalized Heisenberg groups and the
groups of central type. Several examples of generalized Heisenberg groups
are considered.

In the last section of this paper, we will prove a theorem on projective
lattices over the group ring ZG where G is the generalized quatermion
‘group of order 16 and Z is the ring of integers.

The motation in this paper is standard, The group G is assumed to be
finite. The order of G is denoted by |G|. Let g and & be elements of G.
We define gh=h"1gh and [g,h]=g 'k igh. The centralizer of g in G is
denoted by C¢(g). Thus Celg) = {z=G|gz=xg}. The commuitator subgroup
of G is denoted by G'. ' :

2. The center of the twisted creup algbra

Let G be a finite group. Let K be the complex numbe field and K* its
maltipleative group. Let K°[G7] denote the twisted group algebra of G aver
K with respect to a 2-cocycle @ on G. Then U={ag|a€K*, gEG} is a
smaultiplicative subgroup of the group of units of X=[G7J. Moreover, the map-
ping 7:U — G defined by z(ag)=g is a homomorphism of U is a central
extension of G with kernel W, where W is isomorphic to K*.

Let @z be any element of U. Then

7(Cy(aB)) = tz= Gl gz=27} .
An element g&G is said to be a-special if a(g,z)=a(z,g) for every z&
Cg(g). It is easy to see that an element g&G is a-special if and only if

Ce(@) =n(Cy(ag)) for any a&K*. And it is clear that if g is a-special
‘then so is every can)ugabe of g in G.

. Lesma 1. Let. @ be a.cm;ugagy,class of G. Then @ consists of a-special
elements if there exists a function ©:0—K* such that

(g) (g, k) =A(gh) alk, g®)
for all gé@ qﬁd keG.

Proof. Suppose that @ consists of a,—sg:iecial elements. Then for all ge@
and e€K*, we have C¢(g) =7 (Cy(sg)) and
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|G : Ce(2)|=1U: Cylag)) .
Therefore, if X is the conjugacy class in U containing ag then |X|=|0|
and 7(X)=0= {gt|h=G}. This implies that
. &K= {A(g") gt |hEG)
for some function 1:€@ — K*. Since h~1A(g) gk is contained in £ and it is
a multiple of g*, we have
“hTA(g) gh=2A(gh) gh
This yields that A(g) a(g, k) gh=2A(g*) a(h, g?) g*. Hence
A(g) alg, h) =A(g") a(h, gh)
for all €0 and g&G.
Conversely, now assume that there exists a function 1:€ — K* such that
A(g) alg,h)=A(gh) a(h, g®) for all g=@ and heG. Let ge@. Then for all

z€Cs(g) we have 2(g) a(g,z)=2(g) a(z,g) and a(g, z) = a(z, g).
Hence g is a-special, and the class @ consits of a-special elements.

THEOREM 1. The dimension of the center Z(K°[G]) of the twisted group
algebra K4 G is equal to the number of conjugacy classes of a-special elements
ir G.

Proof. Let @,,---,@, be the conjugacy classes of a-special elements in G.
By Lemma 1, for each @; there is a function ;:@; — K* such that

4 (g) alg, h) =4(g") a(h, g¥)
for all g=@; and h=G. Let Ci:géz; 4;(g)g€K{G). Then the C; lie in
Z(KG]) since

F12;(g)gh=1;(g") g%
for all g=@; and keG. Moreover, the C; are linearly independent.
U z=2la,8, 2,70, is an element of Z(K<[GY), then for all ReG we

have zhA=hz and

eg (e, h)gh=Tag a(h, g)kg.

Hence a(g, ) =a(z, g) for all z&Cs(g), which implies that g is a-specal
and g<@; for some i. Since ki lzh=z, it follows that

2:’ (g) agh =ag2i (gh)

for all g=0; and heG. Hence 2= ag=34,C; for some q;€ K* and thus
the C; span Z(K°[GJ). Therefore, the C; form a basis for Z(K=[G)).
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From Theorem 1, it follows that a group G is a generalized Heisenberg
group if there is a 2-cocycle @ on G such that the only a-special element
of G is the identity.

3. The generalized Heisenberg groups ,

Let be a finite group with center Z(G) and K the complex number field.
Let Irr(G) denote the set of all irreducible complex characters of G. For
each ycIrr(G) let Z(y) = {g=G| |x(e)|=x(@)}. Then Z(y) is a normal

subgroup of G containing kery= {g&G|x(g) =x()}.

LEMMA 2. Let y€Irr(G). Then

(1) Z(y) /kery=Z(G/kery) and it is cyclic.
@ 1 (0?<1G:2() |-

Egquality holds if and only if X vanishes on G—Z(y).
() If G/Z(y) is abelian, then y(1)2=|G : Z(y)!.

Proof. It is easy to prove this lemma (see [8, pp. 27-28)).

From Lemma 2 it follows that Z(G)SZ(y) and x(1)2<|G: Z(G)].
Equality can occur here, and when it does, Z(G)=Z(y) and ¥ vanishes on
G—Z(G). We call a group G is of central type if there is a character
x€Irr(G) such that y(1)2=|G : Z(G) |.

The following therem shows the relation between the generalized Heisen-
berg groups and the groups of central type.

THEOREM 2. If G is a group of central type, then G/Z(G) isa generalized
Heisenberg group.

Conversely, if H is a generalizd Heisenberg group then there is a group G
of central type such that G/Z(G)=H.

Proof. Assume that G is a group of central type. Then there is y€Irr(G)
such that y(1)2=|G:Z(G)|=|G/Z(G)|. As in Lemma 25.4 of [5] we can
associate with the ordinary representation T:G — GL(V) which affords x
a projective representation T:G/Z(G)—GL(V) with some 2-cocycle a on
G/Z(G). Then T(g) T(h)=a(g, k) T(gh) for all g,k in G/Z(G). Let g=
T(g) for all g in G/Z(G). By Burnside’s lemma [5, Theorem 10.1], the
set {g|/g=G/Z(G)} spans the K-vector space Endg(V) and

dimg Endg (V) =(dimg V)2=¢(1)2=|G/Z(G) |.

Hence K«{G/Z(G)1=Endg(V) which has center K. Therefore, G/Z(G) is
a generalized Heisenberg group.
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Conversely, assume that H is a generalized Heisenberg group and let «
be a 2-cocycle on H such that Ke[H] has center K. Let G be a represen- _
tation group of H [5, Theorem 25.5]. That is, G is a central extension of
H with Kernal M such that every projective representation of H is equiva-
lent to one lifted to G, where M is the Schur multiplier H2(H, K*) of H.
Since K[ H] has center K, it follows from Theorem 1 that the only a-
special element in H is the identity. Therefore, we have Z(G)=M and
G/Z(G)=H. Now let L be a minimal left ideal of K[H7]. Then the pro-
jective representation of H on L lifts to an ordinary representation 7T of G.
This representation T affords a character y€Irr(G) such that

v (1)2=(dimgL)?=dimgK[H 1= |G:Z(G) |.
Thus G is of central type.

The following theorem indicates the importance of determining the gene-
ralized Heisenberg p-groups.

THEOREM 3. The group G is of central type if and ounly if for each prime
b a Sylow p-subgroup S, of G is of central type and Z(S,) =Z(G) N S,.

The group H is a generalized Heisenberg group if and only if any Sylow
subgroup of H is a generalized Heisenberg group.

Proof. This follows from Theorem 2 and Corollary 4 in [47.

THEOREM 4. Let G be a finite group such that G'SZ(G) and |G'|=p,
where p is a prime. Then X(1)2=|G:Z(G)| for every nonlinear y&Irr(G).

In particular, G is of central type and G/Z(G) is a generalized Heisenberg
group.

Proof. Let yelrr(G) be nonlinear. Then kery does not contzin G’. By
assumption, this implies that keryNG’=1. Since Z(y) /kery = Z(G/kery),
for all g€Z(y3) and k=G we have

[g, k=g 1gh € keryNG'=1.

This implies Z(y) €Z(G), and hence Z(y)=Z(G). Moreover, G/Z(G) is
abelian because G'CZ(G). Therefore, by Lemma 2, we have
r(12=|G:Z) | =|G:Z(G) |-

A finite p-group G is said to be extra-special if G'=2Z(G), |G'|=p, and
G/G’ is elementary abelian. For each prime number p, there are two non-
isomorphic nonabelian groups of order g3, both extra-special. Furthermore,
every extra—special p-group is the central product of nonabelian p—groups of
order p3, and so has order p?»+! for some positive integer m.
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COROLLARY. Let E bé an extra-special p—group of order p**! gnd let. be Z
" a cyclic p-group of order p*. Let G be the central product of E and Z whkick
is not a direct product. Then
' x(1)2=|G:Z(G) | =p*~
for every nonlinear xé‘:EIn'(G). In particalar, G is of central type.
Proof. It is clear that G’=E’ is of order p and Z(G) =Z2G’. Hence
the assertion follows from Theorem 4. _

In the above corollary, if Z is of order p then G=E. Thus any extra-
special p-group is of cemtral type.

4. Projective lattices over the group ring ZG, where G is the
generalized quate:_mion group of order 16

Let ffR—> R’ b‘e‘a ring-homomorphism and M a left R-module. Let foM
denote the inducéd left R-module R’®rM. Then there is a canonical R-
homomorphlsm Fu: M — faM glven by f* (m) =1Rm. Let

hy
R_"‘"‘)RI
b
Rg —‘*R’
f2

be a fiber product of ring-homorphisms, where f; or f; is surjective. We
will give the Milnor's construction [12] of projective modules over R, using
projective modules over R; and R, as building blocks. Given any projective
module P; over R; (i=1,2) and given an R’-isomorphism k:f14P, — fouP,,
let P=M{P;, k, P,) denote the subgroup

{1, 22) € Py X Po| h(f14(21)) =f24 (x2)}
of the additive group P;XP,. We make P into a left R—module by setting

r(xy, 22) = (b (r) xy, Ba(r)z2) .

Then the following hold:

i) The module P=M(P,, h, P;) is projective over R, Furthermore, if P,
and P, are fiuitely generated over Ry and R, respectively, then P is finitely

generated over R.
i1) Every projective R-module is isomorphic to M{Py, h, P,) for seme Py, P,
and k.



On genemhzeé Heisenbetg groups 7

iil) The module P, and P, are isomorphic to fisP and fouP, respectively,
where P=M(P1, h, PQ,).

Let e R'*, where R’* is the group of multiplicative units of R’. We
denote by # the induced R’-isomorphism

given by z — zu for all z&R’

‘Now let R be a Dedekind domain whose quotient field K is an algebraic
number field. By an R-order A in a finite dimensional semisimple K-alge-
bra A, we mean a subring of A which is finitely generated R-module and
contains a K-basis of a K-vector space A. By a A-lattice we mean a
finitely generated left A-module which is torsion-free as an R-module. A
A-lattice P is called a locally free A-lattice of rank n if for each maximal
ideal @ of R, Pp=RpQ@zP is a free Ao{=RopQ®rA)-module with n genera-
tors. Clearly, Py is an order of Agp in A.

If P is locally free, then P is projective. For P is projective if and only
if Ext1,(P, N)=0 for all A-module N, and the functor commutes with the
localization in this setting.

Swan[157] showed that if 4 =RG is the group ring of a finite group G
over a Dedekind domain R, then every projective A-lattice is locally free.
Thus the map rk:Ky(A) — Z defined by

rk([P]) =the rank of P

is obviously a well-defined additive epimorphism. The kernel CI(4) of this
epimorphism is called the class group of A, or more precisely the locally
Jree class group of A. The group CI(A) is indeed the reduced projtive class
group P(A) of A which is defined by Rim in [147.

Swan [15] has shown that if P is a locally free A-module, then

P=(a free A-module)® (a locally free left ideal of A).

It follows from this fact that every element of CI(A4) can be written in
the form of [J]—[A] for some locally free left ideal J of A. Hence by
the Jordan-Zassenhaus theorem [16] the class group CI(A) is finite.

Let

H,=<z,y|2?"=y% yi=1, yzyi=z"1>

be the generalized quaternion group of order 2**2, where n>1.
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Let
Dy,=<lz,y 2®"*'=y?=1, yryl=z1>
be the dihedral group of erder 27+2, where z>0. Then we have
ZH,/(#~1)=ZDpy

and

ZHn/ (yZ) EFgD,,~1,
where F, is the finite field with two elements. Furthermore, the diagram
of canonical ring-homomorphisms

ZH,~—————1D,

ZH,/ (*+1)—> F2D,

is a fiber product, where A=ZH,/(y2+1) is an order in a totally definite

quaternion algebra over the field K=Q(n+7!), 7 the 2*-th primitive root
of 1, and its center is R=Z[n +7']. For the details we refer to Frohlich

[6] and Cho [2].

In the rest of this section we will consider the case when G =H,, the
generalized quaternion group of order 16. We have K=Q(v'2), R=Z[v 2]
and A=ZG/(»*+1) is the quaternion algebra over Z[ v 2]. If we denocte
z+(»2+1) and y+(5?+1) in A by i and j respectively, then we have
A=Z[v2][i,j] and it is a Z[ +/2J-order in the quaternion algebra A=
Qv 2L, 4, 4, &L

Krimse [9] has shown that

P2l T A i), FA+D), FA+itith |

is a maximal Z[+/2 J~order in the quaternion algebra A. Furthermore, he
has shown that every left ideal in 2 is principal and that 2 contains A.

Martinet [10] has shown that every free ZD;-lattice is free and Cho [2]
has proved that every projective A-lattice is free. Therefore, every projec-
tive lattice of rank 1 are ideals in both A and 2.

Now it is obvious that for every projective ZG-lattice P, there exists a
unit #€F,D;* such that P=M(A, u, ZD,). Since the localization preserves
a fiber product of ring-homomorphisms, every projective ZG-lattice of the
form M(4, s, ZD;), s€Fy,D,*, is of rank 1.

Let ji: A——F,;D; and j,:ZD;——F32D; be canonical ring-homomorphisms.
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Then j;(4*) and j3(ZD,*) are disjoint. This implies that

M(A, s, ZDy) M4, 1, ZD,) =ZG,

where s=1-3j;(i+j). Hence there are exactly two nonisomorphic ZG-lattices
of rank one. But, |CI(ZG)|=2 by [6]. Therefore,

CI(ZG)=Z/2Z and K (ZG)=Z D Z/2Z,

where G= H, is the generalized quaternion group of order 16.
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