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ON GENERALIZED HEISENBERG GROUPS

By T. KWON, K. LEE, L CHO, S. PARK*>

1. Introuetion

Let G be a finite group. Let K be the complex number field and K·
its multiplicative group. A mapping a:GXG -+ K* is called a 2-cocycle
on G if

a(g, h) a (gh, k) =a(g, hk) a(h, k)

for all g, h, k in G. Given a 2-cocycle a on G we let Ka[G] denote the
twisted group algebra of G over K with respect to a. That is, Ka[G] is a
K-algebra with K-basis {glgEG} and with multiplication defined distribu­
tively and using

gh=a(g, h) gh

for all g, h in G. The definition of a 2-cocyc1e is that which makes the
algebra Ka[G] assodative. In particular, if a(g, h) =1 for all g, h in G
then Ka[G] is in fact K[G], the ordinary group algebra of G over K.

It is easy to show that the twisted group algbra Ka[G] is semisimple.
Hence

for some positive integers nh ••• , nro and the center Z(Ka[G]) of Ka[G] is
r dimensional overK.

The center of the ordinary group algebra K[G] has a K-basis consisting
of the class sums. Hence the center of K[G] is one dimensional over K if
and only if G is'atrivial group. It is more' "d:itlitult to find-clre eenter' of
the twisted group algebra K~[G]. We call group G a generalized Heisenberg
group if there is a 2-cocycle a on G such that the center of; Ka[G]
is one dimensional over K. Note that G is a generalized Heisenberg group­
if and only if there is a 2-cocyc1e, a on G such that Ka[G]=Mat,.(K) and:
IG I=m2 for some positive integer m.

to) This researeti' 'is S1i.pj,'lOtted by KOSEF R!E!seareh &rant.
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The generalized Heisenbe~g groups are closely related tp the ~P. 9i
central type. That is the reason why the character theory of . 'fiaite gmups
is used to st\ldy ~geIW~ I:k~Ji~fg groups. It has been conjectured
in [nJ that any group of cenw.tl t-ype must be sotVilb!e.

In this paper we will discuss the structure of the renter of K"'CG]. We
also study the relation betwam the generalized Heisenberg groups and the
groups of central type. Several examples of gerieralized Heisenberg groups
are considered.

In the last section of this paper, we will prove a theorem on projective
lattices over the group ring ZG where G is the generalized quatetllion
~ of order 16 and Z is the ring of in~ers.

The .notation in this paper is stan~~. The group G is asstrf!1ed to he
finite. The order of G is denoted by IG I. Let g and h be elements of G.
We define gk=h-1gh and [g, h]=g-lk-1gh. The centralizer of g in G is
denoted by CG(g). ThusCG(g) = {xEGlgx=xg}. The commutator subgroup
of G is denoted by G'.

,

2. The center of the twisted grettp algb:r:a

Let G be a finite group. Let K be the complex numbe field and K* its
multiplcative group. Let Ka[Gj denote the twisted group algebra of G over
J( with respect to a 2-c<;lcyc1e a on G. Then U= {agII1EK*, geG} is a
l)1qJ.tipl.icativ~ subgrolijlQf the ~oup of units of K"CG]. Moreo'Vfi}T, the map­
ping ~.;U~ G~~ by1t(ag) =g is a homomorphism of U is a central
~:;teJ).siop. of G with ),teme! W, where W is isomorphic to K*.

Let a g be any element of U. Then

1l:(Cu(al.)) = {xEGlj.f=xg}.

An e~ement geG is said to be a-special ifa(g, x) =a(x, g) for every a:e.
C(J(g). It is easy to see that an element geG is a-special if and only if
ev(S") =1C{Cu(ag» for any al:K*. And it is clear that if g i$ a-sPecial
.then so is etrery conjugate of g in. G. ..

LE:M;M.4. L. Le.t(J be /It .Cf»l.j1logacy cl4ss l!f G. Tken dJ-;. GlmSistsof a-special
elements if there eXist~ a function 1C:(J~K* $u~k that

leg) a(g, k) =AEgk) a(k,t/')

for all g~(J (l.nd keG.

Proof. Suppose that (J consists of a7"'~ialelemE$ts. Then for all gE({J

and aEK*, we have CG (g)=17:(Cu (ag)) and
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IG : CG(g) I= IU : Cu(ag» ,.

Therefore, if tJ(, is the conjugacy class in U containing ag then ItJ(, I= I(J I
and 1t'(OC) =19= {ghlhEG}. This implies that

/1(,= {A.(gh)ghlhEG}

for some function A.:@ --+ K*. Since ii-1A.(g)gii is contained in /1(, and it is
a multiple of gh, we have

. h.-lA. (g) gh= A. (gh)?':
This yields that A.(g) a(g, h) gh-A.(gh) a(h, gh)gti". Hence

A.(g) a(g, h) =A.(gh) a(h, gh)

for all hE@ and gEG.
Conversely, now assume that there exists a function A:@ --+ K* such that

A.(g) a(g, h) =A.(gh) a(h, gh) for all gE@ and hEG. Let gE@. Then for all
xECG(g) we have A.(g) a(g, x) =A.(g) a (x, g) and a(g, x) = a (x, g).

Hence g is a-special, and the class @ consits of a-special elements.

THEoREM 1. The dimension of the center Z(Ka[G]) of the twisted group
algebra Ka[G] is equal to the number of conjugacy classes of a-special elements

in G.

Proof. Let @1> ···,@r be the conjugacy classes of a-special elements in G.
By Lemma 1, for each (J,; there is a function A;:@; --+ K* such that

Ai(g) a(g, h) =A;(gh) a(k, gh)

for all gE@i and kEG. Let C; = L: A;(g)gEKa[G]. Then the C; lie In
gEQi

Z(Ka[G]) since

h.-lA; (g) gh.=A.; (gh) gh

for all gE@; and kEG. Moreover, the C; are linearly independent.

If z= L:agg, ag=FO, is an element of Z(Ka[GJ), then for all kEG we

have zh=hz and

L;aga(g, h)gh L;aga(h, g) kg.

Hence a(g, x) =a(x, g) for all xECGCg), which implies that g 1S a-specal
and gE@; for some i. Since h-1zh=z, it follows that

A; (g) agh=agA; (gh)

for all gE@; and kEG. Hence z= L;ag= L;a;C; for some a;EK* and thus
the C; span Z(Ka[G]). Therefore, the C; form a basis for Z(Ka[G]).
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From Theorem 1, it follows that a group G is a generalized Heisenberg
group if there is a 2-cocycle a on G such that the only a-special element
of G is the identity.

3. The generalized Heisenberg groups

Let be a finite group with center Z(G) and K the complex number field.
Let Irr(G) denote the set of all irreducible complex characters of G. For
each XEIrr(G) let Z(X) / {gEGI Ix(g} I=X(l)}. Then Z(x) is a normal

subgroup of G containing keq= {gEGlx(g)=X(l)}.

LEMMA 2. Let XEIrr(G). Then

(1) Z(X) /kerx=Z(G/kerx) and it is cyclic.
(2) X(1)2~ IG:Z(x) I.

Equality holds if and only if X vanishes on G-Z(X).
(3) If G/Z(X) is abelian, then X(I)2= IG: Z(X) I.
Proof. It is easy to prove this lemma (see [8, pp. 27-28J).

From Lemma 2 it follows that Z(G) kZ(X) and x(1)2~ IG : Z(G) I.
Equality can occur here, and when it does, Z(G) =Z(x) and X vanishes on
G - Z (G). We call a group G is of central type if there is a character
xEIrr(G) such that X(1)2= IG : Z«(J) I.

The following therem shows the relation between the generalized Heisen­
herg groups and the groups of central type.

THEOREM 2. If G is a group of central type, then G/Z(G) is a generalized
Heisenherg group.

Conversely, if H is a generalizd Heisenberg group then there is a group G
of central type such that G/Z(G) =H.

Proof. Assume that G is a group of central type. Then there is XEIrr(G)
such that X(l)2= IG:Z(G) I= IG/Z(G) I. As in Lemma 25.4 of [5] we can
associate with the ordinary representation T: G -)0 GL ( V) which affords X
a projective representation T:G/Z(G)-)oGL(V) with some 2-cocycle a on
GIZ(G). Then T(g)T(h)=a(g,k)T(gk) for all g,k in G/Z(G). Let g=
T(g) for all g in G/Z(G). By Burnside's lemma [5, Theorem 10.1J, the
set {g Ig E G/ Z (G)} spans the K -vector space EndK(V) and

dimKEndK( V) = (dimK V)2=X(I)2= IG/Z(G) I.

Hence Ka[G/Z(G)J=EndK( V) which has center K. Therefore, GjZ(G) is
a generalized Heisenberg group.



On generalized Heisenberg groups 5

Conversely, assume that H is a generalized Heisenberg group and let a
be a 2-cocycle on H such that Ka[HJ has center K. Let G be a represen­
tation group of H [5, Theorem 25. 5J. That is, G is a central extension of
H with Kernal M such that every projective representation of H is equiva­
lent to one lifted to G, where M is the Schur multiplier H2(H, K*) of H.
Since Ka[H] has center K, it follows from Theorem 1 that the only a­
special element in H is the identity. Therefore, ~e have Z(G) =M and
G/Z(G) =.H. Now let L be a minimal left ideal of K[HJ. Then the pro­
jective representation of H on L lifts to an ordinary representation T of G.
This representation T affords a character XE Irr (G) such that

x(1)2= (dimK L)2=dimK K[H]= IG:Z(G) I.
Thus G is of central type.

The following theorem indicates the importance of determining the gene­
ralized Heisenberg p-groups.

THEOREM 3. The group G is of central type if and only if for each prime
p a Sylow p-subgroup Sp of G is of central type and Z(Sp) =Z(G) nSp,

The group H is a generalized Heisenberg group if and only if any Sylow
subgroup of H is a generalized Heisenberg group.

Proof. This follows from Theorem 2 and Corollary 4 in [4J.

THEOREM 4. Let G be a finite group such that G'~Z (G) and IG' I= p,
where p is a prime. Then X(1)2= IG:Z(G) I for every nonlinear XEIrr(G).

In particular, G is of central type and G/Z(G) is a generalized Heisenberg
group.

Proof. Let XElrr(G) be nonlinear. Then kerx does not contain G'. By
assumption, this implies that kerx nG' = 1. Since Z (X) /kerx = Z (G /kerx) ,
for all gEZ(X) and hEG we have

[g,h]=g- l h-1gh E kerxnG'=l.

This implies Z(x) ~Z(G), and hence Z(x) =Z(G). Moreover, G/Z(G) IS

abelian because G'~ Z (G). Therefore, by Lemma 2, we have
X(1)2= IG:Z(x) I= IG:Z(G) I·

A finite p-group G is said to be extra-special if G'=Z(G), IG'I =p, and
G/G' is elementary abelian. For each prime number p, there are two non­
isomorphic nonabelian groups of order p3, both extra-special. Furthermore,
every extra-special p-group is the central product of nonabelian p-groups of
order p3, and so has order pZm+l for some positive integer m.
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COROLLARY. Let E be an extra-special p-group of order p2*+1 and lit~ be Z
. a 'cyclic p-group of order pi. Let G be the central product of E a1If1 Z wlticlt

is not a direct product. Then .. ..

X(l)2= lG:Z(G) 1-p2m

for every nonlinear XEIrr(G). In pttrtictdar, G is 01 central type.

Prool. It is clear that G'=E' is' of order p and Z(G) =Z~G~. Hence
the assertion follows from Theorem 4~

In the above corollary, if Z is of order p then G=E. Thus any extra­
special p-group is of ce1ltral t~.

4. Projective lattices over the group ring ZG, where G is the
generalizetl q:aaienUon groop of o:nler 16

Let I:R - R' be a ring-homomorphism and M a left R-module. Let I lIM
denote the .induced left ~-module R'®RM. Then there is a canonical R­
homomorphism 1*: M - I lIM given by 1* Cm) = 1®m. Let

hI
R--~RI

1h2 1/1

R2--~R'

12
he a flher product of ring-homorphisms, where 11 or h is surjective. We
will give the Milnor's construction [12J of projective modules over R, using
projective modules over RI and R2 as building blocks. Given any projective
module Pi over Ri (i=1,2) and given an R'-isomorphism h:/lifPI - IUiP2,
let P=M(Pl> h, P2) denote the subgroup

{(Xl> X2) EP1XP2IhUa(Xl)) =12* (X2)}

of the additive group PI X P2• We make P into a left R-module by setting

r(xl> X2) = (hi (r)xh h2(r)x2).

Then the following hold:

i) The module P=M(Phh, P2 ) is projective over R, Furthermore, if PI
and P2 are finitely generated over RI and R 2, respectively, then P is finitely
generated (T,Jer R.

ii) Every projective R-module is isomorphic to NI(Ph h, P2) lor some Ph P2
and h.
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iii) The module PI and P2 are isomorphic to fl!trP and !2!trP, respecti1J81"
where P=M(Pb h, P2-)'

Let uER/*y where It.'* is the group of m.ultiplicative units of R'. We
denote by u the induced R'-isomorphism

fIllr RI-!2I1rR2
n u

R' -R'

given by :t -+ xu IQf all :t f! R'

'Now let R be a Dedekind domain whose quotient field K is an algebraic
number field. By an R-order A in a »nite d.imensional semisimple K-alge­
bra A, we mean a subring of A which is finitely generated R-module and
contains a K-basis of a K-vector space A. By a A-lattice we mean a
finitely generated left A-module which is torsion-free as an R-module. A
A-lattNe P is called a locall, free A-lattice o'f rank n if for each maximal
ideal g> of R, Ptp=Rtp®RP is a fFee Atp(=Rtp®RA)-module with n genera­
tors. Clearly, Ptp is an O'fOOr of Atp in A.

If P is locally free, then P is projective. For P is projective if and only
if ExtIA(P, N) =0 for ail A-module N, and the functor commutes with the
localization in this setting.

Swan[l5] showed that if A =RG is the group ring of a finite group G
over a Dedekind domain R, then every projective A-lattice is locally free.
Thus the map rk:Ko(A) -+ Z defined by

rk([PJ) = the rank of P

is obviously a well-defined additive epimorphism. The kernel Cl (A) of this
epimorphism is called the class group of A, or more precisely the locally

free class group of A. The group Cl (A) is indeed the reduced projtive class
group peA) of A which is defined by Rim in [14J.

Swan [15J has shown that if P is a locally free A-module, then

P= (a free A-module)(BCa locally free left ideal of A).

It follows from this fact that every element of Cl CA) can be written in
the form of [J] - [A] for some locally free left ideal J of A. Hence by
the Jordan-Zassenhaus theorem [l6] the class group Cl (A) is finite.

Let

Hn=<x, ylx2D =y2, y4=1, yxy-l=x-1>
be the generalized quaternion group of order 2'1+2, where n~ 1.
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D,,=<x, y xl!"+1=y2=1, yxy-l=X-1>
be the dihedral group of order 2"+2, where n~O. Then we have

ZH,,/ (y2 -1) == ZDn- 1

and

ZH,,/ (y2) ==F2D,,-h

where F2 is the finite field with two' elements. Furthermore, the diagram
of canonical ring-homomorphisms

ZH" -ZD,,-1

1 1
ZH,,/(y2+1)- F~n-1

is a fiber product, where A=ZH,,/ (y2+ 1) is an order in a totally definite
quaternion algebra over the field K=Q(1]+1]-1), 1] the 2"-th primitive root
of 1, and. its center is R=Z[1] +1]-1J. For the details we refer to Frohlich
[6J and Cho [2J.

In the rest of this section we will consider the case when G = H 2, the
generalized quaternion group of order 16. We have K=Q(v'2) , R=Z[v'2J
and A=ZG/ (y2+ 1) is the quaternion algebra over Z[v'2J. If we denote
x+ (y2+ 1) and y+ (y2+ 1) in A by i and j respectively, then we have
A= Z[v'2][i, j] and it is a Z[ v'2]-order in the quaternion algebra A =

Q( v'2)[l, i, j, k].
Krimse [9J has shown that

Z=Z[v'2J[ v'~ (1+i), ~(1+j), ~(I+i+j+k)J

is a maximal Z[v'2J-order in the quaternion algebra A. Furthermore, he
has shown that every left ideal in Z is principal and that .2 contains A.

Martinet [IO] has shown that every free ZDclattice is free and Cho [2J
has proved that every projective A-lattice is free. Therefore, every projec­
tive lattice of rank 1 are ideals in both A and Z.

Now it is obvious that for every projective ZG-Iattice P, there exists a
unit u E F2D1* such that P= M (A, u, ZD1). Since the localization preserves
a fiber product of ring-homomorphisms, every projective ZG-Iattice of the
form M(A, s, ZD1), sEF2D 1*, is of rank 1.

Let h:A-F2D1 and h:ZDc--~F2D1 be canonical ring-homomorphisms.
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Then h (A*) and jz (ZD1*) are disjoint. This implies that

M(A, s, ZD1) :t=M(A, 1, ZD1) =ZG,

where s=1+jl (i+j). Hence there are exactly two nonisomorphic ZG-Iattices
of rank one. But, \Cl (ZG) I~2 by [6J. Therefore,

Cl (ZG) =Z/2Z and Ko(ZG) =Z Et> Z/2Z,

where G= H 2 is the generalized quatemion group of order 16.
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