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A CHARACTERIZATION OF A FINITE RING Mat2 (pm)

By MIN SURP RHEE

1. Introduction

Let Mat2 (pm) be the set of all nXn-matrices over a finite field with pm
elements, where p is a prime number. Then the set Mat2 <?,) forms a
finite ring with identity of characteristic p. The group of units of the ring
Mat2 (2, pm) is the general linear group (in dimension 2) GL (2, pm) •

The main object of this paper is to characterize the finite rings with ide­
ntity of characteristic p, whose group of units is isomorphic to GL (2, pm) •
where p is a prime number. Our main theorem is the following:

THEOREM 3. 1. Let R be a finite ring with identity of characteristic p,
where p is a prime number.

Suppose that the group R* of units of R is isomorphic to GL (2, pm). Then
(1) If P=2, then R~Mat2(2m) EBZ2EB"'EBZ2'
(2) If P is odd, then R~Mat2<?')'

The above theorem will be proved in Section 3. In Section 2 we will
discuss some properties of a ring and the structure of the group GL (n, q),
which will be used in the proof of our main theorem.

There are several results in the literature, which are related to our pa­
per. Gilmer [8J gave a complete description of all finite, commutative rings
with identity whose group of units is cyclic. Eldridge and Fisher [6J deter­
mined the rings satisfying the descending chain condition for left (right)
ideals, whose group of units is finite. Also, they showed that there is only
one noncommutative ring satisfying this condition. Eldridge [5J have sho­
wed that the structure of an artinian ring is determined by knowing that
it has either a solvable, torsion, simple, nilpotent, supersolvable, or finitely
generated quasi-regular group. For the case of a simple quasi-regular group,
the rings are completely determined. Ditor [3J has determined a finite ring
whose group of units is of odd order.

The notation in this paper is standard. It is taken from [4J and [9J
for the groups and the rings. We will denote by IS I the number of
elements of a finite set S. Let G be a group and H be a subgroup of G.
Then we will denote by IG:HI the index of H in G.



54 Mm Surp Rhee

2. Preliminary results

In this section we will discuss some properties of a ring and the structure
of the group GL(n, q).

Let R be a ring with identity. An element r of R is called a unit if r
has the multiplicative inverse in the ring R. The set of all units of a ring
R forms a multiplicative group, which is called the group of units of R
and is denoted by R*.

Let Matn(F) be the set of all nXn-matrices over a field F. If F is the
finite field with q elements, we will use the symbol Matn (q) for Matn (F) ~

Note that if p is the characteristic of F, then q is a power of p.
The general linear group GL(n, q) is the group of units of Matn(q).

The subgroup of GL(n, q) consisting of matrices of determinant 1 is called
the special linear group, which is denoted by SL (n, q). The center Z of
SL (n, q) consists of the scalar matrices of determinant 1 and the cor­
responding factor group PSL (n, q) = SL (n, q) / Z is called the projective
special linear group.

The following known results are useful in the proof of our main theorem
of this paper.

PROPOSITION 2. 1. Let R be a ring with identity and let RadR be the
Jacobson radical of R. Then 1+RadR is a normal subgroup of R*, the
group of units of R.

Proof. The proof may be found in [9, pp. 74-75J.

PROPOSITION 2. 2. A finite semisimple ring R with identity is isomorphic
to a finite direct sum of the full matrix rings over finite fields. That is,
R~Matnl (ql) EJj"'EBMatnr(qr), where each qi is a power of a prime number.

Proof. The proof follows from Wedderbum-Artin theorem [4, p. 13,
Theorem 2.17J and Wedderbum's theorem [1, p. 138, Theorem 3J.

PRoPOSITION 2.3. Let n~2 and q=j>"', p prime. Then
(1) GL (n, q) has no nontrivial normal p-subgroup.
(2) A Sylow p-subgroup of GL(n, q) is elementary abelian if and only if

n=2.

Proof. Let SI be the set of all elements of GL(n, q) of the form
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and let S2 be the set of all elements of GL(n, q) of the form

(

1 *

0

1

... 1
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Then SI and S2 are Sylow p-subgroups of GL(n, q). Let N be a normal
p-subgroup of GL(n, q). By Sylow's theorem, N is contained in all Sylow
p-subgroups of GL(n, q). In particular, N~Sl nS2= {I}. Therefore, the
assertion (1) holds.

The assertion (2) can be proved by an easy calculation.

PROPOSITION 2.4. Let F be a finite field with pm elements. Then the group
SL (2, pm) is generated by two Sylow p-subgroups SI and S2, where

Proof. This is proved in [2, p. 81, Lemma 6. 1. 1. ].

PROPOSITION 2.5. Let N be a normal subgroup of the group SL (2, pm),
pm~4. If IN\>2, then N=SL(2,pm).

Proof. The group PSL(2,pm), pm~4, is simple [4, p. 205, Theorem
35.8J. Assume that p=2. Note that SL(2,pm)=PSL(2,pm). It is easy to
show that N = SL (2, pm). Assume that p is odd. Let N be a normal
subgroup of SL (2, pm) and Z be the center of SL (2, pm). If Z ~ 1\', then
N must be SL (2, pm) since the order of Z is 2 and SL (2, pm) / Z is simple.
Suppose that Zq:.N. Then zn N= {I} and N* {l}. Hence N is a normal
subgroup of SL (2, pm) of index 2. Since 2 and p are relatively prime,
any Sylow p-subgroup of N is a Sylow p-subgroup of SL(2,pm). By Sylow's
theorem, N contains all the Sylow p-subgroups of SL (2, pm). By Proposi­
tion 2.4, N=SL(2,pm). Therefore, this proposition holds.

3. Main theorem

In this section we will prove the following theorem.

THEOREM 3. 1. Let R be a finite ring with identity of characteristic p,
where p is a prime number. Suppose that the group R* of units of R is iso­
morphic to GL (2, pm). Then

(1) If p=2, then R~Mat2(2m)EBZ2EB···EBZ2.

(2) If P is odd, then R ~Matz(pm) .

The above theorem will be proved by a series of propositions. Throu-
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ghout this section, R is a finite ring satisfying the assumption in Theorem
3.1.

. PROPOSITION 3.2. The number of elements of R is a power of p.
Proof. Suppose that IR I is not a power of p. Then there exists a prime

number p', p' 1= p, which is a divisor of 1R I. Since (R, +) is a group, it
follows from Cauchy theorem that there exists a nonzero element a E R such
that p' ·a=O. On the other hand, the characteristic of R is p. Hence p·a=O.
These two equations implies a=O. This is a contradiction.

PROPOSITION 3.3. We have

R~Matnl (ql) EB···EB Matnr(q)

and

where rand ni are positive integers, and qi=pk; for some positive integer ki •

Proof. Since (RadR, +) is a subgroup of (R, + ), IRad R I is a power
of p by Proposition 3. 2. By Proposition 2. 1, the subgroup 1+RadR is
normal in R*. Therefore, 1+RadR is a normal p-subgroup of R*, and
1+RadR= {1} by Proposition 2.3. This implies that RadR= {D} and R is
a semisimple ring. By Proposition 2. 2, R~Matnl (ql)EB···EBMatnr(qr).
Since' the characteristic of R is p, each qi must be a power of p. Thus,
Proposition 3. 3 holds.

PROPOSITION 3. 4. There exists a normal subgroup H of R*, which is iso­
morphic to SL(2, pm). And there exist normal subgroups Gh ···,Gr of R*
such that R*=Gl X ... X GT> where Gi~GL(ni,pki).

Proof. The first assertion is easy and the second assertion follows from
Proposition 3. 3.

PROPOSITION 3.5. Theorem 3.1 holds.
Proof. Let Gh "', Gr and H be normal subgroups of R*, which are defined

in Proposition 3.4. Since R*=Gl X '" X Gr is not abelian, at least one of
the Gi is not abelian. Thus, without loss of generality, we may assume
that Gl is not abelian. Note that R*~ GL(2,pm), H ~ SL(2,pm), and
Cl ~ GL(n,pk) for some positive integers n;;::::2 and k.

First we will prove that Gl = R*. Since Gl and H are normal subgroups
of R*, both GlH and Cl n H are normal subgroup~. of R*. By the second
isomorphism theorem, ClH/H~GdGlnH and IGl : GlnHI=IGlH: HI·
Since IR* : HI and p are relatively prime, it follows that IGl : Gl n HI
and p are relatively prime. Hence any Sylow p-subgroup of Gl n H is
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a Sylow p-subgroup of the group G1• Any Sylow p-subgroup of G1 nH
is a p-subgroup of H, and G1 nH is elementary abelian. Hence a Sylow
p-subgroup of G1 nH is elementary abelian. By Proposition 2. 3, we have
n=2 and Gl~GL(2,pk). Moreover, the normality of G1 nH in G1 implies
that any Sylow p-subgroup of G1 is contained in G1 nH. By Proposition
2. 4, the group G1 nH. By Proposition 2. 4, the group G1 nH contains a
subgroup which is isomorphic to SL(2,pk). Note that ISL(2,pk) I?:.pk. In
particular, IGnHI ~ ISL(2, pk) 1>2. Assume that m=l. Then the group
R* is isomorphic to the group GL(2,p). Since the group G1 is isomorphic
to the group GL (2, pk) and G1 is a subgroup of R*, we have k=l and
R*=G. Assume that m?:.2. Then since p"'?:.4 and IG1 nH I>2, it follows
from Proposition 2.5 that G1 nH=H. Hence the group H is a subgroup
of the group G1• On the other hand, the order of a Sylow p-subgroup of
H is pm and the order of a Sylow p-subgroup of G1 is pk. Hence we have
k=m and R*=G1•

Finally we will show that this proposition holds. By Proposition 3. 3, we
have R~Matnl(ql)E9···E9Matnr(qr)' Suppose that r=1. Then R:=Matz(pm)·

Now suppose that r>1. Then IG2 1= •.. = IGr I = 1, and it follows that
nz=···=nr=l, kZ="'=kr =l, and p=2. This implies that

R:=Matz(2m) E9Zz E9...E9 Zz.

Thus we have proved Theorem 3. 1.
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