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SURJECTIVITY OF THE TRANSPOSED MAP

By DoNG PYo CHI, T AE GEUN CHO, JONGSIK KIM*>

Introduction.

In this paper we shall investigate certain conditions for the transposed map
of a continuous linear map from a locally convex topological space to ano­
ther to be surjective. Our primary concern is the case when a continous
linear map is defined between two LF-spaces. Thus a continuous linear
map u:Co=(Q)-Co=(D) where Co=(D) is a space of test functions on an
open subset D of Rn offers a model for our case.

The contents of this paper is divided into three sections. In the first, we
shall discuss the lifting of surjective transposed maps. In the second we
give an application of the first section to a continuous linear map from an
LF-space to another, while in the third we shall prove a duality between
a continuous linear map from an LF-space to another and its transpose
when the transpose is surjective. It follows that when the LF-spaces
are reflexive Schwartz spaces, surjective transposed map is an opan
mapping.

The results stated in the section 1 and 2 are based on the functional
analytic version of the proof of the theorem in [4J; namely, P(D) QJ' (D) =

qy' (D) if D is a strongly P(D) convex open subset of Rn and p(D) is a
differential polynomial acting on 9)' (D), the space of distributions on D.
The result in the section 3 essentially says that a surjective continuous
linear map from 9)' (D) onto itself is an open mapping.

1. Lifting of surjective transposed map

Let X and Y be two locally convex Hausdorff topological vector spaces
and u: X- Y be a continuous linear map. We denote by X' (resp, Y') the
dual space of X (resp_ Y) and by Spec X (resp. Spec Y) the space of
continuous· seminorms on X (resp. Y). The transposed map of u will be
denoted by tu (resp. u*). Thus tu (resp. u*) maps Y' (resp. Spec Y) into
X' (resp. Spec X). We shall say that u is a monomorphism from X to Y if
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:and only if u is an injective map and u: X-4Im(u) c Y is an open map.
When u is injective and u:X-4Im(u) c Y is an open map with respect to
the weak topologies in X and Y, we say that u is a weak monomorphism.
When u is surjective and open, we shall say that u is an epimorphism.

We recall that a classical theorem in [IJ states that if X, Y are locally
convex topological vector spaces and X', Y' are their dual spaces, then,
for a continuous linear map u: X-4 Y, tu is surjective if and only if u is a
weak monomorphism.

THEOREM 1.1. (Lifting of surjective transposed maps) Let X and Y be two
.locally convex topological vector spaces and u: X -4 Y be a continuous linear
map. Let X o and Yo be subspaces of X and Y respectively. We suppose that
.u(Xo) c YD' Let uo=ulx.:Xo-4 Yo and

.he the continuous linear map defined canonically by u. If tuo (resp. uo*) and
.Iv (resp. v*) are surjective, then tu (resp. u*) is surjective.

Proof. We recall first the linear isomorphisms;

xo'=X'!Xoo, (X! X o)'=Xoo,

Spec Xo=Spec X!X o, Spec (X/ X o) =Xol.,

-where Xoo (resp. Xol.) is the polar of X o in X' (resp. Spec X) (cf. [7J).
We have a natural commutative diagram

O--Xo--X--X/Xo--O

1U o 1u 1v

0-- Yo--Y -- Y/ Yo--O

-which, in duality, gives rise to the following two commutative diagrams:

;and
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000

1 i 1
O----+Xol.----+Spec X----+Spec X/Xol.----+O

rv* ru* rUo*
0----+ Yol.----+Spec Y----+Spec Y/ yol.----+O

We are required to show that if tv (resp. v*) and tuo (resp. uo*) are
surjective, then so is tu (resp. u*).

We think of the case of tu first. If x'EX', there exists z=p(y') E Y'/Y/l'
such that

tuo(z) =q(x') , i.e., q(tu(y'»=q(x')

so that

q (tu (y') - x') =0 and tu (y') - x' E Xoo.

Thus there exists wE Yoo such that

tv(w) =tu(y') -x'

and

x'=tu (y') - j(tv(w» =tu(y' -i(w».

Thus tu is also surjective.
Exactlyrsame arguments apply for the surjectivity of u*. This completes.

the proof of the theorem 1. 1.

We note that, when X and Yare Hausdorff, u:X-Yis a monomorphism
if and only if u*: Spec Y-Spec X is surjective. (cf. [7J) This observa­
tion gives the following dual version of the previous theorem.

THEOREM 1. 2. (Lifting of monomorphism) Let X and Y be two Hausdorff
locally convex topological vector spaces and u: X - Y be a continuous linear map.
Let X o (resp. Yo) be a clos ed subspace of X (resp. Y. ) . We suppose that
u (Xo) c Yo and let

uo=ulxo:Xo-Yo and v:X/Xo-Y/Yo

be the continuous linear maps defined canonically by u. If both Uo and v are­
monomorphisms, so is u.

We shall offer another proof of the previous theorem for the future ap­
plication.

Proof. The surjectivity of u*:Spec Y-Spec X will be proved by the
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Hahn-Banach type theorem for the seminorms (cf. [7J) if we prove that,
for pE Spec X arbitrary, there is qESpec Y such that for all xEX,

p(x)~ qu(x).

Let pESpecX. In view of our hypothesis that u" is a monomorphism, there
is qoESpecY such that

(1)

Let us set

PI= 1Cl* (sup (p, u*q»

where 1Cl* is the retraction of Spec X onto (X,,).L, Le.,

(1Cl*P) (x) =infp(y) for pESpecX,
;YEX.Z-;YEX

Q

where 101 is the canonical epimorphism X-X/X". Now 101* is a surjection
()f Spec X/X" onto (X,,).L. Therfore, there is P2ESpec (X/X,,) such that

PI = lOl*P2.

Next, we use the fact that v is a monomorphism. Since v* IS surjective,
there is rl ESpec(Y/ Y,,) such that

P2=v*rl

Let 1C2 be the canonical epimorphism Y-Y/Y" and 1C2*:Spec(Y/Y,,)-SpecY
be its transpose. Let us set r=1C2*rl

Let e be an arbitrary positive number. We contend that there is an integer
.k~O such that, for all xEX

(2) p(x)~(l+e)q,,(u(x»+kr(u(x»

Let us suppose that this is not true. Then, for each k, we could find Xi

EX such that

p (Xk) >1, (1+e)qo(u(Xk) +k r(u(xk» ~1.

In particular, we have

r(U(Xk» ~l/k

But this means (cf. Remark 1.) that

PI (Xk) ~1/k.

By the definition of PI and the definition of 1Cl*' there is xi/EX, x/'EX"
such that
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We derive from this that

IP(Xi) -p(X/') I and /qo(U(Xk» -qo(u(x/'» I
converges to 0 as k-+oo. Hence, for large k,

p(x/'»l and qo(u(x/'»<l

which contradicts to (1) as xl'E Xo'

This completes our proof since q= (1 +e)qo+kr for some k>O satisfies

p(x) s,qu(x) for all xEX.

REMARK 1. With the previous notations, we have Pl=u*r. Indeed,

PI= 7Z:1*P2= 7Z:1*'V*rl=u.7Z:2*rl and r=7Z:2.r l'

We recall that the commutative diagram

u
X -- Y
17Z:1 'V 17Z:2

X/Xo - Y/Yo

yields the commutative diagram

u.
SpecX +- Spec Y

1:7Z:1* 'V* 17Z:2*
Spec (X/ Xo) +-Spec (Y/ Yo) •
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REMARK 2. We note that in the above proof we proved more than the
statement of the theorem. In fact, for p, qo as in the proof of the theorem
1. 2 and for any e>O, setting q= (1+e)qo+kr for some k>O, we construc­
ted a continuous seminorm q on Y such that

q(y) = (1+e)qo(y) for all yE Yo.

p(x) ~q(u(x» for all xEX.

2. Applications to the duals of LF-spaees

Let E and F be LF-spaces, i. e. strict inductive limits of countably many
Frechet spaces. Let u:E -+ F be a continuous linear map. Let {Em} (m=O,
1, "'), {Fnl (n=O, 1,,') be two sequences of definitions of E and F res­
pectively. E' and F' will be the dual of E and F and tu: F' -+ E', the tr­
anspose of u as usual.
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PROPOSITION 2.1. For every m=O, 1, "., there is an integer n:2:0 such that
u(Em) cFn•

Proof. The subspace Em nu-I (Fn) (n=O, 1, ...) are closed and their union
is equal to Em. Therefore one of them must have an interior point, as Em:
is a Baire space. Hence it must be equal to Em. This completes the proof.

From now on, we rename the indices m so that u(Em) cFm for all m=
0,1,···. We introduce the following property:

(P) To every m:2:1 and for every sequence {Xk} .in Em' if the canonical
images of U(Xk) in Fm / Fm- 1 converges to zero, then the canonical image
of Xk in E m/ Em- I converges to zero.

We note that the property (P) is exactly same as:
To every m :2:1, the canonical map vm : Em/ Em- c -+FmlFm-I is a mono­

morphism.

We also make the following assumption:

(Q) To every x' EE', there is qoESpec F such that for all xEEo

I<x', x> I~qo(u(x»

We note that property (Q) is equivalent to the fact thatuo=ulEo :Eo--'>Fo­
has the surjective transpose tuo, or equivalently, that Uo is a monomor­
phism, since Eo and F 0 are Frechet spaces.

THEOREM 2. 1. If (P) and CQ) both hold, then tu is surjective.

Proof. The surjectivity will be proved if we prove that to each x' EE',.
there is qESpeC F such that, for all xEE,

I<x', x> I~q(u(x».

We shall construct a seminorm qn (n=l, 2, .•.) successively on F by ind­
uction on n in the following manner. Choose a sequence c,,>O so that
L;,,:jc,,< 00. Since En is a closed subspace of En+1 (n=O, 1, ...) we can apply
the proof of the theorem 1. 2 of lifting of monomorphism (cf. Remark 2)
successively to construct qn E Spec F such that

qn+l(y)=(l+cn)qn(Y) for yEFn,

l<xf,x>l~qn(u(x» for xEEn+1-

It follows immediately that q(y)=limqn(Y) exists and q is a continuous se.­
minorm on F, since F is barrelled and
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...
q(y}=¥ (l+em) q.. (y) if yEFn•

..=0

Hence we have I<x', x> I ::S;;q (u (x) ) for all xEE, this completes the prooL

3. Duality

The primary aim of this section is to prove that a differential operator
P(x, D) with C'" coefficients from Q>' (D) to Q>' (D) is an open map if P(x,
D) is surjective in a generalized form. When the differential operator has
constant coefficients, this fact is proved in [3J.

The method used in [3J can be applied to prove the following.

THEOREM 3.1. A hypoelliptic linear partial differential operator P(x, D) :
Q>' (D) -9)' (D) is an open mapping if P(x, D) is surjective and tP(x, D) is·

hypoelliptic.

Proof. It is enough to show (cf. [3J) that
(1) for each eqnicontinuous subset B of Co00 (D) , (tP(x, D) ) -1 (B) is an

equicontinuous subset of Co'" (D), and
(2) the range of tP(x, D) is (Co'" (D), Q)' (D) )-closed. That (1) is true

follows from the surjectivity of P(x, D). (cf. [7J 10. 1 and 16.4).
To prove (2), suppose {fa} is a net in Co00 (D) with {tP(x, D)fa} conve-­

rging to gECoOO(D) with respect to q(Cooo(D), Q>'(D». Then {tp(x,D)fa}
converges to g in e' (D) with respect to q (e' (D), Coo (D) ). Since P(x, D) :
Q>' (D) -Q>' (D) is surjective and P(x, D) is hypoelliptic, the map P(x, D):
Coo (D) -Coo (D) is surjective and hence open. Therefore tP (x, D) :e' (D) -e'
(D) has a closed range with respect to q (e' (D) , Coo (D) ). Thus there exists.
an element uEe'(D) such that tP(x, D)u=g. Since gECoOO(D) and tP(x, D)
is hypoelliptic, uECoOO(D). Thus the range of tP(x, D) is q(CoOO(D),
Q)' (D) ) -closed, completing the proof.

In the sequel, we shall prove that the theorem 3. 1 is a consequence of
a more general version that any surjective continuous linear map from
Q>' (D) onto Q)' (D) is an open mapping.

We recall first

DEFINION 3. 1. A locally convex Hausdorff space E is said to be a Schwa­
rtz space if for every balanced, closed, convex neighborhood U of 0 there
exists a neighborhood V of 0 such that for every a>O the set V can be
covered by fintely many translates of a U.

We shall use the following lemmas without proof.

LEMMA 3. 1. Let E be a semi-reflexive locally convex Hausdorff space, M
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.a closed suhspace of E, and E' the dual of E. Then the strong topology on
E' IMo as a dual of M coincides with the quotient topology on E' IMo induced
.hy the the strong topology on E' (cf. [5J, p. 272).

LEMMA 3.2. Let E and F be LF-spaces and T be a linear map from E to
F. Let {FA be a sequence of Frechet spaces defining F. We assume that
T(E) nFj is closed for all j=l, 2, .... If either E or F is a Schwartz space,
then T is a monomorphism if and only if T is a weak monomorphism (cf. [2J,
-p.43).

THEOREM 3. 2. Let E and F be reflexive LF spaces and E' (resp. F') be
.the dual of E (resp. F). Let u:E----'>F be a continuous linear map and tu:
F'----'>E' be its transpose. If either E or F is a Schwartz space, then the

Jollowings are equivalent:
(a) tu is surjective,
(b) tu is an epimorphism, and
(c) u is a monomorphism.

Proof. It suffices to prove that (a) implies (c) since (c) =::} (b) =::} (a)
is obvious. In fact, u(E) is a closed subspace of F. Since tu:F'----'>E' can
De decomposed as a product of 7T:: F' ----'>F' / (u (E) ) 0= (u (E) )' and i: F' / (u (E)) °
= (u (E))' ----'>E' by the lemma 3.1, and since 'It: and i are open, it follows
that tu is open. Since i is surjective and hence so is tu, (c) implies (a).

The surjectivity of tu is equivalent to the fact that u is a weak monomor­
phism. Let {En} and {Fm} (m, n=O, 1, ...) be two squences of Frechet spa­
ces defining E and F respectivly. We shall prove the following two facts
.are true provided that u is a weak monomorphism:

(1) For each n, there is m such that

u(En) cFm, and

(2) For each p, there is q such that

u-1(Fp nIm u) cEq•

(l) is proved in the proposition 2.1. To prove (2) note that smce E'
.and F' are barrelled, in E and F, any subset is weakly bounded if and
only if it is strongly bounded. Therefore every image under u-1 of a boun­

.o.ed set in u(E) is bounded. If (2) is false, we can choose a sequence
{Ym} in Fpnlm u such that u-1(ym) f1=Em for each m. Multiplying, if nee­

-cessary, every Ym by a number em>O sufficiently small, we may suppose that
-the sequence {Ym} is bounded in Fp and hence in Fp nlm u; but its image
-under u-1 is not bounded in E. This makes a contradiction.

Now let p and q be chosen to satisfy (2) above. Let us set
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Gp=u-1(Fpnlm u).

tGp is a closed subspace of Eq and u is an injective linear map from Gp
into Fp. On the other hand, note that for each q there exists m such
that EqcGm ; it follows from (1). Therefore Gp is a Frechet space and
{Gp} (p=O, 1, 2, ...) is a sequence defining E. We have u(Gp) cFp and

.u-1(Fpnlm u)=Gp• Note that the weak topology on the subspace (here
Gp or Fp) is identical to a topology induced by the weak topology in the
-entire space (here E or F). We conclude by this fact that u is a weak
monomorphism from Gp into Fp. Since those spaces are Frechet, u is a
monomorphism. From this it follows that u (Gp) = Fp n lm u is a closed sub·
'space of Fp and hence of F. Since E and Fare Schwartz spaces, by Lem­
ma 3. 2 it follows that u is a monomorphism. This completes proof of our
theorem.

Since Co""(Q) is a Schwartz reflexive LF-space, we have the following

COROLLARY. Any surjective continuous linear 11Ulp from Q)' (Q) onto Q)' (Q)
.is open.
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